
Towards Flexible Interface Mediation for
Dynamic Service Invocations

Philipp Leitner, Anton Michlmayr, Schahram Dustdar

Distributed Systems Group
Vienna University of Technology

Argentinierstrasse 8/184-1
A-1040, Vienna, Austria

lastname@infosys.tuwien.ac.at

Abstract. One of the main benefits of service-based systems is the loose
coupling of components, which increases flexibility during the selection
of internal and external business partners. However, currently this flex-
ibility is severely limited by the fact that components have to provide
not only the same functionality, but do so via virtually the same inter-
face. Invocation-level mediation may be used to overcome this issue –
by using mediation interface differences can be resolved transparently at
runtime. In this paper we present the general concepts of invocation-level
mediation, and show how these ideas are integrated into our dynamic ser-
vice invocation framework Daios. To demonstrate the flexibility of our
mediation framework we present two fundamentally different mediation
strategies, one based on structural similarity and one based on semanti-
cally annotated WSDL.

1 Introduction

Systems based on the Service-Oriented Architecture (SOA) paradigm [1] de-
couple clients from service providers by leveraging standardized protocols and
languages (e.g., HTTP, SOAP, WSDL) and a registry (e.g., UDDI or the ebXML
registry) as service broker. In theory, this loose coupling allows service clients to
roam freely between internal and external business partners, and always select
the partner that is most appropriate at any given time. However, in practice this
flexibility is limited by the problem that clients rely on specific service interfaces
for their invocation. Therefore, services need to adhere to identical WSDL con-
tracts in order to be interchangeable at runtime. The assumption of interface
compatibility is not realistic if services are provided by different departments or
companies.

Currently, most work in the area focuses on providing an infrastructure to
resolve these compatibility issues: ESBs [2] provide an additional bus that de-
couples clients and services, and integration adapters or mediators [3,4] are used
as intermediary to resolve the inherent problems of invocation heterogeneity.
The approach that we present in this paper follows a different idea: we use a
pure client-side approach to mediation, i.e., we enable the clients themselves to

adapt their invocation to different target services. Specific mediation behavior is
introduced in the clients using mediation adapters, which can either be general-
purpose or tailored towards specific domains or scenarios. This lightweight ap-
proach removes the need for an explicit mediation middleware, and resembles
the traditional idea of SOA (where clients and services interact directly) more
closely. The practical advantage of client-side mediation is that all context infor-
mation which may be needed is readily available (e.g., which interface or service
the client actually expected, or the format that the client expects the invocation
result to be in). Additionally, clients are enabled to construct their individual
mediation strategy (by assembling an individual chain of mediators), without
relying on any specific support from the service infrastructure.

The contribution of this paper is threefold: firstly, we summarize the gen-
eral concepts of service mediation; secondly, we present how the existing Daios
Web service invocation framework [5] has been extended to include a dynamic
mediator interface, and thirdly, we explain the implementation of two exam-
ple mediators that demonstrate the capabilities of this interface. The rest of this
paper is structured as follows: Section 2 clarifies the need for invocation-level me-
diation based on an illustrative example, Section 3 explains the general concepts
of mediation, Section 4 details the Daios mediation interface and the mediators
that we have implemented using this interface, and Section 5 shows the results
of a preliminary evaluation. Section 6 elaborates on some related work in the
field. Section 7 finally summarizes the paper, and provides an outlook on future
work.

2 Motivating Example

To illustrate the need for runtime mediation we present a simple motivating
example. Consider the problem of building a composite service for cell phone
number portability. Number porting is a service pushed by the European Union
that allows clients to take their mobile telephone number with them if they
change their cell phone operator (CPO). The number porting related business
process of a CPO may look roughly as sketched in Figure 1 (simplified for clarity).

<<internal>>
Lookup

Customer

<<external>>
Check Portability

Status
<<external>>

Number Porting
<<internal>>

Update Customer
& Activate Number

<<internal>>
Notify Customer

Fig. 1: Number Porting Process

The process starts by looking up the customer using the CPO-internal Lookup
Customer service. After finding the customer, the process has to send a message
to the customer’s former CPO to check the portability status. If, for some reason,
the porting is not possible, the process is terminated and rescheduled to be
executed at a later point (not shown in Figure 1 for brevity). After the portability

check, a request is sent to the old CPO to release the number and transfer it.
Afterwards, the account of the customer is updated. Finally, the customer is
notified (via SMS, Mail, etc. . .) that the porting is finished.

