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Abstract. Resource-intensive tasks are playing an increasing role in
business processes. The emergence of Cloud computing has enabled the
deployment of such tasks onto resources sourced on-demand from Cloud
providers. This has enabled so-called elastic processes that are able to
dynamically adjust their resource usage to meet varying workloads.

Traditional Business Process Management Systems (BPMSs) do not
consider the needs of elastic processes such as monitoring facilities, track-
ing the current and future system landscape, reasoning about optimally
utilizing resources given Quality of Service constraints, and executing
necessary actions (e.g., start/stop servers, move services). This paper
introduces ViePEP, a research BPMS capable of handling the aforemen-
tioned requirements of elastic processes.

1 Introduction

Business Process Management (BPM) is a multidisciplinary approach, cover-
ing organizational, management, and technical aspects, and “includes methods,
techniques, and tools to support the design, enactment, management, and analy-
sis of operational business processes” [1]. One particular subtopic of BPM is the
automatic execution of modeled processes (process automation), which needs to
be supported by concepts, methodologies and frameworks from the field of com-
puter science [18]. The automated part of a business process is also known as a
business workflow [17]. Very often, (Web) services are composed to create flex-
ible, dynamic business workflows that may span organizations and computing
platforms [20].

Currently, resource-intensive tasks not only are present within scientific work-
flows (SWFs), but are also becoming more prevalent in business processes. For
example, compute and data-intensive analytical processes are found in the fi-
nance industry and in managing smart grids in the energy industry. In the latter,
data from a very large number of smart grid sensors needs to be automatically
gathered, processed, analyzed, and stored in order to offer customers consump-
tion reports or even guarantee grid stability [21,22].
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Apart from the functional requirements of resource-intensive tasks, processes
comprising them are subject to a number of non-functional requirements (Service
Level Objectives – SLOs), especially with regard to the timeliness of the tasks –
some of these processes need to be carried out in real-time, while others can be
postponed but need to be executed within a particular deadline. As the amount of
data, or the number of process instances that need to be concurrently handled,
could vary to a very large extent, it is difficult to estimate the ever-changing
resource demands of such processes.

Workflows could utilize the resource elasticity – to acquire and release re-
sources as and when needed – to scale with shifting workloads [3]. Permanently
provisioning IT capacities that are able to handle peak loads is not the best
solution for this, as the capacities will not be utilized most of the time, leading
to unnecessary high costs. With the advent of Cloud computing, organizations
presently have a much more cost-efficient alternative that enables the use of
computing resources in an on-demand, utility-like fashion [6]. While resource
elasticity is a common way to describe the scalability of single applications as
well as workflows, elasticity is not the only constraint that should be taken into
account in the context of workflow scalability [8]. Notably, Quality of Service
(QoS) in terms of criteria like response time does not necessarily reflect resource
elasticity in a linear way, i.e., there may be no proportional relationship between
involved resources and QoS. As a result, it is necessary to define quality elastic-
ity, which describes the responsiveness of quality regarding changes in resource
usage [8]. Last but not least, many Cloud providers make use of dynamic pricing
models, which should also be taken into account if Cloud resources are used in
order to realize scalable processes. These dynamic pricing models are reflected in
cost elasticity, i.e., a resource provisioner’s responsiveness to changes in costs [8].

To the best of our knowledge, so far, surprisingly little effort has been put into
the investigation of methods, algorithms and tools to integrate automatic process
execution and Cloud computing in order to realize so-called elastic processes
under the above-mentioned elasticity constraints. In our experience, there is a
lack of a Business Process Management System (BPMS) able to carry out many
interdependent service-based workflows in parallel, estimate their current and
future resource demand under user-specified constraints and preferences, and
allocate Cloud resources dynamically to meet them. This needs analysing the
process definition to discover which of its steps determine the performance of
its execution and prioritising them, reasoning on an optimal resource allocation
under the given resource, costs, and quality elasticity constraints, monitoring
the actual service execution, and balancing load on the resources.

In this paper, we present selected results from our ongoing research on elastic
processes, more precisely the Vienna Platform for Elastic Processes (ViePEP),
which is a research-driven, prototypical BPMS capable to execute elastic pro-
cesses, monitor the current utilization of invoked resources as well as reason
about future resource demands, and carry out necessary actions.

The remainder of this paper is organized as follows: After a brief overview
of the related work (Section 2), we will present the overall ViePEP architecture
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and its functionalities (Section 3). Subsequently, we will give some information
about our work on reasoning mechanisms (Section 4). Section 5 concludes this
paper.

