
Latency-aware decentralized resource management for IoT
applications

Cosmin Avasalcai
Distributed Systems Group
TU Wien, Vienna, Austria

c.avasalcai@dsg.tuwien.ac.at

Schahram Dustdar
Distributed Systems Group
TU Wien, Vienna, Austria
dustdar@dsg.tuwien.ac.at

ABSTRACT
With the increased success of the Internet of Things (IoT),
the cloud-based solutions are no longer sufficient to meet the
stringent requirements of IoT applications. Besides requiring
fast response time, increased security and privacy, they lack
computational resources at the edge of the network. Such
computational resources distributed closer to the edge repre-
sent the fundamental infrastructure of edge and fog paradigms.
However, without advanced resource management techniques,
the advantages of the paradigms are lost. In this paper, we
present a novel distributed resource allocation algorithm with
the purpose of enabling seamless integration and deployment
of different applications in an IoT infrastructure. The algo-
rithm decides: the (i) mapping of IoT application at the edge of
the network, (ii) dynamic migration of parts of the application,
such that Service Level Agreement (SLA) is satisfied. Further-
more, we analyze and discuss our approach and the potential
to minimize the latency of different IoT applications.

ACM Classification Keywords
C.2.1 Network Architecture and Design: Distributed networks.
Network topology; C.2.4 Distributed Systems: Distributed
applications; D.4.7 Organization and Design: Distribution
systems;

Author Keywords
Edge Computing; Internet of Things; Resource Management;
Fog Computing.

INTRODUCTION
The continuum increase of connected devices introduced by
the IoT and the need for real-time applications with fast re-
sponse times, higher privacy, and security, have pushed the
horizon of new computing paradigms, fog, and edge com-
puting. Fog computing paradigm has been coined by Flavio
Bonomi in 2012 and extends the cloud services capabilities to
use computing resources near IoT sensors, decreasing network
congestion and minimizing the latency of real-time applica-
tions [1]. In contrast, edge computing pushes the frontier of

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
Owner/Author.
IOT ’18, Oct 15–18, 2018, Santa Barbara, CA, USA
©2018 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-6564-2/18/10.
DOI: https://doi.org/10.1145/3277593.3277637

deploying heterogeneous computational resources near the
edge of the network, even closer to the source of data [6].

However, with no support from novel resource management
techniques, the paradigms alone cannot ensure a good deploy-
ment of applications at the edge. These techniques come as
a solution to the constraints imposed by the IoT devices (i.e.,
heterogeneous devices, with limited computational resources
and energy). Moreover, a higher degree of uncertainty in the
system is introduced by the mobile devices (e.g., smartphones,
tablets, cars, etc.) which can enter and leave freely the net-
work without any prior announcement. Hence, to fully utilize
the available resources found at the edge of the network, to
reduce communication bandwidth, improve security and en-
able real-time IoT applications, new resource management
algorithms must be created. Some use cases that benefit from
deploying IoT applications at the edge are, remote-monitoring
in the healthcare area, controlling real-time systems in smart
factories and deploying applications in smart cities. In our pro-
posal, we focus on developing a novel decentralized algorithm
to tackle resource allocation from three different perspectives,
(i) a new deployment strategy that offers a personalized map-
ping for each IoT application independent of environment or
location, (ii) a self-adapt algorithm at runtime to improve the
reliability of IoT application by migrating tasks from faulty
nodes and (iii) a ranking system to help the algorithm decide
what tasks should be migrated and when.

RELATED WORK
In the last years, with the advent of edge and fog computing
introduced the need for new resource management techniques
at the edge of the network. Therefore, more and more re-
searchers proposed solutions to tackle some of the challenges
introduced by this new IoT infrastructure. Jain et al. [2]
proposes a mapping algorithm that divides the IoT applica-
tion into multiple tasks annotated with location information
based on which is deployed at the edge. Another approach
which uses the edge resources is suggested in [7], where a
pre-partitioned application is distributed among edge nodes
such that the communication with the cloud is reduced and the
latency is minimized.

The authors in [3] introduce a cooperative fog platform that
tries to ensure an easy collaboration between multiple static
and mobile fog devices by using a distributed communication
model. Moreover, to improve the service efficiency of IoT
applications, an allocation algorithm is used to select the host
based on the characteristics of the system. A similar approach

https://doi.org/10.1145/3277593.3277637


is presented in [8], where an optimization service placement
algorithm is developed to share fog resources. However, the
algorithm will always try to map an application to the deploy-
ment node or to a neighbor device. In case of failure, the
application is mapped to the cloud.