In this process, only the activities Lookup Customer and Update Customer
& Activate Number are provided by internal services, which can be assumed
to have stable and relatively fixed interfaces. The activities Check Portability
Status and Number Porting have to be carried out by external services provided
by the CPO that the number has to be ported from. Lastly, Notify Customer is
an internal activity, which may be provided by a variety of services made avail-
able by different internal departments (e.g., by SMS, e-mail, or mail services).
This scenario illustrates how essential dynamic adaption is: in some cases the
services to invoke differ between instances of the same business process; in other
cases the ability to dynamically exchange service providers simply adds value
to the process by increasing overall flexibility. Of course it would be possible
in this scenario to use e.g., WS-BPEL Switch and Assign statements to select
the appropriate partner service and explicitly reformat the invocation input and
output data according to the respective target service, but this approach un-
necessarily complicates the business process by shifting what is essentially an
implementation issue (selecting the right service provider in a given process in-
stance) to the business process. Additionally, this approach would only scale to
a small and well-known number of alternate service providers – if the number of
alternatives is very large, or if the alternatives change frequently this workaround
quickly becomes unfeasible. Even worse, if the service to invoke has to be looked
up dynamically in a service registry this transformation approach fails at any
rate. However, note that the actual process of selecting a target service from a
set of possible choices is outside the scope of this paper. We tackle this problem
within our SOA infrastructure VRESCo [6, 7].

3 Interface-Level Invocation Mediation

Generally, mediation can happen on two different levels: invocation-level me-
diation defines the mapping of messages (single invocations) between services,
while protocol-level mediation considers resolving incompatibilities in the busi-
ness protocol (invocation ordering) of services. Similar distinctions have pre-
viously been identified by different researchers (among others [3, 4, 8, 9]). Per
definition, protocol-level mediation is only important for stateful services, since
stateless services do not rely on a specific ordering of invocations. Given that
SOA traditionally focuses on stateless services we do not cover protocol-level
mediation in this paper. However, others have already provided some interesting
work in this area (e.g., [10, 11]).

Before going on to explain our mediation architecture, we need to define a
number of general concepts that we are going to use in the forthcoming sections.
Where applicable, we will use well-known terms (e.g., from the Semantic Web
Services (SWS) community [12]) instead of inventing new ones. First of all, we
have to distinguish between two different formats, high-level (domain) concepts

and proprietary (low-level) formats. High-level concepts represent things and
ideas that exist in the real world, i.e., which are independent from a concrete
service or implementation. High-level concepts may (but do not necessarily need
to) be concepts in a Semantic Web ontology [13,14]. Domain concepts are what
domain experts talk about. Proprietary formats, on the other hand, are concrete
implementations of high-level concepts. They are optimized towards concrete
implementation goals, and are specific to single services. In general, proprietary
formats motivate mediation – in the end, invocation-level mediation is the pro-
cess of mediating between different low-level formats that implement the same
domain concepts. Mediation between services is only reasonable, if the services
implement the same concepts, even though they are probably using different
low-level formats to represent them. The general operation of invocation-level
mediation is the transformation of one format into another. We can distinguish
three different types of transformation: (1) transforming high-level concepts into
a low-level format is called lowering [15]; (2) the inverse operation, transforming
proprietary formats into domain concepts is called lifting ; and (3) we refer to
the direct transformation of one proprietary format into another as conversion.
These general concepts and their relationships are summarized in Figure 2.

High-Level
Concepts

Proprietary
Format

Format

is a is a

transform

implements

lower

lift
convert

Fig. 2: General Mediation Concepts

We can distinguish three different scenarios for invocation-level mediation
(Figure 3). In Scenario (a), a client expects a concrete service interface, but
is actually invoking a different one. The invocation is mediated by converting
the low-level format provided by the client directly to the format expected by
the actual target service. Scenario (b) is similar, but in this scenario media-
tion is a two-step procedure. Firstly, the client invocation is lifted to domain
concepts. Afterwards, this general representation is lowered to the proprietary
format expected by the actual target service. The response is processed analo-
gously. Finally, in Scenario (c) the client does not provide the service input in
a proprietary format, but already in the conceptual high-level representation.
Obviously, this scenario is a special case of Scenario (b) – in this case the pro-
cessing is simpler since no lifting of the input and no lowering of the response is
necessary.

