Dynamic Migration of Processing Elements
for Optimized Query Execution
in Event-Based Systems

Waldemar Hummer, Philipp Leitner, Benjamin Satzger, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology, Austria
{lastname}@infosys.tuwien.ac.at

Abstract. This paper proposes a method for optimized placement of
query processing elements in a distributed stream processing platform
consisting of several computing nodes. We focus on the case that multiple
users run different continuous Complex Event Processing (CEP) queries
over various event streams. In times of increasing event frequency it
may be required to migrate parts of the query processing elements to a
new node. Our approach achieves a tradeoff between three dimensions:
balancing the load among nodes, avoiding duplicate buffering of events,
and minimizing the data transfer between nodes. Thereby, we also take
one-time costs for migration of event buffers into account. We provide a
detailed problem description, present a solution based on metaheuristic
optimization, and evaluate different aspects of the problem in a Cloud
Computing environment.

Keywords: event-based systems, continuous queries, migrating query
processing elements, placement of event subscriptions, WS-Aggregation.

1 Introduction

In recent years, academia and industry have increasingly focused on event-based
systems (EBS) and Complex Event Processing (CEP) [11] for Internet-scale data
processing and publish-subscribe content delivery. The massive and continuous
information flow of today requires techniques to efficiently handle large amounts
of data, e.g., in areas such as financial computing, online analytical processing
(OLAP), wireless and pervasive computing, or sensor networks [22]. In most of
these application areas, filtering and combining related information from differ-
ent event sources is crucial for potentially generating added value on top of the
underlying (raw) data. Platforms that are specialized in continuously querying
data from event streams face difficult challenges, particularly with respect to per-
formance and robustness. Evidently, continuous queries that consider a sliding
window of past events (e.g., moving average of historical stock prices in a finan-
cial computing application) require some sort of buffering to keep the relevant
events in memory. State-of-the-art query engines are able to optimize this buffer
size and to drop events from the buffer which are no more needed (e.g., [17]).

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 451-468, 2011.
© Springer-Verlag Berlin Heidelberg 2011

452 W. Hummer et al.

However, a topic that is less covered in literature is how to optimize resource
usage in a system with multiple continuous queries executing concurrently.

In our previous work we have presented WS-Aggregation [13,14], a distribu-
ted platform for aggregation of event-based Web services and Web data. The
platform allows multiple users to perform continuous queries over event emit-
ting data sources. WS-Aggregation employs a collaborative computing model in
which incoming user requests are split into parts, which are then assigned to one
or more aggregator nodes. For instance, when a query involves input data from
two or more data sources, each of the inputs may be handled by a different ag-
gregator. Throughout various experiments we observed that query distribution
and placement of processing elements has a considerable effect on the perfor-
mance of the framework. For the remainder of the paper, an event subscription
determines the node that receives and processes the events of an event stream.

In this paper we study how the placement of processing elements affects the
performance of single queries and the overall system. To that end, we take several
aspects into account. Firstly, computing nodes have resource limits, and in times
of peak loads we need to be able to adapt and reorganize the system. Secondly,
complex queries over event streams require buffering of a certain amount of past
events, and the required memory should be kept at a minimum. Finally, if the
tasks assigned to collaborating nodes contain inter-dependencies, possibly a lot
of network communication overhead takes place between the aggregator nodes.
We propose an approach which considers all of the above mentioned points and
seeks to optimize the system configuration. This work is highly important for the
runtime performance of event-based systems that deal with load balancing and
dynamic migration of event subscriptions, as exemplified using WS-Aggregation.

In the remainder of this paper, we first discuss related work in Section 2.
In Section 3, we present the model for event-based continuous queries in WS-
Aggregation. Section 4 discusses different strategies for optimal placement of
processing elements in distributed event processing platforms and formulates the
tradeoff between conflicting goals as a combinatorial optimization problem. Some
implementation details are discussed in Section 6, and the overall approach is
evaluated in Section 7. Section 8 concludes the paper with a future work outlook.

