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ABSTRACT

Interactions spanning multiple organizations have become
an important aspect in today’s collaboration landscape. Or-
ganizations create alliances to fulfill strategic objectives. The
dynamic nature of collaborations increasingly demands for
automated techniques and algorithms to support the cre-
ation of such alliances. Our approach bases on the recom-
mendation of potential alliances by discovery of currently
relevant competence sources and the support of semi-auto-
matic formation. The environment is service-oriented com-
prising humans and software services with distinct capabil-
ities. To mediate between previously separated groups and
organizations, we introduce the broker concept that bridges
disconnected networks. We present a dynamic broker dis-
covery approach based on interaction mining techniques and
trust metrics. We evaluate our approach by using simula-
tions in real Web services’ testbeds.

Categories and Subject Descriptors

H.2.3 [Languages]: Query languages; H.3.4 [Systems and
Software]: Information networks; H.4 [Information Sys-
tems Applications]: Miscellaneous

General Terms

Design, Experimentation, Human Factors, Languages

Keywords

Broker discovery, Social networks, Interaction mining

1. INTRODUCTION
The rapid advancement of ICT-enabled infrastructure has

fundamentally changed how businesses and companies oper-
ate. Global markets and the requirement for rapid innova-
tion demand for alliances between individual companies [5].
Web services and service-oriented computing offer well es-
tablished standards and techniques to model and implement
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interactions spanning multiple organizations. Collaborative
service-based systems are typically knowledge intensive cov-
ering complex interactions between people and software ser-

vices. In such ecosystems, flexible interactions commonly
take place in different organizational units. The challenge
is that top-down composition models are difficult to apply
in constantly changing and evolving service-oriented collab-
oration system. There are two major obstacles hampering
the establishment of seamless communications and collab-
orations across organizational boundaries: (i) the dynamic
discovery and composition of resources and services, and
(ii) flexible and context-aware interactions between people
residing in different departments and companies.

Theories found in social network analysis are promising
candidate techniques to assist in the formation process and
to support flexible and evolving interaction patterns in cross-
organizational environments. In social networks, relations
and interactions typically emerge freely and independently
without restricted paths and boundaries. Research in social
sciences has shown that the resulting social network struc-
tures allow for relatively short paths of information propa-
gation (the small-world phenomenon, e.g., see [11]). While
this is true for autonomously forming social networks, the
boundaries of collaborative networks are typically restricted
due to organizational units and fragmented areas of exper-
tise. We propose social network principles to bridge segre-
gated collaborative networks. The theory of structural holes
is based on the idea that individuals can benefit from serving
as intermediaries between others who are not directly con-
nected [4]. Thus, such intermediaries can potentially broker

information and aggregate ideas arising in different parts of
a network [12].

In this work, we present the following key contributions:

• We introduce brokers to establish connections between
independent subgroups in professional virtual commu-
nities (PVCs). Our approach enables the dynamic se-
lection of brokers based on changing interest profiles.

• We define metrics and their application to support the
discovery and selection of brokers including social trust

in service-oriented collaborations.

• Our approach is to introduce the Broker Query and

Discovery Language (BQDL) to discover suitable bro-
kers based on query preferences (discovery policies).
The novelty of BQDL is the ability to query social
network data considering information obtained from
mining results to fulfill the requirements for broker dis-
covery in PVCs.
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This paper is structured as follows. In Section 2, we
overview related work to provide the background for our
approach. In Section 3, we present a motivating scenario
for the discovery of brokers and introduce broker behavior
patterns. In Section 4, we introduce supporting concepts
to realize flexible interactions and the selection of brokers.
We define BQDL in Section 5 followed by a discussion on
the implementation and evaluation in Section 6. Finally, we
conclude the paper in Section 7.

2. BACKGROUND AND RELATED WORK
In service-oriented environments, standards have been es-

tablished to model human-based process activities and tasks
(WS-HumanTask [7]). However, these standards demand for
the precise definition of interaction models between humans
and services. In our approach, we combine SOA concepts
and social principles. We consider open service-oriented
environments wherein services can be added at any point
in time. Following the open world assumption, humans ac-
tively shape the availability of services. We adopt the con-
cept of Human-Provided Services (HPS) [20] to support flex-
ible service-oriented collaborations across multiple organiza-
tions and domains. Similarly, emergent collectives as defined
by [17] are networks of interlinked valued nodes (services).
Open service-oriented systems are specifically relevant for
future crowdsourcing applications. While existing platforms
(e.g., Amazon’s Mechanical Turk1) only support simple in-
teraction models (tasks are assigned to individuals), social
network principles support more advanced techniques such
as formation and adaptive coordination.