Client

Expected
Service

Actual
Service

Higher-Level
Concepts

Low-Level
Message

Low-Level
Message

Client

Actual
Service

Higher-Level
Concepts

High-Level
Message

High-Level
Message

Scenario (c)

Scenario (b)

Client

Expected
Service

Actual
Target

Low-Level
Message

Low-Level
Message

Scenario (a)

Convert

Convert

Lift

Lower

Lower

Lift

Lower

Lift

Fig. 3: Mediation Scenarios

These three scenarios are similar from an implementation point of view, but
conceptually different. The first two scenarios are typical for legacy clients, or
clients that invoke a specific well-known service instance “most of the time”, but
still need to invoke other services with different contracts from time to time.
Speaking in terms of the example from Section 2, one can image that a client
for the activity Notify Customer was implemented targeting a short message
service (since this is the usual way of notifying customers), but still needs to
use an e-mail service from time to time. The third scenario is characteristic for
clients that have already been built with dynamic binding and runtime service
selection in mind. In our example we can assume that clients for the activities
Check Portability Status and Number Porting are implemented in such a
way, since there is no “default” service that has to be used more often than others
– in these cases, the service to use is entirely dependent on the concrete process
instance. In the first scenario, no explicit high-level conceptual representation
has to be available. This eases the general mediation model, but scales only to
a very small number of possible service alternatives, while the Scenarios (b) and
(c) are also applicable to a higher number of alternatives.

4 Mediation Adapters

In this section we will detail how client-side mediation has been implemented
within the Daios [5] project. The general idea of Daios is to decouple clients
from the services they are invoking by abstracting from service implementation
issues such as encoding styles, operations or endpoints. Therefore, clients only
need to know the address of the WSDL interface describing the target service
and the input message that should be passed to it; all other details of the target
service implementation are handled transparently. In Daios, data flowing into
and out of services are represented by specific data structures (DaiosMessages).
These messages are on a higher level of abstraction than e.g., SOAP messages,
and can be represented as an unordered labelled tree structure.

4.1 Daios Invocation Mediation

Even though Daios decouples clients and service providers, the clients still need
to know the exact structure of the message that the target service expects. This
data coupling is problematic. Services from different providers will usually not
rely on the same data model, even if their functionality is equivalent or similar.
Therefore, we have extended Daios to include an interface that can be used to
hook a chain of mediators into the client. The chain of mediators implements a
stepwise transformation from the original input (which may be in the proprietary
format of a different service, or directly representing high-level concepts) to the
proprietary format expected by the target service. Input usually enters the chain
encoded as DaiosMessage, and the output of the chain is SOAP. Therefore,
the mediator chain should at some point contain the “default” mediator, which
implements the mapping of the Daios-internal message format to SOAP.

Internal Service
Registry

Chain of Mediators

CPO Client
Mail

Service

E-Mail
Service

SMS
Service

(1) publish
(2) lookup

Client
Code

CPO
Messaging Services

Web Service
Stack

Chain of Mediators

M1 M2 M3

M1 M2 M3

(3) invoke

Fig. 4: Client-Side Mediation Architecture

Figure 4 sketches Daios’ overall mediation architecture, and how it leverages
the standard SOA model of service providers, consumers and registry. In the fig-
ure, we exemplify the mediation model based on the activity Notify Customer
from the process in Figure 1. Additionally, we assume that the client has been
developed according to the mediation Scenario (b) from Section 3. (1) A number
of different messaging services are published in the service registry. The messag-
ing services all have a similar domain purpose (sending messages to customers),
but they are provided by different internal departments of the CPO and are
accessible using different interfaces1. (2) When the activity Notify Customer in
the process has to be carried out, the client looks up a messaging service in the
registry (according to the preferences of the customer) and constructs a Daios

1 Note that we do not assume a public service registry. Instead, we work on the as-
sumption of a company-private service registry containing only well-known services,
since such registries are more common in today’s service-based systems.

frontend to the service (this is a completely automated process that mainly in-
cludes parsing the WSDL description of the service and its XML Schema type
system, for more details refer to [5]). (3) Finally, the client constructs a message
in the proprietary format of one of the possible alternatives (the SMS service
in the example) and commences the invocation. The message is now passed
through the mediation chain of this client, and will be lifted to a common do-
main representation using well-defined transformation rules, and again lowered
to the format expected by the actual target service. As a last step, the message
is serialized to SOAP. This SOAP message is then passed to a Web service stack
and sent to the target service. If a return message is received as a response to
the invocation, it travels through the mediator chain in the opposite direction,
and is passed back to the client in the proprietary format of the SMS service.