2 Related Work

Due to the large number of its application areas, event processing has attracted
the interest of both industry and research [19,27]. Important topics in CEP
include pattern matching over event streams [1], aggregation of events [20] or
event specification [10]. In this paper, we focus on optimizing the distributed
execution of continuous queries over event streams. Hence, we concentrate on
some related work in this area in the remainder of this section.

Optimized placement of query processing elements and operators has previ-
ously been studied in the area of distributed stream processing systems. Piet-
zuch et al. [23] present an approach for network-aware operator placement on
geographically dispersed machines. Bonfils and Bonnet [7] discuss exploration

Dynamic Migration of Processing Elements for Optimized Query Execution 453

and adaptation techniques for optimized placement of operator nodes in sensor
networks. Our work is also related to query plan creation and multi query op-
timization, which are core fields in database research. In traditional centralized
databases, permutations of join-orders in the query tree are considered in order
to compute an optimal execution plan for a single query [15]. Roy et al. [24]
present an extension to the AND-OR DAG (Directed Acyclic Graph) repre-
sentation, which models alternative execution plans for multi-query scenarios.
Based on the AND-OR DAG, a thorough analysis of different algorithms for
multi-query optimizing has been carried out. Zhu et al. [33] study exchangeable
query plans and investigate ways to migrate between (sub-)plans.

Seshadri et al. [25,26] have identified the problem that evaluating continu-
ous queries at a single central node is often infeasible. Our approach builds on
their solution which involves a cost-benefit utility model that expresses the total
costs as a combination of communication and processing costs. Although the
approaches target a similar goal, we see some key differences between their and
our work. Firstly, their approach builds on hierarchical network partitions/clus-
ters, whereas WS-Aggregation is loosely coupled and collaborations are initiated
in an ad-hoc fashion. Secondly, their work does not tackle runtime migration
of query plans and deployments, which is a core focus in this paper. In fact,
WS-Aggregation implements the Monitor-Analyze-Plan-Execute (MAPE) loop
known from Autonomic Computing [16]. In that sense, the purpose of our opti-
mization algorithm is not to determine an optimal query deployment up front,
but to apply reconfigurations as the system involves. Chen et al. [9] describe a
way to offer continuous stream analytics as a cloud service using multiple en-
gines for providing scalability. Each engine is responsible for parts of the input
stream. The partitioning is based on the contents of the data, e.g., each engine
could be responsible for data generated in a certain geographical region.

Several previous publications have discussed issues and solutions related to
active queries for internet-scale content delivery. For instance, Li et al. [18]
presented the OpenCQ framework for continuous querying of data sources. In
OpenCQ a continuous query is a query enriched with a trigger condition and a
stop condition. Similarly, the NiagaraCQ system [8] implements internet-scale
continuous event processing. Wu et al. [32] present another approach to dealing
with high loads in event streams, tailored to the domain of real-time process-
ing of RFID data. Numerous contributions in the field of query processing over
data streams have been produced as part of the Stanford Stream Data Man-
ager (STREAM) project [21]. The most important ones range from a specialized
query language, to resource allocation in limited environments, to scheduling
algorithms for reducing inter-operator queuing. Their work largely focuses on
how to approximate query answers when high system load prohibits exact query
execution. Query approximation and load shedding under insufficient available
resources is also discussed in [3]. Our approach does not support approximation,
but exploits the advantages of Cloud Computing to allocate new resources for
dynamic migration of query processing elements.

454 W. Hummer et al.

Furthermore, database research has uncovered that special types of queries de-
serve special treatment and can be further optimized, such as k-nearest neighbor
queries [6] or queries over streams that adhere to certain patterns or constraints
[4]. WS-Aggregation also considers a special form of 3-way distributed query
optimization, which we have presented in earlier work [13].

3 Event-Based Continuous Queries in WS-Aggregation

In the following we establish the model for distributed processing of event-based
continuous queries that is applied in WS-Aggregation. The model serves as the
basis for the concepts discussed in the remainder of the paper. WS-Aggregation is
a distributed platform for large-scale aggregation of heterogeneous internet-based
data sources, which supports push-style updates using the notion of continuous
event queries on data sources. More information can be found in [13].

Table 1. Description of Symbols and Variables in Event-Based Query Model

Symbol Description

A ={a1,az2,...,an} |Set of deployed aggregator nodes.