We focus on strategic formation in social networks and
communities [22]. The theory of structural holes was de-
veloped by Burt [4] and is based on the hypothesis that
individuals can benefit from serving as intermediaries be-
tween others who are not directly connected. A formal
approach to strategic formation based on advanced game-
theoretic broker incentive techniques was presented in [12].
Our approach is based on interaction mining and metrics to
dynamically discover brokers suitable for connecting com-
munities in service-oriented collaborations. The availability
of rich and plentiful data on human interactions in social
networks has closed an important loop [11], allowing one to
model social phenomena and to use these models in the de-
sign of new computing applications such as crowdsourcing
techniques [2]. A wide range of computational trust models
have been proposed [1, 16]. We focus on social trust [8, 21,
24] that relies on user interests and collaboration behavior.

Technically, the focus of BQDL is to provide an intuitive
mechanism for querying data from social networks.
These networks are established upon mining and metrics.
Thereby, properties of such networks are under constant flux
and changes. BQDL is not a generic graph query language
such as SPARQL [23], which has been designed to query
ontological data. Instead, BQDL addresses the specific re-
quirements for the discovery of actors such as brokers by
accounting for (weighted) paths and metrics obtained from
mining results. In [18], a query language for social networks
was presented. The language in [18] has some similarities
with BQDL (e.g., path functions), however, without sup-
porting the discovery of complex sub communities based on
metrics and interaction mining techniques.

1Amazon MTurk: http://www.mturk.com

3. EMERGING VIRTUAL COMMUNITIES
A PVC is a virtual community [5] that consists of experts

who interact and collaborate supported by ICT to perform
their work. In today’s systems, service-oriented technologies
are increasingly used to realize PVCs. The support of loose
coupling, sophisticated discovery, dynamic binding and var-
ious composition mechanisms make SOA the ideal technical
grounding for Web-enabled PVCs.

3.1 Collaboration Scenario
Let us discuss an actual collaboration scenario in PVCs

as depicted in Figure 1. Various member groups collabo-
rate in the context of five different activities a1, a2, a3, a4

and a5 (see Figure 1(a)). These groups intersect since mem-
bers may participate in different activities at the same time.
The color of the activity context determines the expertise
areas an activity is related to. Such activities are, for in-
stance, the creation of new specifications or the discussion
of future technology standards. Activities (e.g., see [15]) are
a concept to structure information in flexible collaboration
environments, including the goal of ongoing tasks, involved
actors, and utilized resources such as documents or services.
They are either assigned from the outside of a community,
e.g., belonging to a higher-level process, or emerge by iden-
tifying collaboration opportunities. PVC members use SOA
technologies to interact in the context of ongoing activities.
The HPS Framework [20] allows human participation in a
service-oriented manner. Humans can provide their capabil-
ities and expertise as services to enable human interactions
using standardized messages (i.e., SOAP). Interactions are
logged for analysis. Relations emerge from interactions as il-
lustrated in Figure 1(b), and are bound to particular scopes
(expertise areas). The context in which interactions take
place is based on tags applied to various artifacts exchanged
between collaboration partners. Tags are used to combine
similar activities to create scopes (i.e., boundaries of activi-
ties). In the given scenario, a scope comprises relations be-
tween PVC members regarding help and support activities
in different expertise areas (reflected by tags of exchanged
messages). Scopes are used for different purposes. First, by
analyzing the interaction context (i.e., using message tags),
we determine users’ centers of interest. Frequently used key-
words are stored in the actors’ profiles (see symbol P) and
later used to determine their interests and expertise areas.
Second, we aggregate interactions that occurred in a pre-
defined scope, calculate metrics (numerical values describ-
ing prior interaction behavior), and interpret them as social

trust that is based on reliability, dependability and success.
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Figure 1: Collaboration model for service-oriented
PVCs: (a) interactions between PVC members are
performed in the context of activities; (b) social rela-
tions and profile areas emerge based on interactions.
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3.2 Brokering and Compositions
Consider a scenario in the given PVC in Figure 1(b). Sup-

pose u wants to set up an activity that requires at least one
additional expert from the brown {u, v, w} and blue domain
{j, k, l, m}. Since u personally knows v and w from previ-
ous collaborations, which is reflected by Friend-of-a-Friend
(FOAF) [3] knows relations, u is well-connected to the brown

expertise area. However, u does not know any member from
the blue domain. The broker concept helps to solve this
problem. Actor u collaborated with b in the green domain,
who is connected to j. Therefore, b could potentially act
as a broker and forward requests or invitations to join u’s
current activity to j. We argue that establishing personal
contacts in socially-oriented environments is of high impor-
tance compared to the traditional SOA domain, where ser-
vices are mostly composed based on their properties (i.e.,
features and QoS) only.

