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Abstract—Cost and competitive pressures are forcing busi-
ness organizations to reuse assets from repositories, rather than
develop them from scratch. But this has been hampered by
some issues that have not been addressed so far. First, there is
a lack of a mechanism for the representation of business process
assets as variants and versions in repositories. Second, there is
no formal means to compare between different variants and
versions of an asset and determine which is the best to select
for reuse. Third, there is a lack of a technique to determine the
extent to which a business process asset could be customized
for reuse. In this paper, we address the above research issues by
presenting an integrated approach for modeling, analyzing, and
searching business process assets in a repository for enhancing
reuse. We demonstrate our approach on a large repository of
business process assets in the insurance domain.
Keywords. Business Process, Service, Reuse, Repositories,
Assets

I. INTRODUCTION

Given increasing cost and competitive pressures, business
organizations are reusing existing business process assets
from repositories [1]. The emergence of service-oriented
architecture (SOA) [2], with its emphasis on loose coupling
and dynamic binding, is seen as a promising way to enable
more effective reuse by packaging assets as reusable services
accessible only via their interfaces. (By business process
asset we mean any software component in the repository
represented as a business process, sub-process, or even
a single service.) However, to realize this vision, several
research challenges need to be addressed. First, there is
a lack of a model for facilitating the representation of
business process assets as variants and versions in business
process repositories, with a view towards maximizing their
reusability. Second, there is no formal way to compare
between different candidate asset variants and versions in
order to determine which can be a better reuse candidate.
Finally, no matching technique exists that can determine the
extent to which a potential business process asset can be
customized for reuse.
In this paper, we resolve these research challenges by

representing a business process asset as a collection of its
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constituent services by extending our prior work on variation-
oriented engineering principles of SOA [3] and by presenting
a novel mechanism for searching assets for reuse. The salient
contributions of our paper are as follows.

• An asset tree representation model that represents ver-
sions and variants of business process assets together in
a repository

• A formal mechanism to compare and analyze variants
and versions of an asset reusability

• A matching algorithm that matches a specified require-
ment against an asset and determines the extent to which
the asset meets the requirement.

To the best of our knowledge, our approach is the first
integrated technique for asset variant and version represen-
tation in a repository, along with an enhanced matching of
existing assets against a specified business process require-
ment. In contrast to the extensive works on business process
similarity matching [4], [5], [6], [7], [1] that primarily focus
on structural aspects of business processes, the presented
methodology in this work investigates the semantic aspects
through a unique asset tree representation of business process
models in terms of their constituent services.
The remainder of this paper is organized as follows. In the

next section, we present a running example that will be used
throughout the paper for illustration. Section III presents our
asset tree representation model for storing business process
variants and versions. Section IV describes our matching
algorithm for assets vis-a-vis requirements. Implementation
of our approach over a large repository of real-life business
processes is described in Section V. We present related
work in Section VI, followed by concluding remarks in
Section VII.

II. RUNNING EXAMPLE
Our running example starts with the scenario of a business

analyst looking for an insurance claims business process
asset. The inputs to this process should be the details of the
customer requesting the claim, and the details of the claim.
The outputs of this process should be acceptance/rejection
of the claim, along with the claim amount to be paid to the
customer (the claim amount will be zero in case of rejec-
tion). The analyst searches the business process repository
using the inputs and outputs as her search criteria. Let us
assume that she finds two candidate assets as represented by
Pr1 and Pr2 in Figs. 1 and 2, respectively. Pr1 consists
of three major sub-processes - (i) Record Claim, (ii)
Verify Claim, and (iii) Analyze Claim & Report.
In Verify Claim sub-process, let us assume that the
DetermineLiability and PotentialFraudCheck services are
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Fig. 1. Insurance Claims Process Pr1

Fig. 2. Modified Insurance Claims Process Pr2

first executed in parallel, and then their results are sent to
ClaimInvestigation service. A final review of the verified
claim is then implemented by FinalReview service.
Pr2 implements the same functionality, but differently.

DetermineLiability and PotentialFraudCheck services are
serialized. Then, PotentialFraudCheck service is modified,
considering the extent of liability. Finally, a new Liability-
PlusFraudCheck service is added. The inputs and outputs for
the services in Pr1 and Pr2 are depicted in Fig. 3.
The analyst can also specify specfic non-functional con-

straints such as performance and reliability, along with
the process inputs and outputs. This could give rise to a
situation where no single business process asset can match
her requirement fully, thereby giving a potential trade-off,
requiring user intervention to select the “best” candidate.
If the analyst wants to narrow down the search further,

she would specify additional criteria, such as the services
that the business process asset should contain. These would
be specified in terms of their respective inputs and outputs.