In the end, it is the decision of the service client how to construct the media-
tion chain for every given invocation (i.e., which mediators should be used, and
in which order). To do that, the client can choose from a set of general-purpose
and domain-specific mediators. Using domain-specific mediators existing domain
or service mapping knowledge can be re-used. That decision involves significant
knowledge about the services that are likely to be invoked, therefore, a fully
automated solution to the mediator selection problem is rather problematic.
Mediators may often be able to judge if their application makes sense in a given
invocation scenario (e.g., a semantic mediator can judge if semantic annotations
are available), but they cannot decide if their application actually resolves all
differences in the best way. In our current solution we rely on semi-automated
decision making (including humans) in order to construct the mediation chain
for any given client. We leave the problem of automatically constructing me-
diator chains in an optimal way (a problem which bears some resemblance to
automated service composition [16]) for our future work.

In the following sections we will detail the implementation of two very differ-
ent general-purpose mediators, which demonstrate the flexibility of our approach.

4.2 Structural Mediation

One common source for incompatibilities between services is the structure of
information. A simple example is sketched in Figure 5, which shows the service
interfaces of two different check porting status services (in Daios notion, i.e.,
as unordered labelled trees). The core information (telephone number, customer
identifier, name, location) is contained in both interfaces, but structured dif-
ferently. Additionally, both interfaces contain a number of fields which are not
used in the other message. Consider the case where the user provides input such
as the first one in the figure, and the service provides an interface such as the
second one. In this case, the incompatibility can be resolved by stepwise trans-
formation of the original user input (i.e., adding new nodes, removing not used
nodes, renaming nodes) until the input has the same structure as the service
interface. Obviously, information that is not existent in the original message will
be left empty in the result message; information that has been present in the
original message but not in the service interface is lost. Therefore, the resulting

message is guaranteed to be structurally valid, however, there is no guarantee
that the resulting message does not miss mandatory information.

ROOT

id

name

city

telephoneNr

number

addInfo

ROOT

number

customer

id

name

address

city

street

door

check_porting_status
CPO 1

check_porting_status
CPO 2

Fig. 5: Structural Interface Mediation

As part of our Daios prototype we have developed a general-purpose me-
diator that implements such a structural mediation. In terms of the concepts
introduced in Section 3 this mediator can implement either Scenario (a) or (c).
The mediator is universal, since it does not depend on any additional information
besides the target WSDL contract and the client input, and its functionality is
well suited to resolve “simple” interface differences (e.g., typical service version
changes as introduced in [7]). However, the mediator has a few distinct disad-
vantages: essentially, the problem of finding the optimal changes to transform
a given input tree to a given target format results in computing the tree edit
distance (and the respective edit script, i.e., an ordered list of changes that have
to be applied), which is known to be NP-hard [17]. The efficiency of the transfor-
mation can be improved by implementation-level techniques such as sub-result
caching or pruning of identical subtrees. We also cache the edit script associated
with every given combination of input and output trees to speed up future simi-
lar transformations, however, the transformation effort for unknown invocations
still increases exponentially with the amount of change necessary.

In the description above we simplified by assuming that message fields have
the same semantics iff they have the same name. In practice, this assumption
only holds in rather regulated and controlled environments. In the general case,
further data heterogeneity problems arise [18] (such as two fields carrying the
same name, but having different semantics). Therefore, it is possible to com-
bine the structural mediator with the semantic mediator (see below) if semantic

<schema>
 <element
 modelReference = "..."
 liftingSchemaMapping = "..."
 ... />

</schema>

Lifting /
Lowering
Scripts

Ontology

Lifting
Engine

<schema>
 <element
 modelReference = "..."
 loweringSchemaMapping = "..."
 ... />

</schema>

Lowering
Engine

Original Target
SAWSDL

Actual Target
SAWSDL

High-Level
Representation

Client
Input

Target Service
Representation

Semantic Mediator

Lifting Phase Lowering Phase

Fig. 6: Semantic Mediation

annotations are available, and use the convention that two message fields have
an identical name iff they point to the same ontology concept. Handling these
problems without falling back to semantic annotations is part of our future work.