Q@ ={q1,92,...,¢m} |Queries that are handled by the platform at some point in time.

I = {i1,%2,...,%c} |Set of all inputs over all queries.

inputs : Q — P(I) |Function that returns all inputs of a query.

deps : Q@ — P(I x I)|Function that returns all data dependencies of a query.

S = {s1,82,...,8} |Data sources that emit events over which queries are executed.
source: I — S Function to determine the data source targeted by an input.
query: I — Q Function to determine the query an input belongs to.

buf : A — P(S) Function to determine which data sources an aggregator buffers.

Table 1 summarizes the symbols and variables that are used in the formaliza-
tion. In our model, a number of aggregator nodes (A) are collectively responsi-
ble to execute multiple continuous user queries (Q). Each query processes one
or more inputs (I) from external data sources (S). The function inputs maps
queries to inputs (P(I) denotes the power set of I), and the function source
returns the data source targeted by an input. The actual processing logic of the
query is application specific and not directly relevant for our purpose. However,
we consider that a query ¢ may contain data dependencies among any two of its
inputs iz,iy € inputs(q),iz # iy. A dependency (iz,i,) € deps(q) means that
iy can only be processed after certain data from i, have been received, because
the data are required either 1) by the request to initiate the event stream from
the data source underlying i,, or 2) by a preprocessing query that prepares (e.g.,
groups, filters, aggregates) the incoming events for ,. Such dependencies are
often seen in continuous queries over multiple data streams [5], where subscrip-
tions are dynamically created (or destroyed) when a specific pattern or result is

Dynamic Migration of Processing Elements for Optimized Query Execution 455

produced by the currently active streams. An example could be a sensor emit-
ting temperature data in a smart home environment, which only gets activated
as soon as another sensor emits an event that a person has entered the room.

Although we use the terms service and data source interchangeably, strictly
speaking the notion of data source is narrower, because every entry in S is iden-
tified by a pair (epr, filter), where epr is the Endpoint Reference [28] (location)
of the service and the filter expression determines which types of events should
be returned. That is, different data sources may be accessed under the same
service endpoint. The filter may be empty, in which case events of all types are
returned.

The reason for abstracting inputs from data sources is that different queries
may require different data from one and the same source. As an example, assume
a data source which every second emits an event with the market price of two
stocks, and two queries which compute the Pearson correlation as well as the
Spearman correlation of the historical prices. This means that each of the inputs
needs to be processed (computed) separately, but the same underlying event
buffer can be used for both inputs. We use the function bu f to determine the data
sources from which an aggregator “currently” (at some point in time) receives
and buffers events.

(Aggregator Node a;)
Data Event Buffer Query q;
Source "D:DE]"' """"""" (S Dbtk el --l>l Input i3 I cli
= ient for
2 Prepro- | | ™ Query q;
Event Buffer cessor
o om
Data .
Source - N
Sz Event Buffer Y
B o e S # Inputi
Data Event Buffer cessor || Client for
Source —’D]m..’. ... 3 Query qz
<. Query g,
Aggregator Node a;
\ .
.{Aggregator-)intemal Data Flow (Aggregator-)External Data Flow

Fig. 1. Illustrative Instantiation of the Model for Distributed Event-Based Queries

The key aspects of the processing model are illustrated in Figure 1, which
depicts two aggregator nodes (ai,a2) executing two queries (g1,q2) consisting
of five inputs (41,...,i5) in total. The query execution happens in two steps:
firstly, the incoming events are buffered and preprocessed to become the actual
inputs (e.g., average value of previous stock prices), and secondly the inputs are
joined and combined as defined in the query specification. Dashed lines in the
figure indicate aggregator-internal data flow, whereas solid lines stand for data
exchanged with external machines. Aggregator a; orchestrates the execution
of query ¢; and notifies the client of new results. We hence denote a; as the
master aggregator for ¢; (analogously, as is the master of ¢»). The data source
s3 provides data for one single input (i5), whereas inputs i, /i3 and iy /74 are based