III. ASSET REPRESENTATION IN BUSINESS PROCESS
REPOSITORIES

A. Basic Definitions
Definition 1: A business process (or sub-process) P is

defined as P = {S,D,C}, where S = {S1, ..., Sn} is the set
of services that participate in P ; D = {Dij}, iff Si

dij

→ Sj

= true, is the set of all data dependencies of service Sj

on Si, where i �= j; and C = {Cij}, iff Si

cij
→ Sj = true,

where i �= j, is the set of control flow dependencies between
Si and Sj , where Cij is either true or false, based on whether

Si controls the execution of Sj , i.e., iff Si precedes Sj in
the control flow.
If two services in a process, share the same set of required

input data, but the execution of the preceding service in the
process flow does not affect the execution of the succeed-
ing service, then the services have just a data dependency
relationship between them. Otherwise, they have the control
flow dependency between them.
Definition 2: A service Si is defined via its input and

output sets respectively, i.e., Si = {Din, Dout}, where Din

is a set of input data required for invoking Si, and Dout is
a set of output data expected after invoking Si.
For example, the inputs for the service DetermineLiability

in Pr1 (see Fig. 3) are CustomerInfo and ClaimInfo, while
its output is LiabilityInfo.

B. Metamodel-based Representation of Asset Variants
Leveraging the metamodel introduced in [3], we can

separately model the static and variable parts of any software
component. This metamodel consists of two parts (details
are available from [3]). variation points are the points in
the component where variations can be introduced. variation
features refine variation points, by specifying the action
semantics of the variation and its specific applicability. The
same variation point can admit more than one variation
feature, and one variation feature can be applied to many
variation points.
This metamodel is further extended to instantiate concep-

tual models for modeling service-level and business process-
level variations. These conceptual models can then be treated
as design templates from which actual variation-oriented
design can be accomplished. In our running example, an ex-
ample of a variation point is a method in DetermineLiability
service, for calculating insurance liability. A variation feature
is an action to replace that method by a different method.
The actual service variant is the modified DetermineLiability
service containing the replacement method.

C. Asset Variants vis-a-vis Versions
The ways in which a pair of related assets can differ from

each other are variants and versions. We define them as
follows.
Definition 3: A variant A′ of an asset A is another asset

such that A′ can be derived from A by applying a set of
variation features, each of them applied on a variation point
of A:

A′←A +
∑k

i=1
δV (A)isuch that δV (A)i

V Px→
{V F1, V F2, · · · , V Fm}
In Definition 3,

∑k

i=1
δV (A) comprises a varying asset

of A, V Px is a variation point, and {V F1, V F2, · · · , V Fm}
are the set of variation features applied on that variation
point. Referring to Fig. 3, we see that the DetermineLiability
service of process Pr2 is a variant of the DetermineLiability
service of process Pr1; the former containing the additional
input data LiabilityInfo.
Definition 4: A version A′′ of an asset A is another asset

such that the following holds: A′′ can be derived from A
through a combination of changes; each is either a change
of a static part of A (as defined in Section III-B) or a change
to the composition of variation model of A itself:
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(1) Services for Pr1 (2) Services for Pr2

Fig. 3. Services in Pr1 & Pr2, and their inputs and outputs

A′′←A + ∂V (A) such that ∂V (A) ={
Δi(A), i = 1, 2, · · · , n, or
VM(A) + VM(A′′)
with

VM(A) =

⎛
⎜⎜⎜⎝

V F1 V F2 ... V Fm

V P1 A1 A2 ... Am
V P2 B1 B2 ... Bm

V Pn Z1 Z2 ... Zm

⎞
⎟⎟⎟⎠

and

VM(A′′) =

⎛
⎜⎜⎜⎝

V Fm+1 V Fm+2 ... V Fm+x

V Pn+1 a1 a2 ... am
V Pn+2 b1 b2 ... bm

V Pn+y z1 z2 ... zm

⎞
⎟⎟⎟⎠

In Definition 4, ∂ V (A) represents the difference in A′′ over
A, Δi(A) is a change in the static part of A, and VM(A′′)
is the change in the variation model of A itself. That
is, VM(A) represents the variation model of A; whereas,
VM(A′′) represents the difference in the variation model of
A′′ over that of A.
The matrices VM(A) and VM(A′′) depict the variation

points in the rows and variation features in the columns. An
entry in either matrix represents the existence of a variation
created by applying a variation feature on a variation point
- otherwise it will be a null entry.
In our running example, versions are illustrated via the two

business processes Pr1 and Pr2 themselves. The variation
models of these two processes being identical, the varying
component of Pr1 that appears in Pr2, is the new Liabili-
tyPlusFraudCheck service added in Pr2.

