
Software Configuration, Distribution, and Deployment of
Web-Services

Rainer Anzböck Schahram Dustdar Harald Gall
D.A.T.A. Corporation

Invalidenstrasse 5-7/10

A-1030 Wien, Austria
++43/1/5955319-2

ar@data.at

Distributed Systems Group, Vienna University of Technology

Argentinierstrasse 8/184-1
A-1040 Wien, Austria
++43/1/58801-18414

{dustdar,gall}@tuwien.ac.at

ABSTRACT
Web-Services can be seen as a newly emerging distributed
computing model for the Web. They cater for the need to establish
business-to-business (B2B) interactions on the Web. Web-
Services consider a loosely coupled component model encap-
sulating business logic and interact with other components using
XML protocols. Based on one case study, this paper discusses
architectural issues and requirements for software configuration,
distribution, and deployment of web-services.

General Terms
Design

Keywords
Software Distribution Environments, Web-Services, Software
architecture

1. INTRODUCTION
Software distribution has changed through the Internet evolution
from simple e-mail distribution of software to sophisticated
distribution and configuration portals for software. Such Web
portals are built to provide the newest releases of a vendor’s
software: product updates, service packages, or complete software
packages. Internet users are provided easy and fast access to large
collections of software across many different software and
hardware platforms.

Many commercial tools and environments have been
developed and are in use in such portals: System Management
Server [10], Marimba Management Solution [8], Webstart [19],
InstallShield [5], Tivoli Software Distribution [21], and many
others [1]. We have performed a detailed evaluation of 12
products in the area of software distribution (and configuration)
environments (SDEs) that defines the basis for our architectural
considerations. Details on this evaluation can be found in [1].

In the early stages configuration management (CM) aspects were
not part of SDEs, but nowadays they cover software distribution
and configuration management tasks for the development,
deployment and maintenance of software systems as described in
[2]. Many concepts covering software distribution are also related
to configuration management. Producers require software
configuration management (SCM) to be integrated in their
development environments. Software distribution should be based
on SCM information to ship or offer particular releases (or
configurations) to customers. For that, many SDEs also cover
some software configuration tasks such as management of
development artifacts, product and release management, software
description (languages), or software packaging.

The contribution of this paper is to discuss a software architecture
for a SDE suitable for Web-services. This is achieved by
discussing its architectural properties, common components, and
relationships across particular tools and products, and quality
attributes of a reference architecture for SDEs derived from our
previous analysis [1]. Our results are based on the aforementioned
product evaluation and three case studies that functioned as means
to distill common architectural elements.

The paper is organized as follows: the next section provides a
brief overview of Web-services. Section 2 describes a case study
for Web-services and discusses its architectural issues and
requirements for a SDE. Logical – and Process views for
configuration, distribution, and deployment are presented in
section 2. Finally section 3 concludes the paper.

1.1 Web-services
Web-services [21, 22] can be seen as a newly emerging
distributed computing model for the Web. The standardization
process is driven by the growing need to enable business to
business (B2B) interactions on the Web. Web-services are self-
contained, self-describing modular applications. The web-services
model develops a componentized view of web applications and is
becoming the emerging platform for distributed computing. The
architecture considers a loosely integrated component model,
where a web-service (component) encapsulating any type of
business logic is described in standardized interface definition
language, the Web Services Description Language (WSDL) [21].
Web-service components interact over XML messaging protocol
and interoperate with other components using the Simple Object
Access Protocol (SOAP) [22]. Recently there have been proposals
[3, 20] for a composition model for web-services, which build on
the component interaction model defined by the interaction types
defined by the WSDL interface.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SEKE ’02, July 15-19, 2002, Ischia, Italy.
Copyright 2002 ACM 1-58113-556-4/02/0700…$5.00.

- SEKE '02 - 649 -

1.2 Case study “Web-service"
The real-world case study of this paper consists of a complex
product family that consists of conventional client/server products
as well as Web-based applications. All applications are being
developed in one physical location from one producer (software
company) with some external software engineers having external
access. Further, all applications are under version control. Ver-
sions are accessed on a standard file system for the distribution
process. A Software Distribution Environment (SDE) should
consider these development tasks. The client/server applications
consist of Windows client executables and a database server
system. The Web-based applications consist of a database tier, an
application tier on the Web-server (i.e. application server) that
provides a Web-based client interface for end-users, and a Web-
service interface for the client/server applications through the
SOAP protocol [23]. Therefore a Web-service interface for these
central services is also implemented on the database servers of the
client/server products. The Web-server based configuration takes
place on the company site, where the application servers are
hosted. The client/server products need an initial setup and further
reconfiguration at the customer site. It is necessary to maintain a
network infrastructure to deploy configurations to the customer
via ISDN or VPN connections.