4.3 Semantic Mediation

Currently, most work on Web service incompatibility resolution is carried out
within the SWS community. One specifically interesting approach is SAWSDL
[19, 20]. SAWSDL provides extensions for WSDL that allows to annotate XML
Schema data types, operations and faults with pointers to ontology concepts.
Additionally, pointers to scripts that implement lifting and lowering for data
types can be added. We have implemented a general-purpose mediator that uses
this semantic information in order to implement dynamic mediation between two
SAWSDL-annotated Web services. In our implementation, both high-level con-
cepts and proprietary formats are represented using DaiosMessages. Mediation
rules are given as transformation scripts.

Figure 6 sketches the general architecture of the Semantic Mediator in a Sce-
nario (b) invocation: the client passes the service input, the SAWSDL description
of the original target service and the SAWSDL description of the actual invo-
cation target to the mediator, which retrieves the ontology pointers from the
original SAWSDL description, and applies the corresponding lifting scripts; the
resulting high-level representation is then transformed to the format expected
by the target service by applying the respective lowering scripts (as denoted
in the actual target’s SAWSDL description). A possible response is processed
equivalently (not shown in the figure). Similarly, it is also possible to use the

Semantic Mediator in Scenario (c) situations. In that case, the input provided
by the client needs to be annotated with semantic information (i.e., the nodes in
the DaiosMessage tree need to be annotated with ontology pointers). However,
since the input is already provided as a high-level representation, no lifting is
necessary and processing starts in the lowering phase (see Figure 6).

In Listing 1, we present an example of a transformation (lowering) script,
which leverages the interpreted language Groovy2. The script is standard Groovy
code, however, we use two special variables (input and output), which are in-
jected into the interpreter environment (i.e., these variables are already prede-
fined when the execution of the script starts). Input refers to the input that is
given to the transformation, while output represents the transformation result.

� �
1 import at . ac . tuwien . i n f o s y s . dsg . da io sP lug in s . sawsdl . SemanticMessage
2

3 // map te lephone number to a complex type in the output
4 ontoUri =
5 ”http :// i n f o s y s . tuwien . ac . at / onto logy / nrPort ing /data#telephoneNr ”
6 newTel = new SemanticMessage ()
7 newTel . s e t S t r i n g (”number” , input . getStringByConcept (ontoUri))
8 output . setComplex (” t e l ephone nr ” , newTel)
9

10 // map date to a s p l i t s t r i n g in the output
11 ontoUri =
12 ”http :// i n f o s y s . tuwien . ac . at / onto logy / nrPort ing /data#date ”
13 merged = input . getStringByConcept (ontoUri)
14 i f (merged != nu l l) {
15

16 year = In t eg e r . pa r s e In t (merged . sub s t r i ng (0 , 4))
17 month = In t eg e r . pa r s e In t (merged . sub s t r i ng (6 , 7))
18 day = In t eg e r . pa r s e In t (merged . sub s t r i ng (9))
19 newDate = new SemanticMessage ()
20 newDate . s e t I n t (”day” , day)
21 newDate . s e t I n t (”month” ,month)
22 newDate . s e t I n t (” year ” , year)
23 output . setComplex (” po r t i ng da t e ” , newDate)
24

25 }� �
Listing 1: Lowering Script Example

In the listing, two values are mapped: on the one hand, on lines 4 to 8,
a rather simple mapping of a value (identified by the URI http://infosys.
tuwien.ac.at/ontology/nrPorting/data#telephoneNr) to a slightly nested
data structure (telephone nr/number). On the other hand, on lines 11 to 23,
a more complex transformation which splits the value of http://infosys.
tuwien.ac.at/ontology/nrPorting/data#date into three separate message
fields, porting date/day, porting date/month and porting date/year.

Since transformation rules are defined using standard Groovy scripts arbi-
trary complex transformations may be defined. However, it is not mandatory to
use Groovy: since our semantic mediator is based on the the Java 6 scripting
2 http://groovy.codehaus.org/

engine (javax.script), transformation scripts can be written in many different
interpreted languages (however, we use Groovy by default due to its tight in-
tegration with the Java runtime environment). If a different scripting language
should be used a new TransformationFactory needs to be introduced. The
transformation factory implements the loading of the correct scripting engine,
and the execution of the script. Listing 2 exemplifies how a new Jython3 script
interpreter can be introduced into the semantic mediation engine.