D. Asset Tree Representation

Since most repositories are based on version control sys-
tems (e.g., CVS), we can represent the repository’s assets in a
version tree. Each version therefore has a unique parent, from
which it has been derived. Differences between the version
and its parent are typically represented manually in the form
of user-editable comments. As this is an undesired practice,

Fig. 4. Asset Tree Representation

we introduce the novel concept of asset tree to represent
business process assets with their variants and versions.
Definition 5: An asset tree is a tree T = (N,E), where N

is the set of nodes, E is the set of edges, with the following
properties:

• The root node of the tree is called its base asset
• Every node in the tree is labeled as either a version node
or a variant node, and satisfies the following conditions:

– The parent of a version node can only be a version
node.

– The parent of a variant node can only be a ver-
sion node. Furthermore, variant nodes cannot have
children. They are leaf nodes of the asset tree.

The asset tree also has two types of edges. A version edge
links a version node to the version node which is its child on
the asset tree, whereas a variant edge links a version node
to one of its variants.
In our design, a node in an asset tree can represent differ-

ent scopes, individually or collectively: the whole process,
a sub-process, or a service. This asset tree representation,
illustrated in Figure 4, is an enhancement over traditional
version tree representations in repositories which only rep-
resent versions.
As per Definitions 3 and 4, every variant or version of

A is already represented as the asset A augmented by an
enhancement of its functionality. Mapping these definitions
onto our asset tree representation, we see that every asset on
the asset tree (except the root) is a variant or version of its
parent.
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E. Asset Tree Creation and Evolution
Existing and newly-created business processes can be

stored under the asset tree representation in different ways.
An existing process can be transformed automatically using
parsing techniques [8] or manually by the process developer
to produce an asset tree. A newly-created process will be
modeled using our asset tree representation.
Initially, an asset tree will have a base business process.

Over time, the asset tree will be enhanced or utilized for
the development of new business processes. The evolution
of asset trees in the repository makes the number of asset
trees as a static or a steadily growing structure. Thus, the
asset tree representation helps reduce the space and time in
the management and search of business processes, compared
to the exponential growth for the actual number of processes
that causes a serious performance issue and space concern
with respect to the search and management of assets.
In the beginning, the asset tree will have an initial feature

log, representing all the features available with the root node.
But on the addition of every other node, the meta data of the
asset tree is enhanced with the new set of features getting
added for each new node (either version or variant). This
also helps reduce the search time.

IV. SEARCHING ASSETS

The asset tree helps optimize the search and matching
of assets against user requirements. We represent asset re-
quirements and constraints via the Asset Requirements and
Constraints Model (ARCM) and asset capabilities via the
Asset Capabilities and Analysis Model (ACAM). Following
this, we present the algorithm for matching the appropriate
asset variants/versions against the specified requirement.

A. ARCM & ACAM Models
The ARCM represents the requirements of a user looking

for a business process solution or asset, along with some
constraints that the user would specify. It is defined as
follows.
Definition 6: An ARCM is MRC = {R,C}, wherein R

is a set of requirements, comprising the following:
• Input data to the required business process solution
{dini

}
• Output data from the required business process solution
{douti}

• The set of services Sq that need to be part of the
business process solution; each service Si ∈ Sq is
defined via its input set {dini

} and output set {douti}
C is a set of constraints, with each constraint specified as
per the following:

• ID, which represents the constraint’s name
• Type T , which defines the unit in which the constraint
is measured

• Order Ord, which could one of the following: increas-
ing or decreasing

• Value V al, which is the minimum (resp. maximum)
value of the constraint, depending on whether Ord is
increasing (resp. decreasing)