Assuming one is able to infer meaningful social relations
between network members, such relations have major impact
on future collaborations in different scenarios: (i) Support-

ing the Formation of Expert Groups. Successfully performed
compositions of actors should not be dissolved but actively
facilitated for future collaborations. Thus, tight trust rela-
tions can be dynamically converted to FOAF relations (i.e.,
discovery of relevant social networks). (ii) Controlling

Interactions and Delegations. Discovery and interactions be-
tween members can be based on FOAF relations. People
tend to favor requests from well-known members compared
to unknown parties. (iii) Establishment of new Social Rela-

tions. The emergence of new personal relations is actively
facilitated through brokers. The introduction of new part-
ners through brokers (e.g., b introduces u and j to each
other) leads to future trustworthy compositions.

4. SOCIALLY-ENHANCED SOA
We adopt various concepts to realize the before mentioned

collaboration communities, and consider various mechanisms
to enable brokering of requests, including flexible service-
oriented collaboration models and the automatic manage-
ment of social trust relations.

4.1 Flexible Service-Oriented Collaboration
Web services play a fundamental role in supporting flex-

ible, cross-enterprise collaboration scenarios. We discuss
human interactions in SOA as introduced in our previous
work (see HPS approach [20]). HPS enhances the traditional
‘SOA-triangle’ approach by enabling people to provide ser-
vices using the very same technology as implementations of
software-based services (SBS) use. By following the SOA
paradigm, three essential steps are performed:

(1) Publish. Users have the ability to create HPSs and
publish the services on the Web using a registry. Pub-
lishing a service is as simple as posting a blog entry on
the Web. It is the association of the user’s profile with
an activity described as a service (WSDL). Interfaces pro-
vide the needed metadata support for the discovery of suit-
able HPSs. (2) Search. The service requester performs
a keyword-based search (reflecting expertise areas) to find
Human-Provided or Software-Based Services. Ranking is
performed to find the most relevant HPS based on, for exam-
ple, the expertise of the user providing the service. Expertise
is determined automatically by the HPS framework through

context-sensitive interaction mining techniques [19]. (3) In-

teract. The framework supports automatic user interface
generation using XML-Forms technology2. Thus, personal-
ized interaction interfaces can be generated and rendered for
different devices. The HPS framework can be used for inter-
actions between humans and also for interactions between
SBS and HPSs.

4.2 Emergence and Evolution of Trust
In contrast to a widely used security perspective on trust,

we define social trust relying on the interpretation of pre-
vious collaboration behavior and also considering the simi-
larity of dynamically changing interests [8, 21]. Especially
in collaborative environments where users are exposed to
higher risks as compared to common social network scenar-
ios [6] and business is at stake, considering social trust is es-
sential to effectively guide interactions [14]. Here, we define
trust as follows [9, 16, 21]: Trust reflects the expectation one

actor has about another’s future behavior to perform given

activities dependably, securely, and reliably based on experi-

ences collected from previous interactions.

The fundamental approach to automatic interaction-based
trust inference is depicted in Figure 2.

Interactions and Monitoring. As motivated in the in-
troduced use case, people interact to perform their tasks.
Work is modeled as activities, that describe the type and
goal of work, temporal constraints, and used resources. As
interactions take place in the context of activities (Figure
2(a)), they can be categorized and weighted. SOAP is the
standard message format to support interactions between
distributed software services. Also human interactions can
be supported in a service-oriented manner using technolo-
gies such as SOAP (see HPS [20]). This technology includ-
ing extensions such addressing and correlation mechanisms
is state-of-the-art in service-oriented environments and well
supported by a wide variety of software frameworks. This
fact enables the adoption of various monitoring and logging
tools to observe interactions in service-oriented systems.