456 W. Hummer et al.

on the events from s; and ss, respectively. We observe that the events from s, are
buffered both on a; and on ag, which we denote buffer duplication. In Figure 1,
an arrow pointing from an input 4, to ¢, indicates a data dependency, i.e., that i,
provides some data which are required by i, . In the case of 7; and i, this passing
of data happens locally, whereas i3 and i4 are handled by different aggregators
and hence data are transmitted over the network. We see that assigning i3 to
node a; has the advantage that the events from s; are buffered only once (for
both ¢; and i3), but is disadvantageous with respect to network traffic between
the two aggregators a; and ap. Conversely, sz is buffered on both aggregators,
reducing the network traffic but requiring more memory. Section 4 deals with
this tradeoff in more detail and further refines the optimization problem that we
strive to solve.

4 Problem Formulation

In this section we provide a detailed definition for the problem of finding an opti-
mal placement of processing elements in distributed event processing platforms.
The basis for optimization is the current assignment of inputs to aggregators at
some point in time, cur : I — P(A), where P(A) denotes the powerset of A. We
define that cur(i) = 0 iff input 7 has not (yet) been assigned to any aggregator
node. For now, we assume that each input (as soon as it has been assigned) is
only handled by one aggregator, hence |cur(i)| < 1, Vi € I, but in Section 4.3 we
will discuss the case that inputs are redundantly assigned to multiple aggregators
for fail-safety. The desired result is a new assignment new : I — P(A) in which
all inputs are assigned to some aggregator, |new(i)| = 1, Vi € I. The difference
between cur and new constitutes all inputs that need to be migrated from one
aggregator to another, denoted as M := {i € I | cur(i) # 0 A cur(i) # new(4)}.

Migrating a query input may require to migrate/duplicate the event buffer
of the underlying data source, if such a buffer does not yet exist on the tar-
get aggregator. The technical procedure of migrating event buffers and sub-
scriptions is detailed in Section 6.1. The (computational) cost associated with
this operation is proportional to the size of the buffer in bytes, expressed as
size 1 S x (AU {0}) — N. For instance, the buffer size for a source s on an
aggregator a is referenced as size(s,a). If the aggregator is undefined (0)), then
the buffer size function returns zero: size(s,0) = 0, Vs € S. The costs for mi-
gration of an input ¢ from its current aggregator to a new node (function migr)
only apply when the data source of ¢ is not yet buffered on the new node, as
expressed in Equation 1.

... | size(source(i), cur(i)), if source(i) & buf(new(i))
Mg = { 0, otherwise (1)

In order to decide on actions for load balancing, we need to introduce some
notion to express the current load of an aggregator node. In earlier work [14]
we observed that the main influencing factor for the aggregators’ workload in

Dynamic Migration of Processing Elements for Optimized Query Execution 457

WS-Aggregation is the number of inputs and the data transfer rate of the un-
derlying event streams. The transfer rate of data streams is therefore continu-
ously measured and averaged over a given time interval (e.g., 1 minute). Every
aggregator provides a metadata interface which can be used to retrieve this
monitoring information as a function rate : (SUI) — R, measured in kilo-
bytes per second (kB/s). The rate(s) of a data stream s € S is the trans-
fer rate of external events arriving at the platform, and rate(i) for an input
¢ € I is the internal rate of events after the stream has passed the prepro-
cessor. Based on the data transfer rate, we define the load function for an
aggregator a € A as load(a) = Y cpuf(a) 2oicr, Tate(s) - c(i), where I, de-
notes the set of all inputs targeting s, i.e., I, := {i € I | source(i) = s}, and
c¢: I — R is an indicator for the computational overhead of the preprocessing
operation that transforms the data source s into the input 7. The computational
overhead depends on the processing logic and can be determined by monitor-
ing. If no information on the running time of a processing step is available
then c¢(i) defaults to 1. For simplification, the assumption here is that n data
streams with a rate of m kB/s generate the same load as a single data stream
with a rate of n * m kB/s. We denote the minimum load of all aggregators as
minload = min(|J,c 4 load(a)), and the difference between minload and the
load of an aggregator a as Idif f(a) := load(a) — minload.