Please note that our ARCM model can be extended to
accommodate the actual semantics of matching the types of
input and output data, via preconditions and effects, e.g., as
per [9]. We have omitted them in our paper, not only for
reasons of simplicity, but also because they are orthogonal
to the main ideas in our paper.
Our constraint representation model is inspired by

QML [10], the QoS modeling language. We chose QML
due to its simplicity and ease of adoption. Some well-known
constraints are performance, reliability, and cost. A constraint
of increasing (resp. decreasing) order implies that an asset
whose non-functional property corresponds to that constraint,
should have a value greater (resp. lower) than that of the
constraint, in order for that particular non-functional property
to be considered a match.
The ACAM model is defined as follows.
Definition 7: An ACAM is MCA = {Cp, A}, wherein

Cp is a set of capabilities, comprising the following:
• Input data to the asset {dini

}
• Output data from the asset {douti}
• The set of services Si (including its versions and
variants) in the asset tree; each service Si ∈ Sq is
defined via its input set {dini

} and output set {douti}
A is a set of analyses (non-functional properties), with each
property specified as per the following:

• ID, which represents the property’s name
• Type T , which defines the unit in which the property is
measured

• Value V al, which is the value of the property

It is to be noted, however, that our ACAM model is
generic enough to be independent of the actual process model
formalism used, e.g., whether BPMN, BPEL, etc., but is only
stated in generic terms in terms of input/output data and the
services that comprise the business process.

B. Matching ARCM against ACAM
Matching an ARCM against an ACAM involves functional

matching followed by non-functional matching.
1) Functional Matching: Functional matching of an

ARCM against the ACAMs is done as explained below
(see Algorithm 1 for a formal description). Our match-
ing algorithm combines both version feature matching and
variant matching. The former is implemented via checking
inputs, outputs and existence of a service that can meet
the requirement Si. The latter is implemented via variant
matching. Hence it is possible for a version on the asset
tree to achieve a partial match with the ARCM, but a
(variant) child to achieve a perfect match. There exist several
service matching algorithms in the literature; however, for
partial matching, to the best of our knowledge, the existing
algorithms fail to consider the input and output differences
in the variation model, thereby making our algorithm novel.
Step 1: Given an ARCM, we traverse trees in the repository
to determine relevant assets by matching the inputs and
outputs.
Step 2: In order to determine the degree of match, there are
three basic matching criteria: inputs, outputs, and the set of
services in the ARCM against which the ACAM should be
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Algorithm 1 ComputeFunctionalMatchScore(MRC )
1: for all MCA do
2: if ( I(MRC) ∩ I(MCA) = ∅ ) or (O(MCA) ∩

O(MRC) = ∅ ) then
3: exit(-1)
4: end if
5: for all Si ∈ MRC & Sa ∈ MCA do
6: SCi = MatchServiceV ariants(Si, Sa)
7: WeightedSCi = wi * SCi

8: end for
9: end for
procedure MatchServiceV ariants(Si,
Sa)
1: score = 0
2: if MatchService((Si, Sa) ) then
3: score = 2
4: else
5: if ( {dini

} ⊃ {daini
} ) then

6: {ddiffini
} = {dini

} − {daini
}

7: score = 1
8: end if
9: if ( {douti} ⊃ {daouti} ) then
10: {ddiffouti

} = {douti} − {d
a
outi
}

11: score = 1
12: end if
13: if ( {dini

} ⊂ {daini
} ) then

14: {ddiffini
} = {daini

} − {dini
}

15: score = 1
16: end if
17: if ( {douti} ⊂ {daouti} ) then
18: {ddiffouti

} = {daouti} − {douti}
19: score = 1
20: end if
21: end if
22: return(score)

matched.
Matching a service requirement against the services in the
ACAM produces one of three results: exact, partial, or
disjoint functional match, designated by scores of 2, 1, and
0, respectively. In an exact functional match, the requirement
matches perfectly. For exact match, we can use any existing
service matching algorithm (e.g., [11]) to detect exact service
matching and returns true for exact match. If we do not
get an exact match, then we deduce the input and output
data differences and invoke MatchServiceVariants() from
Algorithm 1 that uses the service variation model to detect
the possibility and the score of creating a requested variant.
In a partial functional match, the asset capabilities are a
subset of the inputs and/or outputs of the requirement. A
disjoint functional match is one that is neither exact nor
partial.
The core step in functional matching involves the matching

of a service requirement Si against a single service Sa in
an ACAM. Since Si is specified via its input and output
sets {dini