2 Related Work

While little effort has been put into the investigation of elastic processes, there
is nevertheless fundamental work in related areas, which needs to be regarded.

First, scalability and cost-effective allocation of single tasks and applications
have been studied by many researchers. The earliest research efforts often focused
on minimizing Cloud consumer’s costs while taking into account maximum al-
lowed execution time [7] while later approaches considered holistic Service Level
Agreement (SLA) enforcement [5]. Recently, research efforts have paid special at-
tention to the infrastructure perspective, i.e., the adherence to consumer-defined
SLAs under the objective of profit maximization [14] or high resource utiliza-
tion [9,13,16]. While most of these approaches apply threshold-based fixed rules
to identify necessary actions (e.g., stop/start servers, move services), Li and
Venugopal [16] make use of a learning-based approach to automatically scale
an application up or down based on incoming workload. To the best of our
knowledge, existing approaches to scalable Cloud applications and cost-effective
allocation lack a process perspective across utilized resources. Instead, allocation
is performed based on present service requests, but information about possible
future requests derived from the description of elastic processes is not taken into
account.

Second, Cloud resources have been used for executing SWFs [2,11,12]. In
SWFs, SLAs are typically not as much a concern as they are for business pro-
cesses; in fact, the most common SLOs regarded in SWFs are the actual costs
of a workflow invocation or earliest finishing time of the complete workflow [19].
From an execution point of view, SWFs are dataflow-oriented, i.e., the execution
control follows the dataflow. In contrast, in business workflows, the execution
control is explicitly modeled, making the integration of some workflow patterns
easier but hampering the concurrent processing of data items [17]. In SWFs,
(data-related) interdependencies between workflow instances occur very often,
while in business workflows, it is quite common that a large number of indepen-
dent workflow instances are carried out at the same time [17]. In the context of
the work at hand, this allows for a higher degree of freedom, as service instances
may be carried out on different machines without the need to make a potentially
very large amount of data available to a particular machine.

3 Vienna Platform for Elastic Processes

3.1 System Overview

ViePEP aims at supporting the complete process/workflow lifecycle as presented,
e.g., by Hallerbach et al. [10]. Common steps of process lifecycles are Design and
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Fig. 1. Workflow Deployment and Cloud Provisioning in ViePEP

Modeling, Instantiation and Selection, Execution and Monitoring, and Mainte-
nance/Optimization.

As depicted in Figure 1 (using an FMC Block Diagram), there are five top
level entities within ViePEP: First, the Client models service-based workflows
and defines the necessary SLOs through an Application Programming Interface
(API). At the moment, workflows are modeled using an XML-based description
template that also defines non-functional constraints and preferences for each
step. This description is handed over as a workflow request to the Workflow
Manager (WfM) of the BPMS in order to instantiate and execute a workflow.
A Client may request execution of multiple workflows at the same time. Sec-
ond, the BPMS, performs the central functionalities of controlling the service
infrastructure, including the Cloud resources leased from the provider as well as
scheduling workflows over service instances. Thus, the BPMS balances the load
across the service instances.

Third, a Backend VM hosts an instance of a particular service. In a typical
ViePEP-based system, many Backend VMs exist at the same time and are con-
trolled by the BPMS. The BPMS and the Backend VM are the central entities
in ViePEP and will be discussed in detail in the next section. Fourth, the Shared
Memory is used to provide data sharing between the BPMS and the different
Backend VMs. We chose MozartSpaces1 for this, as it allows to easily deploy
and access a peer-to-peer-based, distributed database. Last but not least, the

1 http://www.mozartspaces.org/

http://www.mozartspaces.org/
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Service Repository hosts service descriptions as well as their implementations as
portable archive files, which enables the BPMS to search for services and deploy
them on an arbitrary ViePEP Backend VM.

3.2 ViePEP BPMS and Backend VMs

As can be seen in Figure 1, the BPMS features three components: The already
mentioned Workflow Manager, the Load Balancer, and the Reasoner. We will
introduce these components in the following:

Workflow Manager: The WfM controls and schedules workflow and service ex-
ecutions. It gets the necessary workflow data, i.e., information about the single
steps in a workflow and the accompanying SLOs as a workflow request from the
Client. Afterwards, it looks up services functionally matching the workflow steps
in the Service Repository and maps services and workflow steps. This mapping is
needed in order to identify already running services instances through the Load
Balancer. Based on this information, the WfM is able to issue service invocation
requests to a particular Backend VM hosting this service and possessing enough
resources to serve this invocation under given QoS constraints as defined by the
SLOs.