In [4], the authors propose an algorithm to dynamically mi-
grate virtual machines (VMs) and find the best communication
paths based on predictions of user movements. A similar solu-
tion to service migration is presented in [5], where the authors
propose an edge-enabled publish-subscribe middleware to con-
tinuously monitor the QoS and transparently migrate clients
to another host in close proximity.

With respect to the aforementioned research papers, most of
the researchers’ work is emphasizing the placement of edge
devices. In contrast, our proposal provides a more compre-
hensive resource management solution that is independent of
IoT applications and environment. By combining the initial
placement of the application at runtime, with dynamic migra-
tion and neighborhood selection, the edge devices will become
more intelligent.

PROPOSED SOLUTION
In this paper, we propose a decentralized algorithm designed
to offer the developers the possibility of deploying IoT ap-
plications at the edge of the network without knowing the
characteristics of the edge devices in that particular location.
This approach improves the security of the IoT application
and nodes since even the developer does not know on which
nodes the application is mapped. Moreover, the algorithm is
in charge of monitoring the overall performance of the applica-
tion, improving its reliability by dynamically adapt to changes
in the network.

Due to the limited resources of edge devices, we assume that
the application is divided into multiple tasks (i.e., a set of
instructions that perform a specific computation) by the devel-
oper prior to deployment. Hence, we model an IoT application
as a Directed Acyclic Graph (DAG) where vertices represent
different tasks and edges describe the dependencies between
them (see Figure 1).

A B
C

D
E

F

Figure 1. IoT application model

We consider that the IoT architecture is represented by a peer-
to-peer communication between each IoT device and the cloud
(see Figure 2). Compared to the common representation of
such an IoT architecture (i.e., a four-layer pyramid starting
with the sensor layer and ending with the cloud), our model is
a flatter design that offers the possibility of sharing resources
vertically and horizontally between devices.

The behavior of our algorithm is inspired by the organization
of a private auction house. Considering this, we have divided
our algorithm into three different modules: neighborhood
latency monitoring, bidding policy, and placement policy.

Neighborhood latency monitoring
This module creates for each individual IoT application that
has to be deployed, at runtime a list of nodes chosen from the
neighborhood (i.e., all the nodes that have a direct connection
with the dispatcher) and their related latency. A dispatcher
node represents the node that received a request to deploy
the IoT application in that location. To choose the nodes, the
module relies on an algorithm for finding the latency smaller or
equal to a computed threshold (i.e., specific to each application,
since it represents a percentage of the total E2E delay). Once
a request arrives from the placement policy module, the list of
nodes is generated and sent back to the placement module.

Furthermore, the module has two more tasks to perform. First,
it monitors and stores the latency of each IoT device found in
the neighborhood. Second, it notifies the placement module if
the latency to a winner node (i.e., a node that received a task
to compute from the deployed application) has increased or if
it is unresponsive. In both cases, a migration of that affected
tasks is performed.

An example of the individual lists created for two different
IoT applications is presented in Figure 2. As you can see, in
this case, the IoT application deployed from the yellow edge
device has a smaller list of devices to borrow resources since
its requirements are more strict. In contrast, the application
deployed from the purple edge node can deploy to multiple
nodes, because of its requirements.

Bidding policy
The bidding module generates offers and sends them to the
dispatcher. Based on these offers, the dispatcher deploys the
application such that the SLA is satisfied.

The algorithm starts when a broadcast message arrives from
the dispatcher node. Based on the available resources and task
dependencies, the module selects a number of tasks that can
compute and creates the offer. However, the selection of tasks
has an important constraint, i.e., a node can select only tasks
that share a dependency. Once the number of tasks is selected,
the module creates a latency table containing the communi-
cation latency from the current node to the list of nodes (i.e.,
the devices selected by the monitoring latency module in the
dispatcher when the IoT application deployment request ar-
rived) received from the dispatcher. To obtain this table, the
algorithm performs an intersection between the received list
and its neighborhood latency table. This information is very
important to the deployment. Finally, after the latency table
is computed and the tasks are selected, an offer is sent to the
dispatcher.

Placement policy
The module proposes an optimization reactive placement with
the purpose of distributing the IoT application and dynamically



Broadcast to
neighbors

Cloud

Edge
node
Fog
node

Physical
communication 

Deploy IoT
application
from edge
node

Legend

Figure 2. IoT architecture

adapt the mapping at runtime. Once a request for an applica-
tion has arrived at a dispatcher, the algorithm distributes the
tasks of an application such that the E2E delay is minimized.