Link Metrics. Interaction logs are used to infer metrics
that describe the relation of single actors (Figure 2(b)). Var-
ious metrics can be calculated by analyzing interaction logs
such as behavior in terms of availability and reciprocity. A
simple example of a metric is the success rate of delegated
tasks between two members (successfully processed tasks di-
vided by the total number of delegated tasks). Relation
metrics describe the links between actors by accounting for
(i) recent interaction behavior, (ii) profile similarities (e.g.,
interest or skill similarities), (iii) social and/or hierarchical
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(a) Interactions.

………
Relation Metrics:
- Behavior
- Interests
- Social Links

(b) Link metrics.

WS

DL

Scope

(c) Scoped trust.

Figure 2: Trust emerging from interactions: (a) in-
teraction patterns shape the behavior of actors in
context of activities; (b) (semi-)automatic rewarding
of behavior and calculation of interaction metrics;
(c) inference in scopes by interpretation of metrics.

2XML Forms: http://www.w3.org/MarkUp/Forms/
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structures (e.g., role models). However, we argue that social
trust relations largely depend on personal interactions. We
model a community of actors with their social relations as a
directed graph, where the nodes denote network members,
and edges reflect (social) relations between them. Since in-
teraction behavior is usually not symmetric, actor relations
are represented by directed links.

Scoped Trust. Our approach considers the diversity of
trust by enabling the flexible aggregation of various inter-
action metrics (e.g., success rate and responsiveness) that
are determined by observing ongoing collaborations. Fi-
nally, available relation metrics are weighted, interpreted,
and composed by a rule engine (the detailed mechanisms
can be found in [21]). The result (i.e., a linguistic represen-
tation such as high, medium, or low) describes trust between
the actors with respect to scopes (Figure 2(c)). For instance,
trust relations in a scope ‘scientific dissemination’ could be
interpreted from interaction behavior of actors in a set of
paper writing activities.

4.3 Broker Behavior Patterns
Brokers differ from other actors by their mediation capa-

bilities. A broker acts as an intermediary node between two
previously separated communities or collaboration teams.
Thus, it is essential that it monitors frequently demanded
contacts, updates and maintains its relations to increase
and strengthen its popularity, and consequently, trust. If
demand decreases, the broker must find and establish new
relations. The discussed way to solve the problem is to pro-
vide the possibility of querying the social network for new
contacts of interest. Of interest are, e.g., contacts to com-
munities with high trust relations among the members and
a distinct expertise.

In this work, we define different types of brokers. Con-
sidering HPS-based interactions such as delegations of on-
line help and support requests, brokers may exhibit differ-
ent behavior patterns as illustrated by Figure 3: (a) Per-
sistent Exogenous Interaction Pattern. Any request
and response is forwarded by the broker, thereby shielding
the actually interacting nodes from each other. Thus, each
network segment remains separated for the entire duration
of a collaboration. (b) Triadic Exogenous Interaction
Pattern. The broker encourages receivers of requests to
establish direct connections to the initiator, and therefore,
actively facilitates the emergence of new social relations.

We argue that both types of interaction patterns are ap-
plied in today’s social and collaborative environments. A
broker may favor one pattern over the other due to vari-
ous reasons. For example, controlling the flow of interac-
tions between personally unknown actors can strengthen a
broker’s reputation [12]. Establishing direct relations can
significantly reduce a broker’s workload. Another possible
explanation for varying broker behavior patterns may be the
similarity of expertise profiles.
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(b) Triadic pattern.

Figure 3: Exogenous broker behavior patterns.

For example, if a broker connects similar actors, it may
apply the triadic pattern to support the establishment of
new social relations. However, if actor profiles diverge sig-
nificantly, the broker may need to mediate interactions per-
sistently; for example, due to the lack of a common vocabu-
lary or understanding between communities. The proposed
query language (BQDL) supports both cases. However, the
discussions in the following sections mainly demonstrate the
application of BQDL for persistent exogenous broker behav-
ior patterns without detailing the peculiarities of advanced
triadic patterns.

5. BQDL SPECIFICATIONS
Here we define the key elements of BQDL. Table 1 lists

important language elements to query interaction graphs.
The language is inspired by an SQL-like syntax. It is im-
portant to note that BQDL operates on a graph defined as
G = (N, E) composed of a set of nodes N and edges E.

Element Description

satisfy Requires that a given condition is fulfilled by
a set of nodes or edges.

as Creates an alias for groupings of nodes,
edges, or paths.

<all> Retains all nodes/edges/subgraphs satisfy-
ing a given condition.