To execute a workflow and its services, a Workflow Executor (not depicted
in Figure 1) is started. Based on the workflow request and a workflow/service
scheduling obtained from the Reasoner (see below), the Executor queries the
Load Balancer for the best fitting service instances (Backend VMs) for the work-
flow steps. Through the executor, the WfM is also able to measure the service
response time. This functionality is needed in order to identify deviations from
the expected service behavior at an early point of time and avoid breaches of
SLAs, which can lead to penalties [15]. Response time includes the service in-
vocation time as well as the network latency. To log service invocations, the
response time is stored in the Shared Memory.

In case of a deviation, the WfM may perform replanning for the workflow [4].
Furthermore, the Reasoner needs to take into account this updated informa-
tion about the current process landscape. Hence, the WfM provides an interface
allowing the Reasoner to get information about the number and kind of work-
flows and services in the queue, the related QoS constraints and preferences, the
number of executors, workflows, and services currently running, and how many
service instances have to be invoked at what point of time. Furthermore, infor-
mation about new user-issued workflow requests as well as occurring and likely
deviations in non-functional service behavior are provided to the Reasoner.

Load Balancer: As the name implies, this component balances the load on the
Backend VMs and thus makes sure that the utilization of a Backend VM does
not exceed a critical (upper) threshold. Importantly, the Load Balancer is a
passive component. On request, it prepares and provides information from the
Shared Memory to the WfM and Reasoner, but it does not control the Backend
VMs by itself.
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The Load Balancer is invoked by the WfM in order to identify the best fitting
Backend VM for a service request. For this, it retrieves the actual Backend VM
states (in terms of occupied CPU and RAM resources) for the service from the
Shared Memory and takes into account scheduling information about current and
future service invocations provided by the Reasoner. Based on this information,
the Load Balancer links the service request from the WfM to a particular service
instance running on a Backend VM.

At the moment, the Load Balancer makes use of a rules-based approach to
determine the best fitting Backend VM: Service requests are linked to this VM
instance where the degree of utilization is closest to a predefined upper threshold.
Thus, the Load Balancer allows the WfM to invoke services until a VM’s load
reaches this threshold. If the Load Balancer is not able to allocate a service
request to a VM, e.g., because all VMs are overloaded or there is currently
no VM running this service, it gives this information back to the Workflow
Executor, which then may conduct a replanning as mentioned above or trigger
a new reasoning.

The Load Balancer is also invoked by the Reasoner in order to determine the
best fitting Backend VM for an action. For example, the Reasoner may decide
that it is necessary to duplicate a Backend VM, as the service provided by it
needs to be invoked too often as if a single VM would be able to handle it
in a particular time span. Usually, the VM to be duplicated will be the one
with the least load, since the duplication action will produce some additional
CPU load. As another example, the Reasoner may decide that a Backend VM
is not required anymore as the requests of the hosted service can be handled by
another Backend VM. In this case, the Load Balancer will select the VM with the
least number of current service invocations; furthermore, it will effectively block
further invocations of this service instance, i.e., if a Workflow Executor sends a
particular service request to the Load Balancer, the VM to be terminated will
not be regarded anymore. As it is a passive component, the actual command
to duplicate or terminate a VM will be issued by the Reasoner, not the Load
Balancer.

Reasoner: While the WfM controls the execution of single workflows, the Rea-
soner is responsible for the optimization of the complete process and (Cloud)
system landscape. It finds a scheduling for workflows and the included steps
(services) under the given cost, resource, and quality constraints and forwards
this scheduling to the WfM, which itself will invoke workflows and services based
on it. Scheduling is directly related to the control and shaping of the Backend
VMs, i.e., the decision to start, terminate, and duplicate Backend VMs, move a
service from one VM to another, or exchange the service running on a particular
VM. The Reasoner needs to take into account knowledge about the currently
and future running workflows and their QoS constraints from the WfM. It also
considers deviations from the expected workflow execution behavior in order
to find an appropriate countermeasure. The Reasoner gets information about
the currently free VM resources (CPU and RAM usage) from the Shared Mem-
ory and communicates with the Load Balancer in order to decide whether a
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particular Backend VM is sufficient to carry out a service, if another VM host-
ing that service needs to be started (duplication), or if a VM can be terminated
due to low load.