To obtain a notion of the data flow, in particular the network traffic caused by
external data flow between aggregator nodes (see Figure 1), Equation 2 defines
the flow between two inputs i1,i5 € I. If the inputs are not dependent from
each other or if both inputs are handled by the same aggregator, the flow is 0.
Otherwise, flow amounts to the data transfer rate (rate(z;)), measured in kB/s.

Flow(iy, i) = {Mte(ﬁg: icft&l;ﬁgee deps(query(i1)) Anew(iy) # new(iz)(2)

Finally, Equation 3 introduces dupl to express buffer duplication. The idea is
that each data source s € S needs to be buffered by at least one aggregator,
but additional aggregators may also buffer events from the same source (see
Figure 1). The function dupl(s) hence subtracts 1 from the total number of
aggregators buffering events from s.

dupl(s):=|{a€ A|sebuf(a)}| -1 (3)

4.1 Optimization Target

We now combine the information given so far in a single target function to ob-
tain a measure for the costs of the current system configuration and the potential
benefits of moving to a new configuration. Overall, we strive to achieve a trade-
off between three dimensions: balancing the load among aggregator nodes (L),
avoiding duplicate buffering of events (D), while at the same time minimizing

458 W. Hummer et al.

the data transfer between nodes (7). The goal of L is to keep each node respon-
sive and to account for fluctuations in the frequency and size of incoming event
data. The D dimension attempts to minimize the globally consumed memory,
and T aims at a reduction of the time and resources used for marshalling/trans-
mitting/unmarshalling of data.

Load Distribution (L)

One aggregator
for each source

One aggregator
for each query

Low Data " "\ No Duplicate
Transfer (T) A Buffers (D)

[All on one
Aggregator]

Fig. 2. Relationship between Optimization Targets

Figure 2 illustrates the tradeoff relationship as a “Magic Triangle”: each pair
of goals can be fulfilled separately, but the three goals cannot fully be satisfied in
combination. For instance, a way to achieve a balanced load for all aggregators
(L) in combination with no duplicate data source buffers (D) is to assign each
source to a single aggregator. However, if a single query contains several inter-
dependent data sources on different aggregators (which is likely to occur in this
case), the aggregators possibly need to frequently transmit data. Conversely, to
achieve load distribution (L) together with low data transfer (T'), each query
with all its inputs could be assigned to a single aggregator, but we observe that
duplicate buffers come into existence if any two queries on different aggregators
use the same underlying data source. Finally, to achieve both T and D at the
same time, all requests could be assigned to one single aggregator. As indicated
by the brackets in Figure 2, this possibility is generally excluded since we are
striving for a distributed and scalable solution.

The function F’ in Equation 4 contains the three components that are to be
minimized. We observe that the three parts have different value ranges. There-
fore, the target function includes user-defined weights (wy,,wr,wp) to offset the
differences of the value ranges and to specify which of the parts should have
more impact on the target function.

F':=wg * Z ldif f(a) + wr * Z flow(i1,i2) + wp * Zdupl(s) — min! (4)

acA i1,i9€1 s€S

We observe that the optimization target in Equation 4 only considers how good
a new system configuration (i.e., assignment of inputs to aggregators) is, but not
how (computationally) expensive it is to reach the new setup. To account for the
costs of migrating query inputs, we make use of the migr function defined earlier
in Section 4 and use a weight parameter wys to determine its influence. The final

Dynamic Migration of Processing Elements for Optimized Query Execution 459

target function F' is printed in Equation 5. Note that the additional one-time
costs for migration in F' are conceptually different from the cost components in
F' which apply continuously during the lifetime of the queries.

F:=F'+wyp* Z migr(i) — min! (5)
ieM

4.2 Elastic Scaling Using Cloud Computing

The premise for being able to change the current system configuration (moving
from cur to new) as defined in the optimization target in Section 4.1 is that there
are enough resources globally available to execute the migration tasks. To ensure
that the resources are sufficient, we take advantage of Cloud Computing [2]
techniques to elastically scale the platform up and down. To that end, each
aggregator exposes metadata about the current stress level of the machine it
is running on, and new machines are requested if all nodes are fully loaded.
Conversely, if the nodes operate below a certain stress threshold, the queries can
be rearranged to release machines back to the Cloud. For more details about
elastic scaling in WS-Aggregation we refer to [13].