� �
1 TransformationFactory . t rans fo rmat ion . put (
2 ” app l i c a t i on / jython ” , // transformations are bound to MIME types
3 JythonTransformer . c l a s s // subc l a s s e s TransformationFactory
4) ;� �

Listing 2: Integrating New Transformation Engines

The semantic mediator is powerful, however, it depends on the availability
of semantically annotated WSDL descriptions, which are not widespread today.
Additionally, the script-based approach utilized in our semantic mediator intro-
duces a certain amount of processing overhead (see Section 5). We argue that
semantic mediation is best used in cases which demand for extensive semantic
transformations, e.g., the integration of existing legacy applications into service-
based systems.

5 Evaluation

We consider runtime performance to be one of the most critical factors of a
Web service mediation framework. Therefore, we have carried out a number
of performance tests to learn about the processing overhead introduced by the
two mediators presented in Section 4. We have compared the performance of
unmediated invocations and invocations using the structural and semantic me-
diator. For the semantic mediator we have evaluated two different scenarios, one
resembling Scenario (b) (both lifting and lowering of messages is necessary) and
one resembling Scenario (c) (only lowering is necessary). All tests have been
carried out on a 2.4 GHz Intel Core 2 Duo machine, with both test clients and
services running on the same machine. Every test has been repeated 100 times,
and results have been averaged. We summarize the outcomes of this evaluation
in Figure 7.

Figure 7a depicts how the invocation time increases with increasing SOAP
message payload. Interpreting the figure, we can see that the invocation time in-
creases proportionally with the payload for unmediated invocations (this finding
is in line with the results we have already presented in [5]) and all types of media-
tors. This means that the actual mediation overhead of all mediators is relatively

3 http://www.jython.org/Project/

independent of the payload size. However, we can also see that specifically the
semantic mediator introduces a sizable overhead.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000 2500 3000 3500

In
vo

ca
tio

n
T

im
e

[m
s]

Payload Size [kb]

Unmediated
Structural

SAWSDL-based (Only Lowering)
SAWSDL-based (Lifting and Lowering)

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1 2 3 4 5 6 7 8

In
vo

ca
tio

n
T

im
e

[m
s]

Mediation Steps Necessary

Unmediated
Structural

SAWSDL-based (Only Lowering)
SAWSDL-based (Lifting and Lowering)

(b)

Fig. 7: Runtime Performance Comparison

Obviously, the concrete overhead introduced depends on the amount of medi-
ation necessary. This is depicted in Figure 7b. Here, we plot the invocation time
depending on the number of incompatibilities that have to be resolved (e.g.,
adding one field to an input message). The figure shows that the overhead in-
troduced by the semantic mediator is increasing rather slowly – the bigger part
of the overhead is the constant time necessary to load the lifting and lowering
scripts, and launch the respective scripting engine. Here, additional tuning might
significantly improve the overall performance. The overhead of the structural
mediator, on the other hand, varies significantly with the number of incompat-
ibilities: for a small number the mediator introduces practically no overhead,
but starting with a certain amount of change the invocation time rises expo-
nentially. This is due to the NP-hardness of the underlying calculation of the
tree edit script (see Section 4). In the future, we plan to improve this specific
mediator using a heuristic tree edit distance algorithm instead of the currently
used deterministic one. However, keep in mind that these results are only valid
for the “first” invocation using a given input – because of caching the structural
mediator does not inflict a noteworthy delay on any following invocation with
the same structure of this client.

6 Related Work

Most related work in the area of resolving interface incompatibilities promotes
adapter-based approaches [9,21]. These adapters are conceptually similar to our
mediators, but are more decoupled from the actual clients. We consider these
approaches valuable, but think that our approach is more in line with the tradi-
tional idea of SOA where clients and providers interact directly. Additionally, our

work allows for simple integration of more complex mediation scenarios, such as
mediation based on service semantics (which is hard to accomplish independently
from the client). Within the grid computing community, a syntactic mediation
approach similar to ours has been proposed [22]. This work uses an ontology-
based mediation approach for grid services. Integration of domain-specific me-
diation knowledge, or structural mediation without semantic information is not
covered. To the best of our knowledge no flexible integrated interface mediation
framework for general Web services environments like ours has been presented
so far.