At the core of the Reasoner, an elastic reasoning mechanism (ESM) is em-
ployed. In our opinion, the investigation of mechanisms which are capable to
take into account resource, costs, and quality elasticity and reason about op-
timal resource allocation is a major research issue for elastic processes. Even
though the focus of this paper is not on reasoning, we will present information
about possible approaches in Section 4.

While the BPMS controls the process and (Cloud) system landscape, the
actual service execution is done on Backend VMs. Each VM provides Software
as a Service (SaaS) in terms of a particular Web service, which can be requested
and invoked by the WfM. As can be seen in Figure 1, a Backend VM features
two major components: The Application Server and the Action Engine.

Action Engine: The Action Engine is responsible to execute commands to the
Application Server. It gets according commands from the Reasoner through the
Shared Memory data structure. The most important commands in the context
of the work at hand are [16]:

Start a new Backend VM: An empty VM is started by the Reasoner by issuing
a corresponding command to the Cloud infrastructure hosting the Backend
VMs (in our case: OpenStack; not depicted in Figure 1). When the Backend
VM is running, the Action Engine obtains the needed service from the Service
Repository and deploys it on the Application Server.

Terminate the Backend VM. Again, the according command is issued by the
Reasoner. If the Action Engine receives the command to terminate itself,
it first requests information from the Application Server about currently
running service invocations. If there are any, the Action Engine regularly
polls the Application Server until all service invocations have been finished.
The Action Engine unregisters the VM by pushing according status infor-
mation to the Shared Memory, and finally terminates the VM. Afterwards,
the Reasoner and Load Balancer will not take this Backend VM into account
anymore.

Duplicate an existing Backend VM. If the Reasoner determines that the re-
sources on the Backend VM hosting a particular service are not sufficient,
it can issue an Action Engine the command to duplicate itself. For this, the
Action Engine will start a new Backend VM which hosts the same service.

Exchange the hosted service by another service. In some cases, the hosted ser-
vice is not needed anymore, as there will be no further invocations in the
(near) future. However, another service needs to be started. In order to speed
up the deployment of a Backend VM running this service, it makes sense to
reuse the former Backend VM by exchanging the service running on it. To
exchange a service, the Action Engine behaves similarly to the termina-
tion of a Backend VM: First, it is checked if the provided service is currently
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invoked; if this is the case, the Backend VM waits until the invocations have
been finished. Second, the current service is replaced by another service from
the Service Repository.

Move a running service to another Backend VM: The Action Engine is able to
copy the whole system state and move it to another server. Again, running
service invocations need to be finished first.

Notably, the delays occurring because a service invocation is still running when
terminating a Backend VM or exchanging/moving a service need to be taken
into account by the Reasoner. Furthermore, the Load Balancer needs to consider
that a service cannot be invoked any further when it is planned to terminate the
Backend VM or exchange/move the service instance.

Application Server: In order to host a Web service, a Backend VM needs an
Application Server capable to run it. At the moment, we employ Apache Tomcat,
but it is possible to switch to any other J2EE application server like Glassfisch
or JBoss. The Application Server comprises two components, namely the actual
Service and a Monitor :

Service: As written above, services are stored in the Service Repository. To
host a service within the Application Server, the Action Engine retrieves
the according Web application ARchive (WAR)-file from the repository and
deploys it. In the current version we support any RESTful Web service which
can be called using an HTTP GET request or can be invoked using a remote
procedure call.

Monitor: As explained above, the BPMS makes use of information about a
Backend VM’s resources in terms of CPU and RAM utilization. Hence,
ViePEP-enabled Backend VMs feature an Application Server Monitor. Mon-
itoring is conducted on a Platform as a Service (PaaS) level, i.e., the CPU
and RAM utilization is measured for the VM, but not the underlying infras-
tructure. We apply psi-probe2 as server monitoring tool. Monitor data is
stored in the Shared Memory.

4 Elastic Reasoning Mechanisms

An ERM is at the heart of a Reasoner and therefore responsible for the scheduling
of workflows/services and allocation of (Cloud) resources. As mentioned in our
former work [8], an ERM decides how to utilize resources in an optimal way under
multi-dimensional constraints. It takes into account dynamic resource, cost, and
workflow information and provides not only a scheduling, but also controls Cloud
resources by triggering different actions like moving services from one VM to
another or starting and terminating servers. In the following, we briefly discuss
different concerns that influence the development and success of an ERM:

2 http://code.google.com/p/psi-probe/

http://code.google.com/p/psi-probe/
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Exact vs. Heuristic Reasoning: The usage of linear, mixed or branch-and-bound
integer programming, dynamic programming, or multi-constrained optimal path
selection is a natural choice for multi-objective optimization and therefore ERMs
[26]. As multi-objective optimization is necessarily an NP-hard problem, the so-
far mentioned exact approaches may not lead to a solution in polynomial time.
Hence, (meta-)heuristic approaches like greedy algorithms, genetic algorithms,
or modified integer programming also need to be taken into consideration. While
such optimization approaches have also been used in QoS-aware service compo-
sitions, as presented, e.g., in [15,23,24,26], these composition algorithms do not
take into account resources. Instead, they are based on QoS assurances given by
the service providers.