The notion of stress level is quite broad - it may include CPU and memory
usage, list of open files and sockets, length of request queues, number of threads
and other metrics. For simplification, we assume that the individual parts of
the stress level function are added up and normalized, resulting in a function
stress : A — [0,1]. Every aggregator provides a metadata interface which can
be used to retrieve monitoring information and performance characteristics of
the underlying physical machine. We use the upper bound of the stress level
(value 1) to express that an aggregator is currently working at its limit and
cannot be assigned additional tasks.

During the optimization procedure, the nodes’ stress levels are continuously
monitored. To determine whether a reconfiguration can be applied, it must be
ensured that V,ca : (stress(a) > A) = Vier(cur(i) = a V new(i) # a), for
a configurable stress level A (e.g., A = 0.9). This criterion allows inputs to be
removed from machines with high stress level, but prohibits the assignment of
new query inputs. If the algorithm fails to find a valid solution under the given
constraints, a new machine is requested from the Cloud environment and the
optimization is restarted.

4.3 Extension: Robustness by Redundancy

So far, this paper has considered the case that each query input is handled by
a single node. While this may be sufficient for most applications, in a safety-
critical system it may be required to process inputs redundantly in order to
mitigate the impact of machine outages. Our query optimization model there-
fore maps inputs to sets of aggregators (cur : I — P(A)), as defined in Sec-
tion 4. As part of the specification of a query g, users define the required level of

460 W. Hummer et al.

redundancy, red(q) € {1,2,...,|A|}. The platform then duplicates the instanti-
ation of the query, ensuring that each input is assigned to multiple aggregators,
Vi € inputs(q) : |cur(i)| > red(q). If, for any input i € I, one of the aggregators
a € cur(i) goes down, the event buffer migration technique allows to select a
replacement aggregator for a and to copy the state from one of the replicated
“backup” nodes cur(i)\{a}.

5 Optimization Algorithm

The problem of finding an optimal input-to-aggregator assignment introduced in
Section 4 is a hard computational problem, and the search space under the given
constraints is prohibitively large (for a large number of inputs and many aggrega-
tors) and prohibits to compute exact solutions in feasible time. A formal proof of
the problem’s intractability is out of the scope of this paper, but we observe the
combinatorial explosion as the algorithm needs to evaluate O(|A|l{[*redmaz) solu-
tions (redmas := maz(J,co red(q)) denotes the maximum level of redundancy),
each of which may potentially be optimal with respect to the target function F.
In particular, pruning the solution space is hard to apply because during the
search no solution can be easily identified as being suboptimal no matter what
other solutions are derived from it. We therefore apply a metaheuristic and use
Variable Neighborhood Search (VNS) [12] to approximate a near-optimal solu-
tion. The basic principle of VNS is to keep track of the best recorded solution x
and to iterate over a predefined set of neighborhood structures which generate
new solutions that are similar to = (for more details, see [12]). VNS has been
successfully applied in a vast field of problem domains; one example is the mul-
tiplayer scheduling problem with communication delays [12], which has strong
similarities to our problem. Figure 3 illustrates the encoding of a solution with
3 queries, 10 inputs and a maximum redundancy level of red,,q. = 2.

- e s

Inputs: Lia | i2 [s [ia [05 | is | i7 | i8 | o [iro0]
—_—
Queries: a1 qz g3

Fig. 3. Example of Solution Encoding in Optimization Algorithm with red,qz = 2

5.1 Search Neighborhoods

The definition of neighborhoods in the VNS algorithm allows to guide the
search through the space of possible solutions. In the following list of neigh-
borhoods (NH), temp : I — A denotes the input-to-aggregator assignment of
a temporary solution which is evaluated by the algorithm, and temp’ : I — A
denotes a solution which has been derived from temp as specified by the NH.