} and {douti}, this matching checks whether the
service Sa possesses the same input and output sets {daini

}

and {daouti}. This also considers the case where Sa’s input-
output set does not match that of Si, but whether a variant of
Sa can be generated whose input-output set can match that
of Si. This involves several sub-cases depending on whether
Sa’s input (resp. output) set is a subset or superset of the
input (resp. output) set of Si, and is detailed in Algorithm 1.
If this check is successful for a suitable combination of

variants, then a variant match exists, at least for the input set.
The difference in the output sets is also checked similarly.
A variant match with a variant of Sa, for a collection of
variants applied on Sa, then exists.
Let the user-assigned relative weight of each service Si

in the ARCM be wi, such that
∑

wi = 1. Let the match
score for each service be Sci. The total match score for the
specified services is

∑
wiSci, and would be in the range

[0-2
∑

wi].
2) Non-functional Matching: Non-functional matching is

implemented against the resulting matches from functional
matching. The constraints in the ARCM are matched against
the advertised non-functional properties in the ACAM. For
any constraint Csi, if its order is increasing, then the
advertised non-functional property Nsi should be such that
value(Nsi) ≥ value(Csi). For a constraint with a decreas-
ing order, the condition to be met would be value(Nsi) ≤
value(Csi) (see Algorithm 2).

Algorithm 2 ComputeNonFunctionalConstraintScore
(MCA)
1: for all MCA do
2: totalscore=0
3: for all Ci do
4: score = 0
5: if ( ord(Ci) = increasing ) then
6: if ( NSi > CSi ) then
7: score = 1
8: end if
9: end if
10: if ( ord(Ci) = decreasing ) then
11: if ( NSi < CSi ) then
12: score = 1
13: end if
14: end if
15: WeightedSCi = wi * score
16: totalscore = totalscore + WeightedSCi

17: end for
18: end for

In an exact non-functional match, each constraint from the
ARCM is satisfied by a non-functional property advertised in
the asset’s ACAM. In a partial non-functional match, at least
one constraint is not satisfied. Given a set of constraints, each
match (resp. non-match) against each constraint is tagged
with a score of 1 (resp. 0).
Since different users rate non-functional properties dif-

ferently, we assume similar user-assigned weights as for
functional matching, i.e., a weight of κi for each non-
functional property, such that

∑
κi = 1. Then the aggregate

match score for the ARCM-ACAM pair in question would
be

∑
κiC

′

i, where C ′

i ∈ [0, 1] is the match score of the
individual non-functional property.
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3) Search Optimization via Asset Trees: A naive way to
implement matching would be to compute the match score
for Si repeatedly for the same features (whether in the static
or dynamic part) for every ACAM. We perform a depth-first
traversal of the asset tree. When a particular version node in
the asset tree has already been matched against the ARCM,
we annotate that node as “visited” and move to its child.
If the child in question is a variant node, then Definition 3
would detail the variations over the parent node, and the
matching for that node would require only the checking of
those particular variations. Alternatively, if the child is a
version node, then Definition 4 would be used to determine
matches only against those additional features that the child
possesses over and above those of the parent.
The above optimization may still result in some variations

being considered multiple times for matching, especially if a
version node has many variant nodes as children, with many
variations common among them. In order to eliminate this
wastefulness, we maintain a hash table of variations and their
respective match scores against the service requirement Si

being used. If that particular entry is encountered in any other
variant node, then that match score can be reused.
This optimized match, along with depth-first traversal, can

be implemented in O(n+F ) time, where n is the number of
nodes in the asset tree, and F is the total number of version
features plus variations among the assets in the asset tree.

V. IMPLEMENTATION AND EXPERIMENTS
The purpose of our implementation is to demonstrate our

asset tree representation model and matching algorithm. We
used a large collection of 900 insurance provisioning and
claims business processes stored in an internal process repos-
itory following OMG’s RAS (http://www.omg.org/
spec/RAS/) specification. We created an ARCM with 7
functional requirements and 8 non-functional constraints,
and used our matching algorithm to search against the 900
assets. The details of the requirements and constraints, along
with their user-defined weights, are accessible from http:
//bit.ly/fbKCF9.
For conducting our experiments, we have constructed asset

