
COMPUTER	82

WEB TECHNOLOGIES

Published by the IEEE Computer Society 0018-9162/10/$26.00 © 2010 IEEE	

Programming Human
and Software-Based
Web Services

T he Web has evolved from
a distributed repository
of content to an interac-
tive medium in which

end users actively shape the availabil-
ity of information and services. Part of
this evolution is often called Web 2.0
and characterized by the emergence
of knowledge sharing and online ser-
vice composition platforms.

The transformation of how people
interact on the Web has been poorly
leveraged in existing SOA (service-
oriented architecture)-based systems.
In traditional composition scenarios,
services are created from the top down,
without considering the availability
and preferences of people, constraints
and relationships, and the support of
dynamic, ad hoc collaborations.

We propose a new programming
paradigm that utilizes human capabil-
ities as computational Web services.
People create and share human-
provided services (HPSs) to indicate
their incentive and availability to par-
ticipate in such collaborations.

DISTRIBUTED HUMAN
COMPUTATION

The Web’s user-centric nature has
led to an unusual role for people in

information systems—more often
than not, certain problems that are
hard for software services to solve
are outsourced to humans. Conse-
quently, researchers have introduced
the notion of distributed human com-
putation in the context of AI-complete
problems such as analyzing and tag-
ging images (C. Gentry, Z. Ramzan,
and S. Stubblebine, “Secure Distrib-
uted Human Computation,” Proc. 6th
ACM Conf. Electronic Commerce, ACM
Press, 2005, pp. 155-164).

Human-based computation plat-
forms can be found in both large-scale
Web systems and closed enterprise
systems. For example, Google Image
Labeler (http://images.google.com/
imagelabeler) relies on humans’ cre-
ative ability to label images, which
improves the quality of image search
results (L. von Ahn and L. Dabbish,
“General Techniques for Designing
Games with a Purpose,” Comm. ACM,
Aug. 2008, pp. 58-67). Another plat-
form more closely related to human
data retrieval is Amazon Mechani-
cal Turk (www.mturk.com), which
lets task requesters access a flexible
(resizable) human workforce but
doesn’t support collaborative activi-
ties and interactions among workers.

In 2007, the WS-HumanTask
(WS-HT) and BPEL4People (B4P) stan-
dards introduced models for weaving
human interactions into SOA-based
compositions. WS-HT and B4P target
workflow-based coordination in SOA/
Web services environments in enter-
prise settings. However, they lack the
ability to create flexible compositions
of human and software-based ser-
vices. Related B4P standards specify
languages for modeling human
interactions, the life cycle of human
tasks, and generic role models
(F. Leymann, “Workf low-Based
Coordination and Cooperation in a
Service World,” On the Move to Mean-
ingful Internet Systems 2006, LNCS
4275, Springer, 2006, pp. 2-16).

Compositions and processes are
modeled using a language such as
the Business Process Execution Lan-
guage (BPEL)—a widely used and
well-accepted composition language
in the Web services domain—and
executed in the actual environment
where the composition model is
deployed. These top-down composi-
tion models are limited in their use
of context and adaptive control and
thus fail to deliver the most effective
runtime behavior.

	 Daniel Schall and Schahram Dustdar, Vienna
		 University of Technology

	 M. Brian Blake, University of Notre Dame

Human-provided services harness human capabilities within
service-oriented environments while leveraging Web 2.0
innovations.

83JULY 2010

In previous work, we introduced
the HPS framework, emphasizing
the importance of flexible interac-
tion models (D. Schall, H.-L.Truong,
and S. Dustdar, “Unifying Human
and Software Services in Web-Scale
Collaborations,” IEEE Internet Com-
puting, May 2008, pp. 62-68). The
framework must be extended by
combining top-down and bottom-up
composition models.

Not every interaction or task may
be known at design time (S. Dustdar,
“Caramba—A Process-Aware Collab-
oration System Supporting Ad Hoc
and Collaborative Processes in Vir-
tual Teams,” Distributed and Parallel
Databases, Jan. 2004, pp. 45-66); thus
not all interaction links between ser-
vices and people can be established a
priori. As such, an adaptive composi-
tion of human and software services
is a strong requirement.

TOWARD UNIFIED HUMAN
AND SOFTWARE SERVICES

Any user-centric, participative
perspective is characterized by a
bottom-up design of services and
the emergence of social relations,
knowledge, and expertise. The term
interaction model thus has different
meanings depending on the system
perspective.

Technical interaction models
describe the set of rules governing the
arrangement and interconnections of
elements. Interaction rules in a tech-
nical sense are, for example, message
exchange patterns such as request/
response—if the requester initiates a
message, the provider responds with
a message or fault.

Dynamic systems exhibit rules or
models of cooperation—that is, how
interactions operate. For example,
Hamilton’s rule, “I will jump into the
river to save two brothers or eight
cousins,” is an interaction rule to
depict the probability that coopera-
tion is favored among related actors
(M.A. Nowak, “Five Rules for the Evo-
lution of Cooperation,” Science, 8 Dec.
2006, pp. 1560-1563). Interactions

based on logging and monitoring
mechanisms.