The main focus of this case study are the Internet portal, the Web-
based applications provided directly, and the Web-services that
extend the client/server products. Upgrades, deletions, and re-
installations of the server-side components are currently
performed manually using the network infrastructure. Most tasks
are performed with push semantics. The company decides about
which customer-site receives which product version and when
upgrades have to be performed.

The IETF WebDAV [4] working group works on extensions to
the HTTP protocol to support versioning within software projects.
Extending the HTTP protocol has the strength to build on a widely
used standard Internet protocol. Prior to the WebDAV protocol,
authoring tools only supported read/write instead of check-
in/check-out semantics. Existing versioning products have been
accessed through proprietary HTTP extensions, which forced
clients to support different interfaces for each implementation.
The RFC [4] also suggests that the interoperability of clients and
servers with or without WebDAV support should be guaranteed
and that the client implementation has to be simple. The
extensions to the HTTP protocol are new methods (headers, mime
types, document properties) and new behaviors. The support for
versioning, parallel development, and multi-resource locking
results in a Web-based versioning systems. Additionally the usage
of URIs and a new data format that allows for distribution makes
the WebDAV protocol an interesting alternative for a lightweight
end-user configuration client. However the distribution is
described for packaged software and not yet useable for software
under Configuration Management. For now this approach is a
solution for web versioning. Further progress in this area in the
future will help Content Management systems and web-
application builder tools implement Version Management and
some Configuration Management tasks.

Interfaces are used to integrate systems based on common
communication techniques and language models. J2EE [15, 16,
17] and DCOM [9] are two RPC (remote procedure call) based
communication mechanism for distributed systems. A tight
integration between two applications should use one of them. A
lightweight interface can also be implemented with the HTTP

based SOAP [23] protocol and Web-server integrated Java Beans
[18]. Besides a protocol implementation it is also possible to
integrate the products by customizing scripts or by scripting
against a product’s interface using languages like Java Script, VB
Script, CGI, Python or others.

The standard mechanism for integrating application functionality
consists of an API that is used by external programs or plug-in
components running as a part of the integrated software. Another
mechanism for synchronizing activities between two applications
is the implementation of conditional execution and the usage of
triggers. For example a product can be repackaged based on a
trigger from the CM repository registering a new component’s
version. A further mechanism for integration covers a command
line execution utility, and other tools. It is also possible to provide
an interface through an open software description like a standard
package definition or wide used operation semantics like check
in/check out.

All these different integration techniques should be chosen
carefully. The more interfaces the more flexible is the integration.
It shouldn’t be necessary to choose a specific technique for its
functionality but to choose it, because it best fits for the
integration needs.

Supported platforms and protocols extend the product’s
integration techniques. One important factor is the support for a
variety of operating systems. Beside the widely used Windows
platform a distribution system might have to support different
Unix and Novell server platforms, Macintosh, and other systems.
There are products that are just available for a homogenous
platform

2. ARCHITECTURE FOR WEB-SERVICE
DISTRIBUTION
In this section a reference-architecture is elaborated, based on the
requirements and functionalities presented throughout the
previous section, and the web-services case study.

The case study "Web-service" consists of Web-services that are
part of an Internet portal. These services are used by server
processes at the customers’ site and by Web-clients used by the
customer and other portal visitors. The customer also uses a
client/server application that is not considered here.

The Configuration Management tasks consist of the selection of
the correct Web-service component version by incorporating a
Version Management system. Further the customer database has
to be instantiated and configured. A database version description
file can be stored separately in the Version Management system or
a specific product component generates the database and specifies
the configuration options. The distribution tasks consist of the
installation and registration of Web-service components.
Additionally consistent code and content changes have to be
managed for the Internet portal as well as integration of Content
Management functionalities. Additionally the activation of the
components and the changes to the customer configuration, have
to be synchronized and the customers’ database has to be setup.
An (de-) activation and uninstall of components and databases has
to be supported. For these tasks a distribution system is integrated
with a Web-server for the portal and an application server for the
Web-based components. Further, the customer database and
application servers are part of the infrastructure and a Version
Management system interface is implemented for the
configuration related tasks.