Other related work has studied mediation on business protocol level. In [3], a
number of protocol mismatch patterns are identified, and possible solutions are
proposed. In [10], Dumas et al. propose a visual notation and a set of operators
that can be used to resolve business protocol incompatibilities. In current indus-
try solutions, service mediation is often handled at ESB level [2]. However, the
mediation capabilities of current ESBs such as Apache ServiceMix4 are limited:
from the scenarios presented in Section 3 only Scenario (a) is supported (direct
transformation, e.g., applying an XSLT stylesheet to SOAP messages). Service
mediation is an often discussed use case for semantic Web services. However,
most related work in this community focuses on business protocol incompati-
bilities. One example is the WSDF framework [23], which uses an RDF model
to resolve protocol incompatibilities. Similar research has also been presented
in [11]. As part of their work on WSMX, Cimpian et al. have employed the Web
Service Modeling Ontology (WSMO) for service mediation [8]. Unlike most other
related work, they consider semantic mediation on both interface and process
level. These semantic approaches rely on the existence of shared ontologies and
explicit semantic information. Even though the same restriction applies for the
semantic mediator presented here, our general mediation interface can perfectly
be used with other (e.g., domain- or service-specific) mediators when no addi-
tional semantic information is available.Other authors have considered mediation
on service composition level, e.g., in [24], WS-BPEL processes are adapted by
exchanging service bindings at runtime, and compatibility between services is
ensured using XSLT-based transformation. Others use annotated WSDL with
context information to mediate semantic Web service compositions [25].

7 Conclusion

Currently, dynamic selection of services in SOA-based systems is severely limited
by incompatibilities in the interfaces of these services. Enterprise integration so-
lutions such as ESBs or mediation middleware can be used to resolve these prob-
lems, but these solutions add additional layers and complexity to the systems
built. In this paper we have presented a flexible mediation architecture that en-
ables clients themselves to adapt to varying service interfaces. We have explained
the general concepts of interface-level mediation, and how these concepts have
been implemented within our existing Daios project. The implementation of two
4 http://servicemix.apache.org/

conceptionally different mediators has been used to demonstrate the flexibility of
our approach. Additionally, we have discussed the performance overhead intro-
duced by these mediators. Furthermore, we have critically assessed the benefits
and limitations of these mediators. Given that there is no single mediator that is
able to handle every situation, the incorporation of domain-specific mediators is
possible. Additionally, it is possible to combine a number of different approaches
in a chain of mediators.

As part of our future work, we plan to extend the work presented in this
paper in various directions: firstly, we envision to extend our approach also to
mediation on protocol level; secondly, we are aiming at aligning Daios more
closely with our SOA runtime environment VRESCo [6, 7], in order to pro-
vide an end-to-end SOA environment to clients, and to allow the usage of the
VRESCo metadata [26] model for invocation mediation; thirdly, we want to
improve the implementation of our general-purpose mediators, e.g., develop a
heuristic algorithm to speed up the structural mediator; and lastly, we plan to
carry out some work in the area of automated mediator chain construction, i.e.,
automated determination of a sequence of mediators that is best suited to resolve
a given set of incompatibilities.

Acknowledgements

We would like to thank Florian Rosenberg for many helpful discussions and
reviews of this paper. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme [FP7/2007-
2013] under grant agreement 215483 (S-Cube).

References

1. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Com-
puting: State of the Art and Research Challenges. IEEE Computer 11 (2007)

2. Schmidt, M.T., Hutchison, B., Lambros, P., Phippen, R.: The Enterprise Service
Bus: Making Service-Oriented Architecture Real. IBM Systems Journal 44 (2005)

3. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Develop-
ing Adapters for Web Services Integration. In: Proceedings of the International
Conference on Advanced Information Systems Engineering (CAiSE). (2005)

4. Stollberg, M., Cimpian, E., Mocan, A., Fensel, D.: A Semantic Web Mediation
Architecture. In: CSWWS. Volume 2 of Semantic Web And Beyond Computing
for Human Experience. (2006)

5. Leitner, P., Rosenberg, F., Dustdar, S.: Daios – Efficient Dynamic Web Service
Invocation. to appear in IEEE Internet Computing (2009)