[ ] An expression to satisfy conditions for ex-
actly one [1], one to m [1..m], or one to
many [1..*] nodes or edges.

Table 1: Important BQDL language elements.

A Select statement retrieves nodes and edges in G as well
as aggregates of graph properties (for example, properties of
a set of nodes). While traditional relational databases oper-
ate on tables, BQDL uses the From clause to perform queries
on a graph G. A Where clause specifies filters and policies
upon nodes, edges, and paths. To give intuitive examples,
we present a set of BQDL queries along with their meaning
considering a graph G and a set of subgraphs G′ ⊆ G. We
structure discussions related to a BQDL query into four es-
sential steps: R the basic requirements/goal of a query, A
the approach that is taken, O the output of the query, D
the detailed description of the query.

5.1 Connecting Predefined Communities
As a first simple example in Figure 4, consider two ini-

tially disconnected communities (sets of nodes) depicted as
variables var source = {n1, n2, . . . , ni} and var target =
{nj , nj+1, . . . , nj+m} residing in the graph G. R1: The
goal is to find a broker connecting disjoint sets of nodes
(i.e., not having any direct links between each other). A1:
Two subgraphs G1 and G2 are created to determine brokers
which connect the source community {u, v, w} with the tar-
get community {g, h, i} (i.e., see From construct). O1: The
output of the query is (the example shown in Figure 4) a list
of brokers connecting {u, v, w} and {g, h, i}. The lines 1-3
specify the input/output parameters of the query. D1: As
a first step, a (sub)select is performed using the statement
as shown by the lines 6-11. The statement distinct(node)
means that a set of unique brokers shall be selected based
on the condition denoted as the Where clause with a filter
(lines 9-10). The term ‘[1..*] n in source’, where source
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1 Input: Graph G, var source = {n1, n2, . . . , ni},
2 var target = {nj , nj+1, . . . , nj+m}
3 Output: List of brokers
4

5 Select node From (
6 ( Select distinct(node) From G
7 Where
8 /* At least one in source ‘knows’ node */
9 ( [1..*] n in source ) satisfy

10 Path (n to node) as P1 With P1.length = 1 )
11 as G1,
12 ( target ) as G2
13 )
14 Where
15 /* Retain all nodes that satisfy path filter */
16 ( <all> n in G1.nodes ) satisfy
17 /* Path to any in G2.nodes */
18 Path (n to [1..*] G2.nodes) as P2
19 With P2.length = 1
20 and
21 /* Retain all edges that satisfy edge filter */
22 ( <all> e in G1.edges ) satisfy
23 (e.relation = EPredicates.BIDIRECTIONAL) and
24 (e.trust >= MTrust.MEDIUM)
25

26 Order by node

i

h
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...

...

u
w
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j
m

k
l

d

f
e

b3

b1

...

... ...

...

...

...

...

...

b2

Figure 4: BQDL example 1: find broker to connect
two predefined communities.

is the set of nodes passed to the query as input argument,
means that at least one node n ∈ G must satisfy the sub-
sequent condition. Here the condition is that the node n

has a link (i.e., through knows relations) to the source set
of nodes. This is accomplished by using the Path function
that checks whether a link between two nodes exists (the
argument ‘(n to node)’). The path alias is used to spec-
ify additional constraints such as the maximum path length
between nodes (here ‘P1 With P1.length = 1’). The sec-
ond step is to create an alias G2 for the target community
{g, h, i}. By using the aliases G1 (line 11) and G2 (line 12)
further filtering can be performed using the Where clause in
line 14. The same syntax is used as previously in the sub-
select statement (lines 9-10). The construct <all> retains
nodes ‘n in G1.nodes’ (G1 holding the set of candidate bro-
kers) that are connected to at least one node in the target
community G2 with direct links (‘P2 with P2.length = 1’).
Further filtering is performed by defining lines 22-24.

Here, brokers in G1 and both the source {u, v, w} the
target community {g, h, i} must have edges between each
other that are bidirectional. In our graph representation,
this means that each relation has to be interpreted as, for
example, b2 knows h and h knows b2. A set of different
metrics is established in our system. A specific type of
metric (e.g., trust) is denoted by the namespace MTrust.
In the specified query, each actor in the result set must
share a minimum level of trust depicted as ‘e.trust >=

MTrust.MEDIUM’. Trust metrics are associated to edges be-
tween actors. The term MTrust.MEDIUM is established based
on mining data to obtain linguistic representations by map-
ping discrete values (metrics) into meaningful intervals of
trust levels. The last statement ‘Order by node’ in Figure
4 implies a ranking procedure of brokers. This can be accom-
plished by using eigenvector methods in social networks such
as the PageRank algorithm to establish authority scores (the
importance or social standing of a node in the network) or
advanced game-theoretic techniques based on the concept of
structural holes (see for example [12]). The detailed mecha-
nisms of this procedure are not the focus of this work.