The first step of the algorithm is to identify if there are any
computational demanding tasks to be mapped to the cloud.
Next, for the remaining tasks, the algorithm tries to map one
or all tasks locally. Since processing tasks locally reduce
significantly the overall E2E delay, it is mandatory to map at
least one task on the dispatcher. In the case where no resources
are available, the rank of the currently mapped tasks is used to
decide which one to migrate. At the same time, the dispatcher
of the chosen task is notified to find a new placement node.

Once the list of IoT devices is received from the neighbor-
hood latency monitoring module, the algorithm creates and
broadcast a message to each individual device. The message
contains the remaining tasks and their dependencies, the SLA
of the IoT application and the list of devices just received.
However, before sending the message, a timer is started to
limit the waiting time for offers. In this case, all offers arrived
after this period of time will be discarded.

Next, after the time has expired and all offers are collected, the
best deployment strategy is computed by choosing the offers
that yield the smallest latency using Equation 1:

Applatency = Tmap +Blatency (1)

where Tmap represents the time to find the best mapping for the
IoT application and Blatency is the sum of the communication
latency between the winner nodes. It is important to state
that Tmap only impacts the E2E delay when the application is
deployed. In any other case, the Tmap is equal to 0.

Finally, a message is created containing the tasks docker con-
tainer and the addresses of their dependency, providing a direct
communication link with these nodes. Using docker contain-
ers to send the tasks over the network gives the best solution
to ensure that all tasks will work properly independent on the
node.

CHALLENGES DISCUSSION
In this section, we discuss the challenges faced when design-
ing our decentralized algorithm. To unlock the true potential
of the proposed algorithm and enable more computational
resources at the edge of the network, we have to perform ex-
tensive evaluations of the entire system and for each individual
modules.

Challenges in neighborhood latency monitoring
As described in Section 3 the purpose of this module is to
create a specific list of nodes for each IoT application that is
deployed from a dispatcher. This module has two main central
pieces that are utmost important to the overall behavior. The
first piece is represented by the value of the threshold. Since
this determines the total number of devices that can share
resources for a given IoT application, it has a big impact on
the computational time of finding and how the deployment
strategy looks. For example, if we choose a bigger percentage
then a bigger number of devices will be accepted. Thus, it
provides more resources to choose from with a penalty of
computational time. In the other extreme, the placement is
faster, but we could end up mapping everything to the cloud.
The second core piece is the latency monitoring part, where we
must find a solution to monitor the latency without introducing
a communication overhead.

Challenges in bidding policy
This module generates the offer submitted by a node to the
dispatcher. Also, it is the module that has a great impact
on the overall mapping, since the offers reflect the devices
which have free resources to share and the knowledge that
the placement policy will use to determine the best mapping.
However, there are two important aspects when developing
this module that needs our attention, the ranking system and
ensuring that we receive offers for all tasks.

The ranking system plays an important role in deciding what
tasks to migrate. Thus, each accepted task should receive a
rank based on the following characteristics: trustiness of the
dispatcher, communication latency, resource utilization, etc.
These rank ultimately shows how good is the placement of the
task on that particular node.



The other aspect that we must discuss is how to ensure that a
dispatcher receives offers for all the tasks, such that a solution
can be created. A possible solution is to broadcast the offer
to the other participant nodes before sending it. Hence, when
a device receives a broadcast offer he can adjust his offer
accordingly, making sure that there are offers for all tasks.
However, this could impact the communication overhead.

Challenges in placement policy module
The placement module is in charge of selecting the best offers
such that distribution strategy meet the requirements of the
application. The first challenge is related to mobile devices and
their resources. In order to truly use all available resource at
the edge, these devices have to be considered. Besides the legal
and security aspect of sharing resources from such devices,
handling their unpredictability introduced into the system is
utmost important. For example, one possible solution is to
find an additional stationary device to map the task once the
mobile device has disappeared from the system (either by
shutting down or move to another location). However, this
approach does not ensure that the stationary device has free
resources when the mobile node is down. Thus, more tests and
discussions have to be done to solve properly this problem.

Another important aspect is the period of time that the dis-
patcher waits for offers. As you can imagine, choosing this
value has a great impact on how good the placement is. If the
time is too low, then we could lose important offers. If it is
too high, then we increase the computational time. However,
this value could be individual to each IoT application and its
related characteristics. In this case, how to make a difference
and what characteristics to use to obtain this time?

Overall challenges of the system
For the overall system design, we want to introduce and dis-
cuss possible improvements and solution that could make
more efficient the utilization of resources at the edge of the
network. One such improvement consists of migrating the
IoT application at other location where are needed. For ex-
ample, some applications are used only for a limited period
of time during a day, a month or a year. Thus, offering the
possibility to free allocated resources when the application is
not functional could push the importance of edge computing
even more. Another important aspect that we must avoid is
represented by migration loops. Such an event can occur when
one or more tasks are migrated continuously.