Reputation. As in many collabora-
tion systems, some users contribute
more toward certain objectives than
others. It’s thus desirable to measure
the user’s reputation within systems
such as organizations, communities,
or social networking platforms. An
expertise recommendation algorithm
shouldn’t treat all interactions with
equal importance. Interactions are in
many cases performed in a certain
context—for example, within the
scope of a certain activity.

Discovery. HPSs can be discovered
by accessing a service registry—the
late binding mechanism in a service-
centric environment. In homogenous
software service environments,
compositions are realized by discov-
ering and selecting services based on
quality-of-service (QoS) information.
In mixed service-oriented environ-
ments comprising HPSs and software
services, selection should be based on
users’ trust, reputation, and expertise
(F. Skopik, D. Schall, and S. Dustdar,
“Modeling and Mining of Dynamic
Trust in Complex Service-Oriented
Systems,” to appear in Informations
Systems, 2010).

Service compositions
Figure 1 shows how the HPS para-

digm applies to service compositions.
Composition model. The process

model shown on the left side of the
figure comprises a set of activities to
coordinate interactions among ser-
vices. Human actors may need to
realize some process activities.

A BPEL expert creates a composi-
tion model at design time, defining
the services that are part of a com-
position as well as the interactions
among them. The expert embeds
human capabilities in the system by
modeling human tasks.

Role models restrict the set of
people who can work on tasks. How-
ever, while role models are sufficient
to preselect potential qualified actors,
they’re static and thus don’t capture

and relations emerge and change
over time.

The complexity and dynamics
of interactions make the design of
heterogeneous compositions com-
prising human and software services
a significant problem. A set of build-
ing blocks is needed to support the
seamless integration of human capa-
bilities in SOA. Such building blocks
are important to enable systems to
evolve with respect to local interac-
tions. Global composition models
are essential to optimize and control
processes.

Building blocks
We propose four building blocks

to achieve convergence of ad hoc and
formalized process models.

Design. Users should be able to
create and share services based on
their preferences to work on collab-
orative activities. The main difference
between the design of HPSs and
traditional software services in the
SOA landscape is that the end user
actively creates services in a manner
similar to using mashup platforms.
The user creates HPSs from scratch
or discovers and reuses existing
service definitions shared within
communities.

Interaction patterns. A particular
HPS may work on tasks in the con-
text of an activity by interacting with
other HPSs. It accomplishes this by
delegating tasks (subtasks) to success-
fully deliver the demanded output of
an HPS-based composition. Such a
composition may be defined in an ad
hoc manner by the person responsi-
ble for the corresponding task. These
interaction patterns may be discov-
ered dynamically during runtime

The benefit of human-
provided services is
a seamless service-
oriented infrastructure
of human and software-
based services.

COMPUTER	84

WEB TECHNOLOGIES

ht1

Composition model (design) Adaptive interactions (runtime)

Process activity

Process �ow

Human task
Human activity

Interaction context

User involvement

Input

Input

Query
Selection

Integration of
both worlds

ht2

Interaction model:
• Required tasks
• Roles
• Patterns

Query and assignment:
 Create task instance
 Associate role
 Select user

Adaptive interaction model:
• Activity structure
• Interaction context
• Expertise and skills
• Dynamic trust

u1

u2
a1

a2

a3

u1 u2 … un
2 3

1

1
2
3

white paper, IBM and SAP, July 2005).
Along with the person process-

ing a task, a second person—the
monitor—observes the task’s prog-
ress or output. Reputation and trust
between people may influence how
monitoring occurs. If the selected
user working on a certain task has
low reputation, ad hoc activities and
notifications can be created dynami-
cally to include other users acting as
monitors.

The right side of Figure 1 illustrates
dynamic, activity-centric interactions
that can be used to realize monitor-
ing patterns. First, user u1 may be
selected as part of a predefined com-
position. Depending on u1’s actual
expertise and reputation, another
trusted actor u2 can be associated as
monitor. Expertise, reputation, and
resulting interaction patterns are
highly context-sensitive, depending
on the actual environment and its
properties.

HUMAN-PROVIDED
SERVICES

The HPS framework assimilates
the Web 2.0 paradigm wherein the
end user designs and provides ser-
vices (D. Schall, “Human Interactions

in Mixed Systems—Architecture,
Protocols, and Algorithms,” PhD
dissertation, Faculty of Computer
Science, Vienna Univ. Technology,
2009; www.ub.tuwien.ac.at/diss/
AC05039868.pdf). As Figure 2 shows,
the HPS reference architecture con-
sists of three essential layers: data
collection, services, and middleware.

Data collection
The data collection layer includes

a registry, which makes available
all services used in applications or
by users. A State and Agreements
module maintains the state of inter-
actions—for example, in-progress or
aborted—as well as documents QoS
performance and SLAs. This layer
also contains an Interaction History
module based on collected logs.