5.2 Finding Communities
The broker discovery example in the previous section (Fig-

ure 4) is straightforward because the target community is
already specified and passed to the query as var target =

1 Input: Graph G, var search = {t1, t2, . . . , tn}
2 Output: List of communities
3

4 Select load, nodes from (
5 ( Select distinct(nodes) as G’ from G
6 Where
7 ( <all> n in G’.nodes ) satisfy
8 Path (n to [1..*] G’.nodes) as P1
9 With (

10 P1.length = 1 and P1.trust = MTrust.HIGH
11 and ( [1..*] tag in P1.tags ) satisfy
12 (search contains tag)
13 )
14 ) as SG1
15 Where
16 ( <all> G’’ in SG1 ) satisfy
17 (G’’.load <= GMLoad.MEDIUM)
18

19 Order by load asc
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Figure 5: BQDL example 2: find ranked communi-
ties based on search criteria and metrics.

{nj , nj+1, . . . , nj+m}. The next example query eliminates
this assumption by showing an approach to find suitable
communities based on search criteria (e.g., activity or skill
tags). R2: The goal of the query as specified in Figure 5
is to find sub-communities (or subgraphs) in G that match
search criteria. A2: Search is performed by using a set
of distinct tags specified as input parameter var search =
{t1, t2, . . . , tn}. O2: The output of the query is a list of
communities. D2: The first step is to perform a (sub)select
of distinct communities (see distinct(nodes) as G’ in line
5) to obtain non-overlapping groups of community members
specified by the lines 5-14. For example, Figure 5 shows
four groups of nodes [{d, e, f},{g, h, i},{l, m, j, k},{u, v, w}]
each of them satisfying the constraints specified in the query.
Each node in a specific community must be linked to at
least one community member so that ‘Path (n to [1..*]

G’.nodes) as P1’. Also, at least one path between nodes
with ‘length = 1’ satisfying trust requirements (trust level
MTrust.HIGH) must exist in order to consider a node as a
community member. Finally, a path must contain the tags
specified by the search query (lines 11-12) to ensure that a
member has interacted (collaborated) with other members
in the context of certain activities. The alias SG1 provides
access to each community. The Where clause applies filtering
of communities based on load conditions measured by graph
metrics (GMLoad). For example, load conditions G”.load are
measured by the number of inbound requests and the num-
ber of pending tasks within the community.

5.3 Finding Exclusive Brokers
The final BQDL example is depicted by Figure 6 to com-

bine previously introduced concepts for broker discovery.
R3: The basic idea of this example is to find brokers that
are connected to exactly one candidate (target) community.

1 Input: Graph G, var source = {n1, n2, . . . , ni},
2 var search = {t1, t2, . . . , tn}
3 Output: List of brokers and communities
4

5 Select node, nodes from (
6 /* Select brokers */
7 ( /* ... */ ) as G1,
8 /* Select communities */
9 ( /* ... */ ) as SG1

10 )
11 Where
12 ( <all> n in G1.nodes ) satisfy
13 /* To one in SG1 */
14 Path (n to [1] SG1) as P1 With P1.length = 1
15

16 Order by node
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Figure 6: BQDL example 3: find exclusive brokers
to connect two communities.
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(a) Network visualization view. (b) Example of FOAF profile.

Figure 7: Web-based broker discovery and network visualization tool.

Again, the source community is {u, v, w}. A3: Communi-
ties are retrieved along with brokers. Filtering is applied
based on paths to obtain exclusive brokers. O3: The out-
put of the query are brokers along with communities they
are connected to (e.g., b1, {d, e, f}). D3: First, a set of
candidate brokers is retrieved and made available via the
alias G1 (line 7). This is the same procedure as introduced
before (see Figure 4). Second, communities are retrieved
and stored in SG1 (line 9). Again, this is based on the same
principle as introduced previously in Figure 5. We call bro-
kers connecting exactly one community exclusive brokers.
This is accomplished by the statements in 12-14 demand-
ing for ‘n to [1] SG1’. The broker b2 is a non-exclusive
broker because it connects multiple communities {d, e, f}
and {g, h, i}, thereby making {g, h, i} unreachable from the
{u, v, w} community perspective.