trees identifying processes that are functionally similar. This
includes first identifying versions belonging to all assets
and establishing the corresponding branches connecting the
version nodes to their common base asset node with the
help of version history. This basically exhibits parent-child
relationships across the different levels for a given asset. This
process is repeated for all candidate assets in the repository
in a way, that an asset already identified as a version of some
base asset is removed from the candidate assets.
Then the functional similarity is evaluated only against the

identified common base assets to evaluate the variant rela-
tionship between the base assets. This involves identifying
the variant base assets based on conducting the search from
common filters associated with each of the base assets. In
this step, a base asset identified and marked as a variant of
another base asset is subsequently excluded from the search
on other base assets. This ensures that a base asset (or its
versions) can have a variant relationship to only one base
asset. Similarly when a search is conducted for a base asset
marked as variant (child) to another base asset (parent), the

parent base asset is excluded from this search. This ensures
that cyclic relationships between two variants is prevented.
For our experimentation, we followed a simple convention
of declaring a base asset as parent, if it is created before
its identified variant which becomes the child. Finally the
asset trees are constructed for each of the base assets as the
root node, i.e., neither a version nor a variant to other base
assets. This involves simpler integration of all the branches
recursively for each child node (variant or version) of the
root base asset node. Therefore an asset tree thus constructed
contains a family of assets all originated from a common
base root asset node either as versions or as variants. Our
experimentation resulted in 126 asset trees for the total of 900
assets. Each asset tree on an average contained 7 processes
either as versions or variants to the base process asset node.
Fig. 5 displays two charts. The top chart depicts the growth

in the repository size over a period of 3 years; it can be seen
that while the number of stored processes grows rapidly, the
growth in the asset trees is close to linear. This is because in
most cases, newly submitted assets were identified as either
versions or as variants based on the search initiated with the
submitted asset’s metadata on all identified base assets. Once
the relationship is identified with an existing base asset, then
accordingly the new asset is positioned as a variant in the
corresponding asset tree based on the position of the related
base asset (root node or not) in that asset tree. The asset
trees thus help in consolidating additions to the repository by
grouping together variants and versions of existing business
processes, thereby slowing down the growth in the search
time as the repository size grows, to close to linear growth.
This is because as the repository grows, the number of
processes per asset tree grows (as shown in the top chart of
Fig. 5), resulting in larger groupings of business processes
per asset tree. Hence this grouping eliminates larger number
of non-matched candidate assets as the repository grows in
size. The bottom chart of Fig. 5 depicts the growth in the
search times (in minutes) over the 3-year period. As Fig. 5
clearly illustrates, the search times for the repository with
asset tress is less than those for the repository without them.
This is because our approach now helps in searching against
126 assets (each representing the process tree) compared to
900 assets previously. Subsequently the ACAM descriptions
for each of the associated nodes in the asset tree are matched
for final selection.
The output of our matching algorithm is an ordered

sequence of all such matches, with each match describing
an ACAM that (fully or partially) meets the requirements in
the ARCM, along with the non-functional match score. For
each match, and for each matching feature, the details of the
match are also pre-sent to the user. Such a display method
also provides the user with sufficient flexibility to change
their weights for either functional or non-functional match
later on, after viewing the results..
We illustrate an implementation of our plugin on a set of

4 assets from the repository, using the asset tree depicted
in Fig. 6. Let us assume an ARCM comprising requirements
R1 through R7, and constraints C1 through C8. The relative
weights as defined by the user are depicted in Table I; in this
case, the user has decided not to consider C7 and C8, hence
they are assigned zero weights.
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Fig. 5. Repository Growth and Search Times for Business Processes

Fig. 6. Evolved Asset tree representation for running example

TABLE I
WEIGHTS OF FUNCTIONAL REQUIREMENTS AND NON-FUNCTIONAL

CONSTRAINTS
Requirements / Constraints Weights
R1,R2,R3,R6,R7,C3,C4,C5 0.1

R4,C1 0.3
R5,C2,C6 0.2
C7,C8 0.0

Let us assume that the Asset A001 of Fig. 6 possesses
features BF01, BF02 and BF03, with Asset A002 possessing
an additional feature BF06. Let us also assume that Variant
A003 of Asset A001 comprises variations VF01 and VF06,
whereas Variant A004 of Asset A002 contains only VF01
as its variation. Table II represents the respective weighted
scores for the features that all the assets in the asset tree
possess - this table is used to calculate the final score for each
asset as depicted in Table III. We consider the values for full
Match score and Partial Match score as 2 and 1 respectively