Apart from the mentioned “classic” optimization approaches, it is also possi-
ble to apply an approach to find patterns in workflow requests and relate them
to resource demand in order to generate rules for resource allocation and work-
flow/service scheduling. In general, Machine Learning algorithms are capable to
generate such rules [27].

Global vs. Local Reasoning: Currently, ViePEP allows ERM through one central
reasoner. Such an approach is deemed “global”, as it controls the complete system
landscape. However, there might be situations where a global optimization is not
efficient or not even possible because a central entity is not able to accumulate the
data necessary for the global approach. In such cases, it is helpful to make use of
a decentralized, local reasoning, which only takes into account the requirements
of either a single workflow or a single Cloud resource (Backend VM).

Continuous vs. Interval Reasoning: A continuously operating Reasoner is trig-
gered whenever a change in the ERM input data (workflow requests, monitored
service and resource behavior) is assessed to be a significant event, i.e., makes it
necessary to perform reasoning under changed constraints. If reasoning is done in
predefined time intervals, changes within the system landscape (e.g., new work-
flow requests or an underperforming Backend VM) are not directly taken into
account, but regarded within the next reasoning cycle.

The decision which approach to follow is directly related to the runtime per-
formance of the ERM; if the ERM is relatively slow, it should be invoked in
regular intervals; if the ERM is fast enough to produce output before the next
significant event appears, a continuous approach is possible. In this context, the
possibility to assess if an event is significant or not is crucial.

Hybrid forms of continuous and interval reasoning are also possible. The gen-
eral workflow scheduling could be done in certain intervals, as its computation
usually requires some time. The continuous reasoning could then be used in
order to react to the mentioned significant events. In this case, the continu-
ous reasoning would not be done for the complete system landscape but solely
be responsible for compensating negative significant events like the aforemen-
tioned underperforming Backend VM, thus being some kind of local reasoning.
Of course, the local reasoning needs to be taken into account in the next global
reasoning cycle.
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In the end, all ERM approaches are generally capable to build a model of an
ideal future system state with regard to necessary service scheduling and resource
allocation actions. It will be a major task of our future work to implement and
evaluate according ERMs.

5 Conclusions

Online business processes are faced with varying workloads that require agile
deployment of computing resources. One way to reach this goal is the usage of
Cloud resources in elastic processes, which take into account resource, cost, and
quality elasticity. Within this paper, we have introduced the Vienna Platform
for Elastic Processes (ViePEP). This platform aims at supporting the complete
process lifecycle by allowing consumers to model and request elastic processes,
providing a BPMS able to select appropriate services for the single steps of the
defined workflows, reason about the optimal scheduling of workflow and service
invocations and assignment of resources to the single services, and execute and
monitor them.

As ViePEP is a research prototype, not all the functionalities needed for
the complete process lifecycle have been thoroughly implemented yet. Most im-
portantly, the provision of feedback about workflow executions to the Client
has not been examined in detail. This information could indicate how to opti-
mize process templates with regard to their non-functional requirements (and
thus addresses the Maintenance/Optimization steps of a process lifecycle). Nev-
ertheless, the BPMS and Backend VMs as presented are fully functional and
have been implemented using the OpenStack IaaS Cloud computing frame-
work. Workflows are executed according to their QoS requirements and Back-
end VMs hosting service instances are automatically started and terminated
based on the non-functional needs of the workflows. Cloud control and schedul-
ing is provided through a first, rather simple reasoning algorithm. A short demo
of ViePEP can be found at http://www.infosys.tuwien.ac.at/prototypes/
ViePEP/ViePEP index.html [25].

In the future, we will further extend the functionalities of ViePEP and most
importantly work on different reasoning algorithms as indicated in Section 4.
In fact, we primarily see ViePEP as a research tool helping us to investigate
reasoning mechanisms for elastic processes.
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