6. IMPLEMENTATION AND DISCUSSION
The implementation of BQDL is part of our initiative to

create a testing environment for socially-enhanced SOA. The
environment consists of a Web service-based simulation en-
vironment using the Genesis2 [10] framework and a middle-
ware implementing user tools, logging, and eventing capabil-
ities. Here we focus on tools assisting the users in discovering
brokers based on visualized community structures.

6.1 Broker Discovery Application
The implemented prototype includes a Web-based bro-

ker discovery tool helping users in analyzing various BQDL
queries and corresponding parameters. Figure 7 shows screen-
shots of the tool and an example FOAF profile that can be
retrieved from the Web application. The users access infor-
mation captured from the PVC environment. The network
view is obtained by mapping raw SOAP-interactions into a
graph representation composed of nodes (services) and edges
(interaction links). In our implementation, this is performed
by selecting a particular set of logs which are associated with
an Experiment ID. After issuing the corresponding (BQDL)
query, a graph is visualized consisting of several brokers con-
necting communities. By default, the collaboration network
is visualized as a graph view as depicted in Figure 7(a). The
user is able to select a trust threshold by moving a slider
bar. A reduced (demanded) trust threshold results in more
target communities being added to the visualization. Color

online: target communities matching search criteria are de-
picted using a node that is labeled with the community iden-
tifier (white color) and a set of green colored nodes (labeled
with the node’s name) linked to the central community node
(to indicate a node’s membership to a community). Inter-
actions can be retrieved as FOAF profiles (see Figure 7(b))
that include <foaf:interest> tags.

797



Experiment # Req. MIN AVG MAX Total

1 (RP=10)

50 3167 9083 10368 52543

100 1669 9369 10576 101244

200 1825 9211 10748 190647

1 (RP=50)

50 1606 15955 29952 50762

100 1482 27440 48562 98685

200 1638 36313 47689 188573

1 (RP=100)

50 1606 15955 29952 50762

100 1544 28560 57501 105331

200 1591 55185 100370 202394

2 (RP=50) 100 2308 37891 63258 123677

3 (RP=50) 100 2854 42041 67516 136266

4 (RP=50) 100 3276 55058 84739 167778

(a) BQDL processing time.

Applied Tags in Exp. 4
(n=1029 and groups=230)

Frequ.

self-* 295

Robustness 306

Testbed 311

DB 314

Healing 321

Trust 322

WS 327

Autonomic 335

Similarity 341

Logging 353

(b) Tag frequency.

Query ID BQDL query keywords # Brokers AVG proc. time

Q1 Robustness Logging 105 3993

Q2 Robustness Logging DB Testbed 134 3666

Q3 Robustness Logging DB Testbed Similarity 146 3478

(c) BQDL queries in Exp. 4, number of discovered brokers and AVG processing time.

Figure 8: BQDL processing statistics in simulated environment (in milliseconds).

6.2 SOA Testbed Environment
Our evaluations were gathered using the logging features

of the Genesis2 framework [10]. Genesis2 has a manage-
ment interface and a controllable runtime to deploy, sim-
ulate, and evaluate SOA designs and implementations. A
collection of extensible elements for these environments are
available such as models of services, clients, registries, and
other SOA components. Each element can be set up individ-
ually with its own behavior, and steered during execution of
a test case. For the experiments in this work, we deployed
Genesis2 Backends to the Amazon Elastic Compute Cloud3.
We launched, depending on the amount of involved service
instances, two or three Community AMIs of the type High-

Memory Extra Large Instance (17.1GB of memory) running
a Linux OS. In the following, we provided each instance with
the same Genesis2 Backend snapshot via mountable volumes
from the Elastic Block Store. Finally, we deployed the fol-
lowing environment setup from a local Genesis2 Frontend.
It included SOA-based PVCs established by Genesis2 Web
services equipped with simulated behavior and predefined
relations to provide communication channels and instanti-
ate communities. Services act like HPSs when delegating
each other new tasks, processing tasks, re-delegating exist-
ing tasks, or reporting tasks’ progress status. Tasks are not
delegated arbitrarily but must match the receivers capabil-
ities. Therefore, they are tagged by three keywords one
of which must match the picked receivers capabilities. As
an intermediate, a broker combines capabilities of the two
communities it connects. The broker avoids task processing
and only forwards tasks. The finally deployed environments
are variable in number of services, number of participants
per group (2-5 services) and consequently also in number
of communities and required brokers that connect at least

3Amazon EC2: http://aws.amazon.com/ec2/

each community with another (see also [13] for minimum

spanning trees in social networks). Task processing and del-
egation decisions happen individually and in random time
intervals (1-8 seconds).