- SEKE ’02 - 650 -

Figure 1: Case study "Web-service" processes

The processes shown in Figure 1 can be described as
follows: First the distribution system requests a version
description for the customer database. The description
covers the database scheme and the configurable
application options. In conformance to this information
the database is configured and customized. A database
backup file is generated and distributed to the database
server. The database is restored and optional
configurations can be done on-site. By executing scripts
against the database from the distribution system site,
state for the distribution task can be maintained. Then a
content update request is performed corresponding to the
distributed database version. The Content Management
system can use its own version control system or
incorporate an existing version control through an
additional interface. The content is then updated on the
Web-server and changes to the content state are provided
to the distribution system. The distribution system
contacts the Version Management for all corresponding
components asynchronously. The Web-based
components can be installed without any specific
distribution system or external packager and installer
application, reducing the expense of a distribution
infrastructure. Enterprise Java Beans or .NET
components are registered by procedures of the
application server that can be automated by the
distribution system implementing a remote interface. The
corresponding mechanisms are described in [15] and
[11]. State information can be used for synchronization.

By activating the application, new versions of the web-
services become available. Through the use of different
entry pages provided by the Content Management, clients
can be redirected to the appropriate site implementing the
new web-services. In a staged distribution model, a
restricted area can be given access first to test for
consistency. Next the site is made available to all clients.
For Web-services the registration information defined

with the WSDL [22] protocol has to be updated. In a test
environment a different registration has to be used
temporarily. An activation and deactivation procedure
has to implement an interface to registration functions
provided for example with the Microsoft SOAP toolkit
[11]. After activation in the production environment a
period of time has to be considered to allow all clients to
migrate to the new services. Afterwards a deactivation of
the old application is performed and a content removal
request is sent to the Content Management. The content is
removed from the Web-server and content state
information is provided for the distribution system. For
the application server components an uninstall procedure
is executed by implementing the described interface.
Finally a database backup is performed and the database
is dropped.

The customer related install und uninstall procedures are
repeated for several sites depending on the participation
in specific Web-services. Throughout the process, clients
asynchronously request services from the Web-server. As
long as an application is activated clients can request its
services. The active periods have to overlap to provide
optimal service availability.

The distribution part can be implemented with an SDE-
infrastructure such as Novadigm [12], NET Deploy [6],
Tivoli [21], SMS [10] or Marimba [8]. Content Studio
[13] might be used for Content Management and
ClearCase [1] for Version Management.

2.1 Analysis of the case study
This section covers the functionality required by the
Web-Services case study in terms of the criteria discussed
above. The degrees of the respective functionalites are
visualized using net diagrams, as depicted in Figure 2.
The stronger requirements for criteria are, the longer is
the corresponding vector.

- SEKE '02 - 651 -

Figure 2: Case study "Web-Services" key factors

The larger the created area, the higher are the overall
requirements with respect to the chosen factors. The
requirements profile of our case study "Web-service" is
shown in Figure 2. The criteria server infrastructure,
distributed architecture, activity, and transaction based
distribution as well as the support of multiple
configurations, are highly relevant. The configurations
are complex because the database configuration and setup
is not separated from the distribution process. Because
the company itself develops the application (business
logic), parts of the configuration are highly customized.
More frequent software changes due to a high
responsibility for customer requirements require an
integrated Version Management. Specific to the scenario
is the Content Management interface. The database, the
customized products, and the content integration extend
the content diversity. Two aspects influence the

availability requirement. First, the installed products also
work without the distribution system, but during staging
of a product it is necessary to provide continuous
availability for the clients of the Web-services. Secondly,
security is already implemented for customer sites to
enable remote administration of the products. This part is
additionally sensitive because of the exchange of
patients’ medical data. The Web-services have to be
secured to prevent misuse by non-authorized software.
Platform support is less relevant in our case study,
because Microsoft operating systems, database systems,
and Web-servers are used.

2.2 Web-service model logical view
In this section we present the logical view for the model
as well as its classes related to the configuration process,
as depicted in Figure 3.