TABLE II
WEIGHTED SCORES OF INDIVIDUAL FEATURES

Feature Full Matches Partial Matches Weighted Score for Feature
BF01 R4 C1 (2 *.3 + 1 * .3) = 0.9
BF02 R2, C5 R1 (2 * .1 + 2 * .1 + .1) = 0.5
BF03 R5 C2 (2 * .2 + 1 * .2) = 0.6
BF06 R6, C8 C4 (2 * .1 + 2 * 0.0 + 1 * .1) = 0.3
VF01 R3 C3 ( 2 * .1 + 1 * .1) = 0.3
V04 C6 (2 * .2) = 0.4
VF06 R7 C7 ( 2 * 1 + 1 * 0.0) = 0.2

for this illustration. Table III therefore displays Asset A006
as having the best match. Further details of these four assets
are also accessible from http://bit.ly/fbKCF9.

VI. RELATED WORK

Workflow Reuse & Repositories: One of the earliest sys-
tematic attempts at formal workflow reuse was workflow
patterns in order to facilitate reuse [12]. Recent work has
also focused on requirements for process modeling tools
to support pattern-based reuse [13]. However, issues with
workflow reuse still persist as in [14]; the most relevant
issues among them are lack of a comprehensive discovery
model, lack of workflow fragment rankings, and difficulties
in acquiring and storing process knowledge. The citation [15]
presents the concept of BPEL process fragments in order to
enhance BPEL process reuse. We view [15] as being com-
plementary to ours, since process fragments can be used to
enhance the reusability of business process implementations
whose specifications are expressed using our model.
The citation [16] discusses how process model repositories

can be “refactored”, i.e., simplified, as they grow in size.
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TABLE III
TOTAL WEIGHTED SCORES OF ASSETS

Asset Total Weighted Score Contained Base and Variation Features
Asset A001 (0.5 + 0.9 + 0.6 ) = 2.0 [BF01,BF02,BF03]
Asset A002 (0.9 + 0.3) = 1.2 [BF01, BF06]
Asset A003 (0.5 + 0.3 + 0.2) = 1.0 [BF01,BF02,BF03,VF01,VF06]
Assest A004 (.3 + 0.3) = 0.6 [BF01,BF06,VF01]
Asset A005 (0.5 + 0.9 + 0.6 + 0.3 ) = 2.3 [BF01,BF02,BF03, BF06]
Asset A006 (0.5 + 0.9 + 0.6 + 0.3 + .4 + .3 + .2) = 3.2 [BF01,BF02,BF03, BF06,VFO1,VF04,VF06]

This would enable process designers to effectively deal
with model complexity by making process models better
understandable and easier to maintain. Business Process
Similarity Search: The citations [1], [17] discuss the storage,
representation and searching of business process variants
in a repository. However, they not distinguish between
versions and variants, and mainly focus on structural aspects
of business process models. As we have already argued
in our paper, such a representation is not sufficient for
the research problem that we are investigating. Similarity
search algorithms have been proposed in [4], [5], [18], [6].
However, they primarily focus on the structural aspects of
business process models represented as graphs.
Case-based Reasoning in Workflows: Using case-based
reasoning (CBR) as a means of improving workflow
management has been discussed in [19], [20]. In particular,
the citation [20] provides a mechanism for storing process
deviations as cases, which can be retrieved by providing
appropriate contextual information. We view these works as
complementary to ours.
Modeling Variability in Workflows: Works such as [21],
[22], [23] have discussed how variability in workflows can
be represented along with the workflow models themselves
(in particular, via feature modeling such as in [21]), so as to
help the business analyst choose a collection of variants that
do not conflict with each other. However, those approaches
are primarily targeted at modeling variants in a business
process towards ease of representation and manipulation of
users, and are complementary to our approach.

VII. CONCLUDING REMARKS

Modeling business process solutions as reusable assets
facilitates reuse. We show that our contributions, working
together, considerably improve the efficacy of service asset
reuse; and we have implemented and demonstrated this
on a large real-life collection of business processes in the
insurance claims domain. Future work would investigate
the following: extending the implementation of the asset
tree to cover much coarser business architecture elements,
incorporating case-based reasoning techniques, representing
variants on the asset tree as derivable from other variants,
enhancing our scoring technique to incorporate fractional
scoring (by representing different scores for different variants
in Algorithm 1) and incorporating past performance and user
feed back of reusable assets into our matching algorithm.
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