6.3 BQDL Performance Aspects
We conducted several experiments to test the performance

of our BQDL implementation under varying characteristics
such as varying number of nodes and groups. The results
are summarized in Figure 8. We simulated environments
with different numbers of nodes and interactions to obtain
insights in performance aspects. BQDL tools (Figure 7) and
BQDL related graph libraries implemented in C# have been
deployed on our local (lab-based) blade servers equipped
with Intel Xeon 3.2GHz CPUs (quad core) and 10GB RAM
hardware. Interaction logs are managed by MySQL 5.0
databases. A client request pool (RP, see Table 8(a)) is cre-
ated on a separate machine (Intel Core2 Duo CPU 2.50 GHz,
4GB RAM) to perform parallel invocations of the BQDL
query Web service. Clients are connected with the server
via a local 100MBit Ethernet.

The results of the first experiment are based on 198 nodes,
200 edges, and a total number of 10 distinct tags applied
to interactions between nodes. The BQDL processing time
for this environment is shown in Table 8(a). We vary the
number of concurrent requests, denoted as RP, by launch-
ing multiple threads. Given a size of RP=50 and a total
amount of # 100 requests to be processed, setting RP=100
does not speed up the processing time of requests (i.e., the
total time needed to process a number of requests). The av-
erage processing time increases by comparing RP=100 and
RP=50 due to the overhead when handling a larger amount
of requests simultaneously. Thus, we use RP=50 for all fur-
ther experiments. Also, by processing a larger amount of
requests, say # 200, the total processing time linearly in-
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creases with the number of requests. We increased the num-
ber of nodes and interactions to understand the scalability
of BQDL under different conditions: experiment 2 with 579
nodes, experiment 3 comprising 774 nodes, and experiment
4 with 1029 nodes in the testbed. HPSs in the testbed have
been deployed equally on multiple hosts, e.g., 3 cloud hosts
in experiment 4 to achieve scalability. In subsequent ex-
periments detailed in Figure 8 (experiments 2-4) we focus
on a request pool with RP=50 and 100 requests to be pro-
cessed by the BQDL service using different keywords (see
Table 8(c)). To compare the experiments 1-4, we query the
interaction graph using the keywords Robustness Logging.
Increasing the number of nodes by a factor ≈ 3 (see ex-
periment 1 and 2), the processing time of BQDL raises by
30%. Comparing the experiments 2 and 3 (node addition
of ≈ 30%), the processing time increases by 10%. By com-
paring the experiments 3 and 4 (node addition of ≈ 30%),
the processing time increases by 20%. Our experiments show
that BQDL scales with larger testbed environments linearly.
Furthermore, we used different BQDL query keywords as
shown in Table 8(c). The number of discovered brokers in-
creases given mutliple keywords (see Table 8(b) for the set
of available tags). The average BQDL processing time is not
significantly influenced by the number of used keywords.

7. CONCLUSION AND FUTURE WORK
In this paper we introduced the notion of brokers in socially-

enhanced service-oriented environments. The idea of our
broker approach is derived from theories found in social sci-
ences (structural holes). Brokers can be modeled as Human-
Provided Services to support the seamless integration of
human capabilities in service-oriented infrastructures. The
novelty of our approach is that brokers are not discovered
based on static policies or static broker capabilities. In this
work, we proposed the discovery of brokers based on min-
ing techniques and the automated computation of periodi-
cally updated metrics based on interaction logs. This not
only helps to find suitable brokers but also relevant commu-
nities and social networks to which brokers are connected
to. Furthermore, we introduced the Broker Query and Dis-

covery Language (BQDL) enabling the definition of discov-
ery and interaction policies. BQDL operates on a graph
structure that is maintained and updated through mining.
Furthermore, we discussed the implementation and perfor-
mance aspects of BQDL. Future work will include the im-
plementation of a link-based reputation ranking algorithm
for brokers. Further scalability analysis will be performed
in service-based testbeds.
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