Figure 3: Web-service model logical view - configuration

The web-service model uses a software- and a customer
abstraction and omits the target abstraction. The software
abstraction uses a definition of a Web-service and of its

components as well as a content definition. All classes
contain a name and version attribute. The content and the
component classes additionally provide a type attribute

- SEKE ’02 - 652 -

that is used to identify the operating system or application
server registration method for components and the way of
displaying content for Web-browser. The service
additionally contains a class attribute that is used for
application negotiation (e.g. print service, file service).
All definitions contain a metadata attribute that is a more
complex data type and consist of all other attributes used
to describe the structure of the service, component, and
content classes. Normally this information is used to
install and register files, to know about deadlines of
content actuality and to avoid the necessity for a target
abstraction, an inventorying mechanism or other
expensive infrastructure with similar functionality.
Further, the software abstraction has a corresponding
policy that implements required/support semantics for
specific services or features of services. The metadata has
to contain information about these restrictions otherwise
rules regarding this data cannot be resolved. The software
definition can be used to generalize the metadata
definition found in different service and component
models like COM, CORBA or EJB. The customer
abstraction is therefore primarily used to implement and
resolve the requirements for services and features.
Implementers of this model have implicit knowledge
about the customers and can configure and customize the
customer definition manually or with support from a
directory service. Payment, licensing and other
information is irrelevant for this case study. The customer
abstraction could also be implemented as a target
abstraction, but its policies depend more on
organizational than on infrastructural requirements,
which should be used to distinguish between those
practices.

Figure 4 shows the classes related to the distribution
processes. The distribution process can be best described
as "staging-like". First, most components distributed are
self-describing, perform self-registration, are distributed,
fine-grained, and wide-spread. Therefore the model omits
a packager class. Second, a Content Management system
is integrated that provides an interface to the distribution
system for staging content. Content related activities have
to be integrated into the process that basically executes
registration functions and performs installer-based
activities for components that are not able to be registered
without an installation function like database-related
activities where backup and script files have to be
executed on the target machine. Further a history class is
omitted because the distribution process doesn't adapt
installation activities based on this information. The plan
class provides profiles that allow different distribution
activities related to the same set of distributables and the
same path definitions. This functionality allows a mixture
of service and component releases and subsequent
content updates to be modeled and executed using a
similar infrastructure. The activity class additionally
contains database and content related functionality and
operates on distributable definitions (single or several
files) rather than on packages. The client shown in Figure
4 represents the target platform. The target is a database
server or an application server. Nevertheless state
information is provided that is used to update the state of
the staging process.

Figure 4: Web-service model logical view - distribution

- SEKE '02 - 653 -

Figure 5: Web-service model process view - configuration

2.3 Web-service model Process view
In this section the process view of the Web-service
architecture is shown. First, the distributable definition
creation is shown in Figure 5. The customer definition is
read from the database and initialized (1). The software
definition is read, initialized, and in the third step the
content metadata including other attributes are provided
through the Content Management interface (2.3) and
combined with the existing attributes of the content
definition of the software abstraction (2.3.1). Then the

software definition is provided (2.4) and the data in the
common repository is updated (2.5). The third phase for
distributable creation (3) can be compared to the other
client/server and standard-software architectures with
respect to the different attributes stored. Figure 6 depicts
the process of plan creation and execution as required by
a Web-service-based model. The Content Management
system is integrated and a staging-like approach is chosen
to provide the required flexibility in a distributed
environment.

Figure 6: Web-service model process view - distribution

The distribution process contains three phases. In phase
one a distribution plan is created (1), which is related to
all required distributables as stated in the corresponding
policy and contains all activities for component, database,
and content installation. First, the distributables are
selected from the repository and initialized (1.1, 1.2).
Second, a description containing Web-service related
activities is provided (1.3) and used in the operation of
plan creation (1.4). This step can be further detailed for
the path and activity subclasses. Finally the plan is stored
in the repository (1.5). In the second phase the created
plan is executed (2). The plan is selected from the

repository and initialized (2.1, 2.2). The plan is then
executed and based on its activity definition one or more
of the described service, component, database, and
content operations are performed (2.4-2.8). Activities that
should be supported cover the restore and configuration
of a database, the registration of services and components
and the staging of content. Further activities for
deregistration or database backups should be considered.
An important issue to support staging regards content
updates that are independent of the deployed components.

- SEKE '02 - 654 -

Figure 7: Web-service model deployment view

The plan class therefore supports different profiles that
cover the base distribution and subsequent content
updates.

Figure 7 depicts the deployment view of the Web-service
architecture as well as the system nodes interacting in this
model.