6. Michlmayr, A., Rosenberg, F., Platzer, C., Dustdar, S.: Towards Recovering the
Broken SOA Triangle – A Software Engineering Perspective. In: Proceedings of the
International Workshop on Service Oriented Software Engineering (IW-SOSWE).
(2007)

7. Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.: End-to-End Versioning
Support for Web Services. In: Proceedings of the International Conference on
Services Computing (SCC). (2008)

8. Cimpian, E., Mocan, A., Stollberg, M.: Mediation Enabled Semantic Web Services
Usage. In: Proceedings of the Asian Semantic Web Conference (ASWC). (2006)

9. Lin, B., Gu, N., Li, Q.: A Requester-Based Mediation Framework for Dynamic
Invocation of Web Services. In: Proceedings of the International Conference on
Services Computing (SCC). (2006)

10. Dumas, M., Spork, M., Wang, K.: Adapt or Perish: Algebra and Visual Notation
for Service Interface Adaptation. In: Proceedings of the International Conference
Business Process Management (BPM). (2006)

11. Williams, S.K., Battle, S.A., Cuadrado, J.E.: Protocol Mediation for Adaptation in
Semantic Web Services. In: Proceedings of the European Semantic Web Conference
(ESWC). (2006)

12. McIlraith, S.A., Son, T.C., Zeng, H.: Semantic Web Services. IEEE Intelligent
Systems 16 (2001)

13. Maedche, A., Staab, S.: Ontology Learning for the Semantic Web. IEEE Intelligent
Systems 16 (2001) 72–79

14. Pulido, J.R.G., Ruiz, M.A.G., Herrera, R., Cabello, E., Legrand, S., Elliman, D.:
Ontology Languages for the Semantic Web: A Never Completely Updated Review.
Knowledge-Based Systems 19 (2006) 489–497

15. Kopecky, J., Roman, D., Moran, M., Fensel, D.: Semantic Web Services Ground-
ing. In: Proceedings of the Advanced International Conference on Telecommunica-
tions and International Conference on Internet and Web Applications and Services
(AICT-ICIW ’06), Washington, DC, USA, IEEE Computer Society (2006) 127

16. Jinghai Rao and Xiaomeng Su: A Survey of Automated Web Service Composi-
tion Methods. In: Proceedings of First International Workshop on Semantic Web
Services and Web Process Composition, Springer-Verlag (2004) 43–54

17. Bille, P.: A Survey on Tree Edit Distance and Related Problems. Theoretical
Computer Science 337 (2005)

18. Kim, W., Seo, J.: Classifying schematic and data heterogeneity in multidatabase
systems. Computer 24 (1991) 12–18

19. World Wide Web Consortium (W3C): Semantic Annotations for WSDL and XML
Schema. (2007) http://www.w3.org/TR/sawsdl/ (Last accessed: April 15, 2008).

20. Kopecky, J., Vitvar, T., Bournez, C., Farrell, J.: SAWSDL: Semantic Annotations
for WSDL and XML Schema. IEEE Internet Computing 11 (2007) 60–67

21. Cavallaro, L., Di Nitto, E.: An Approach to Adapt Service Requests to Actual
Service Interfaces. In: Proceedings of the International Workshop on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). (2008)

22. Szomszor, M., Payne, T.R., Moreau, L.: Automated Syntactic Medation for Web
Service Integration. In: Proceedings of the IEEE International Conference on Web
Services. (2006)

23. Eberhart, A.: Ad-hoc Invocation of Semantic Web Services. In: Proceedings of the
International Conference on Web Services (ICWS). (2004)

24. Moser, O., Rosenberg, F., Dustdar, S.: Non-Intrusive Monitoring and Service Adap-
tation for WS-BPEL. In: Proceedings of the 17th International Conference on
World Wide Web (WWW). (2008)

25. Mrissa, M., Ghedira, C., Benslimane, D., Maamar, Z., Rosenberg, F., Dustdar, S.:
A Context-Based Mediation Approach to Compose Semantic Web Services. ACM
Transactions on Internet Technology 8 (2007)

26. Rosenberg, F., Leitner, P., Michlmayr, A., Dustdar, S.: Integrated Metadata Sup-
port for Web Service Runtimes. In: Proceedings of the Middleware for Web Ser-
vices Workshop (MWS’08), co-located with the 12th IEEE International EDOC
Conference. (2008)