Finally, finding what is the maximum concurrent number
of deployments from different edge nodes located close to
each other influences the efficiency of the proposed algorithm.
Since this limit shows us the overhead that the message ex-
change is having on the network.

CONCLUSION
The most efficient approach to satisfy the demanding real-time
requirements of IoT applications is to enable more computa-
tional resources at the edge of the network. However, introduc-
ing new paradigms to bridge the cloud and edge is not enough.
A distributed resource management technique that can adapt
to individual needs and environment of different applications

is required. In this paper, we introduce a distributed load bal-
ancing algorithm that aims to satisfy the latency constraints
of each application by collaborating with nearby devices to
ensure minimum latency. We truly believe that applying the
proposed algorithm in a real IoT infrastructure (i.e., smart city,
smart factory, etc.) can provide a seamless integration of all
applications.

ACKNOWLEDGMENTS
The research leading to these results has received funding
from the European Union's Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-Curie grant
agreement No. 764785, FORA–Fog Computing for Robotics
and Industrial Automation. This work also has been partially
supported and funded by the Austrian Research Promotion
Agency (FFG) via the "Austrian Competence Center for Digi-
tal Production" (CDP) under the contract number 854187.

REFERENCES
1. Flavio Bonomi et al. 2012. Fog computing and its role in

the internet of things. 1st ACM Mobile Cloud Computing
Workshop (2012), 13–15.

2. R. Jain and S. Tata. 2017. Cloud to Edge: Distributed
Deployment of Process-Aware IoT Applications. In 2017
IEEE International Conference on Edge Computing
(EDGE). 182–189. DOI:
http://dx.doi.org/10.1109/IEEE.EDGE.2017.32

3. A. Kapsalis, P. Kasnesis, I. S. Venieris, D. I. Kaklamani,
and C. Z. Patrikakis. 2017. A Cooperative Fog Approach
for Effective Workload Balancing. IEEE Cloud
Computing 4, 2 (March 2017), 36–45. DOI:
http://dx.doi.org/10.1109/MCC.2017.25

4. J. Plachy, Z. Becvar, and E. C. Strinati. 2016. Dynamic
resource allocation exploiting mobility prediction in
mobile edge computing. In 2016 IEEE 27th Annual
International Symposium on Personal, Indoor, and
Mobile Radio Communications (PIMRC). 1–6. DOI:
http://dx.doi.org/10.1109/PIMRC.2016.7794955

5. T. Rausch, S. Nastic, and S. Dustdar. 2018. EMMA:
Distributed QoS-Aware MQTT Middleware for Edge
Computing Applications. In 2018 IEEE International
Conference on Cloud Engineering (IC2E). 191–197. DOI:
http://dx.doi.org/10.1109/IC2E.2018.00043

6. W. Shi and S. Dustdar. 2016. The Promise of Edge
Computing. Computer 49, 5 (May 2016), 78–81. DOI:
http://dx.doi.org/10.1109/MC.2016.145

7. M. M. Shurman and M. K. Aljarah. 2017. Collaborative
execution of distributed mobile and IoT applications
running at the edge. In 2017 International Conference on
Electrical and Computing Technologies and Applications
(ICECTA). 1–5. DOI:
http://dx.doi.org/10.1109/ICECTA.2017.8252057

8. Olena Skarlat, Matteo Nardelli, Stefan Schulte, Michael
Borkowski, and Philipp Leitner. 2017. Optimized IoT
service placement in the fog. Service Oriented Computing
and Applications 11, 4 (01 Dec 2017), 427–443. DOI:
http://dx.doi.org/10.1007/s11761-017-0219-8

http://dx.doi.org/10.1109/IEEE.EDGE.2017.32
http://dx.doi.org/10.1109/MCC.2017.25
http://dx.doi.org/10.1109/PIMRC.2016.7794955
http://dx.doi.org/10.1109/IC2E.2018.00043
http://dx.doi.org/10.1109/MC.2016.145
http://dx.doi.org/10.1109/ICECTA.2017.8252057
http://dx.doi.org/10.1007/s11761-017-0219-8

	Introduction
	Related work
	Proposed solution
	Neighborhood latency monitoring
	Bidding policy
	Placement policy

	Challenges discussion
	Challenges in neighborhood latency monitoring
	Challenges in bidding policy
	Challenges in placement policy module
	Overall challenges of the system

	Conclusion
	Acknowledgments
	References 