An application server hosting the common service is
required. It is able to host a Web based application
service and integrated HTTP support, object pooling,
transaction support and many other advantages. The
Web-service-based system consists of several application
and database servers hosting content, components, and
databases. The distribution process provides
distributables and installer applications to the destination
nodes for installation activities on the target site. The
common service might also be distributed across several
sites for geographically distributed application servers. In
this case a repository replication is most appropriate to
allow on-site installation of components and a
distribution consistency of the Web-service functionality.
Additionally all nodes can be clustered to provide load
balance and fault tolerance.

3. CONCLUSIONS
Software distribution environments have become
important parts for software vendors to distribute their
latest software versions and updates effectively and
efficiently to customers. Configuration management,
version management, and software description languages
are essential elements for software distribution and
should be considered in an integrated fashion.

The contribution of this paper was based on the
evaluation of 12 software distribution environments
(SDEs) and their software architectures [14]. In this paper
we presented a real world case study for web-services
distribution. Based on our previous work [1] we
discussed those quality attributes that can be used to
assess architectural elements for web-services based
software distribution. We have presented an architecture
for web-service software configuration, distribution, and
deployment that is based on a real-world case study. The
main criteria required for such an environment is the
support for multiple configurations, customization,
version management, release consistency, and server
infrastructure. Future work will concentrate on quality
attributes and reference architectures for software
distribution environments.

4. REFERENCES
[1] Anzböck, R. (2002). Architectures for a Software

Distribution Environment, Master’s thesis.
Distributed Systems Group, Technical University of
Vienna, Austria 2002

[2] Dart, S. (2000). Configuration Management: The
Missing Link in Web Engineering, Artech House,
London.

[3] IBM „Web Services Flow Language (WSFL 1.0)“,
May 2001. http://www-4.ibm.com/software/-
solutions/webservices/pdf/WSFL.pdf

[4] IETF Network Working Group, RFC2518, HTTP
Extensions for Distributed Authoring - WEBDAV,
http://www.ietf.org/rfc/rfc2291.txt, 1998

[5] InstallShield, InstallShield for Windows Installer
Whitepaper,http://www.installshield.com/isd/resourc
es/ 2001

[6] ManageSoft, NETDeploy Technical Specification,
http://www.managesoft.com/products/technical/inde
x.xml, 2001

[7] ManageSoft, Managing software for mobile and
remote users,
http://www.managesoft.com/products/mobile.xml,
2001

[8] Marimba, Marimba Management Solution,
http://www.marimba.com/products/intro.htm, 1999

[9] Microsoft Corporation, DCOM,
http://www.microsoft.com/com/, 2001

[10] Microsoft, System Management Server Reviewer’s
Guide,http://www.microsoft.com/smsmgmt/ 1998

[11] Microsoft, DotNET Framework
http://www.microsoft.com /net, 2002

[12] Novadigm, Radio Software Manager Factsheet,
http://www.novadigm.com/products/radia/index.htm
l, 2001

[13] Rational, An overview of Rational Suite
ContentStudio, http://www.rational.com/products/-
cstudio/whitepapers.jsp, 2001

[14] Shaw, M and Garlan, D., Software Architecture:
Perspectives on an emerging discipline, Prentice
Hall, 1996

[15] Sun Microsystems, Enterprise Java Beans,
http://java.sun.com/products/ejb/, 2001

- SEKE '02 - 655 -

[16] Sun Microsystems, JAVA, http://java.sun.com, 2001

[17] Sun Microsystems, Java 2 Enterprise Edition,
http://java.sun.com/j2ee, 2001

[18] Sun Microsystems, Java Beans,
http://java.sun.com/products/javabeans, 2001

[19] Sun Microsystems, Webstart,
http://java.sun.com/products/javawebstart/, 2001

[20] Thatte, S. (2001) “XLANG. Web Services for
Business Process Design“, May 2001,
http://www.gotdotnet.com/team/xml_wsspecs/-
default.aspx

[21] Tivoli, Tivoli Software Distribution Factsheet,
http://www.tivoli.com/news/press/pressreleases/en/2
000/supplement/software_dist_factsheet.html, 2001

[22] World Wide Web Consortium, WSDL Web-service
Description Language, http://www.w3.org/TR/wsdl,
2001

[23] World Wide Web Consortium, SOAP (Simple
Object Access Protocol),
http://www.w3.org/TR/2001/WD-soap12-part1-
20011002/, 2001

- SEKE '02 - 656 -