Services
The services layer represents the

set of services offered by people
(HPSs) that can be discovered in a
manner similar to traditional soft-
ware services. HPSs require features
such as asynchronous messaging,
GUI representations, and the auto-
matic generation of descriptive
interfaces using, for example, the

intrinsic properties arising in real
environments. Users with the same
role and formal set of skills may have
very different interests and levels of
expertise. Thus, nonfunctional prop-
erties (reputation mechanisms) must
be considered as well as functional
properties.

B4P supports late binding by defin-
ing abstract people groups. If an actor
fails to deliver the desired output in
a satisfactory manner—for example,
due to lack of actual skills and exper-
tise—the entire composition may not
be able to deliver its result. The BPEL
expert defining the process should be
able to associate service-level agree-
ments (SLAs) to the query influencing
the selection of HPSs in the environ-
ment. This implies a QoS model for
HPS.

Ad hoc interactions. While in B4P
the end user’s role is limited to the
process’s runtime aspects, the major
challenge is adapting to the fluidity
and changing preferences of users.
For example, the four-eyes princi-
ple denotes that an authority must
approve certain critical decisions to
prevent mistakes or malicious behav-
ior (M. Kloppmann et al., “WS-BPEL
Extension for People—BPEL4People,”

Figure 1. Applying the human-provided services (HPS) paradigm to service compositions.

Figure 2. The HPS reference architecture consists of three essential layers:
data collection, services, and middleware.

85JULY 2010

different Web-based interaction sce-
narios, community structure, social
interest, and evolution. Furthermore,
the HPS paradigm must be enhanced
with a greater understanding of
replaceability strategies between
HPSs and software services.

Daniel Schall is a postdoctoral
researcher in the Distributed Systems
Group, Information Systems Institute,
Vienna University of Technology. Con-
tact him at d.schall@infosys.tuwien.
ac.at.

Schahram Dustdar is a professor of
informatics and heads the Distributed
Systems Group, Information Systems
Institute, Vienna University of Tech-
nology. Contact him at dustdar@
infosys.tuwien.ac.at.

M. Brian Blake is a professor of com-
puter science and engineering and
associate dean of the College of Engi-
neering at the University of Notre
Dame. Contact him at m.brian.blake@
nd.edu.

Web Services Description Language
(WSDL). The software stack needed
for HPSs can be deployed on mobile
devices to support pervasive interac-
tions. Also, the middleware platform
can host services so that users can
manage HPSs online.

The service bus within this layer
provides the backbone messaging
infrastructure for interactions among
services and humans. It provides
features for service discovery, invo-
cation, and transformations due to
the heterogeneity of different types
of services.

Middleware
The middleware layer contains

four main modules.
The Collective Design module

includes tools for designing HPS
interfaces based on human activi-
ties as well as a tagging model for
activities and services to recom-
mend potentially useful (reusable)
HPS interfaces. Service design can
be imagined as the definition of a
form comprising elements such as
input fields, enumerations, lists, and
so on. The definition is transformed
into complex data structures (type
system), Web service interfaces, and
XML-based forms (XForms). HPS defi-
nitions can be shared so that others
can offer the same type of service.

The Protocol Layer is used to auto-
mate interactions in a certain context.
The user can specify rules to trigger
automatic actions based on condi-
tions and thresholds. For example,
given a user’s current workload, cer-
tain tasks may need to be delegated
to available HPSs.

The Mining and Discovery module
includes techniques to identify inter-
action patterns, relationships, and
actor dependability in the system.
The automated computation of repu-
tation and expertise is a suitable way
to track changing user preferences
and interests. The monitoring pat-
tern between HPSs is an example of
a technique used to determine actor
dependability.

The System Monitoring module
relies on interaction logs to observe
the system’s actual runtime state.
These logs are based on Web service
calls, lookup requests, and events
triggered by collaboration services.

The increasing complexity
of interactions, distribution
of services, and end-user

introduction of content on the Web
requires models and languages for
service composition. Both bottom-up
(user-centric) and top-down (process-
centric) interaction models are
required in these dynamically chang-
ing environments. Human-provided
services harness human capabilities
within service-oriented environments
while leveraging Web 2.0 innova-
tions such as tagging mechanisms
and tools to create service and data
mashups. The user can define inter-
action interfaces following the same
principles, thereby avoiding the need
for parallel systems of software ser-
vices and HPSs.

While we have focused on the
layers responsible for the HPS frame-
work’s technical aspects, we suggest
an additional architectural layer
based on the social aspect of service
design. This social layer is a mixture
of user-centric services to engage in

Editor: Simon S.Y. Shim, Dept. of Computer
Engineering, San Jose State Univ., San Jose, CA;
simon.shim@sjsu.edu

Human-provided services

Service bus

Collective design Mining and discovery Protocol layer
Middleware
layer

Services
layer

Data-
collection
layer State and

agreements
Interaction

history
Registry

System monitoring
• Social tagging
• Sharing

• Patterns
• Rules
• Actions

• Context
• Interactions
• Custom events

• Interaction behavior
• Social preferences

	 Selected CS articles and columns
	 are available for free at http://
ComputingNow.computer.org.