Dynamic Migration of Processing Elements for Optimized Query Execution 461

— avoid duplicate buffers NH: This NH takes a random data source s € S,
determines all its inputs I := {i € I | source(i) = s} and the aggregators
responsible for them, A, := (J;c; temp(i). The NH then generates |As| new
solutions, in which all inputs in I, are assigned to one of the responsible
aggregators: |U;c; temp/'(i)] = 1 AVi € I, : temp'(i) € A,. When this
neighborhood gets applied, the newly generated solutions will by tendency
have less duplicate buffers.

— bundle dependent inputs INH: This NH selects a random query g € @
and generates new solutions in which all interdependent inputs of ¢ are placed
on the same aggregator node. More specifically, for each newly generated so-
lution temp’ the following holds: V(i1,i2) € deps(q) : temp/(i1) = temp'(iz).
Note that also transitive dependencies are affected by this criterion. The
effect of this neighborhood is a reduced data traffic between aggregators.

— equal data load per aggregator NH: This NH selects the two aggregators
Amaz, Amin € A With load(amaez) = maz(|J,c 4 load(a)) and load(amin) =
min(|J,c 4 load(a)), and generates a new solution by moving the input with
the smallest data rate from apmqee t0 @min. More formally, let I, := {i €
I'| temp(i) = Gmas} denote the set of inputs that are assigned to aggregator
Qmaz in the temp solution, then the following holds in every solution derived
from it: temp’(arg min;eg, . rate(i)) = amin.

— random aggregator swap NH: This NH simply selects a random subset
of inputs I, C I and assigns a new aggregator to each of these inputs,
Vi € I : temp' (i) # temp(i). The purpose of this NH is to perform jumps
in the search space to escape from local optima.

VNS continuously considers neighborhood solutions to improve the current best
solution until a termination criterion is reached. The criterion is either based
on running time or solution quality. Furthermore, the algorithm only considers
valid solutions with respect to the hard constraints (e.g., minimum level of re-
dundancy as defined in Section 4.3). If a better solution than the current setting
is found, the required reconfiguration steps are executed. The system thereby
stays responsive and continues to execute the affected event-based queries.

6 Implementation

In the following we first briefly discuss how continuous queries are expressed
and executed in WS-Aggregation, and then focus on implementation aspects
concerning the migration of event buffers and subscriptions.

WS-Aggregation is implemented in Java using Web services [31] technology,
and largely builds on WS-Eventing [29] as a standardized means to manage
subscriptions for event notification messages. The platform is designed for loose
coupling — aggregators may dynamically join and leave the system, and col-
laborative query execution across multiple aggregators is initiated in an ad-hoc
manner. The endpoint references of currently available aggregator nodes are
deployed in a service registry. WS-Aggregation employs a specialized query lan-
guage named WAQL (Web services Aggregation Query Language), which is built

462 W. Hummer et al.

on XQuery 3.0 [30] and adds some convenience extensions, e.g., to express data
dependencies between query inputs. For the actual XQuery processing, we use
the light-weight and high-performance MXQuery engine (http://mxquery.org/).
More details can be found in [13,14].

6.1 Migration of Event Buffers and Subscriptions

One of the technical challenges in our prototype is the implementation of event
buffer migration, which becomes necessary when the result of the optimization (see
Section 4) mandates that certain query inputs be moved between aggregators. The
challenge is that transmitting the contents of a buffer over the network is a time-
consuming operation, and new events for this buffer may arrive while the trans-
mission is still active. At this point, it must be ensured that the arriving events are
temporarily buffered and later forwarded to the target aggregator node. Therefore,
transactionally migrating an event buffer while keeping the buffer state consistent
at both the sending and the receiving node is a non-trivial task.

| al:Aggregator | | a2:Aggregator | [s:DataSource |
L |

1) Inherit Buffer]
(f) e m— » (2) New Temporary < Send Event
Buffer for s - Send Event
(3) Get Buffer for s "
Forward Event < Send Event

N (4) Update Subscription |/
with new Receiver a1 |

-

" Send Event
L b:Buffer
(5) Merge b with
i Temporary Buffer
I‘ [P_ Send Event
! h !

Fig. 4. Procedure for Migrating Buffer and Event Subscription between Aggregators

Figure 4 contains a UML sequence diagram which highlights the key aspects of
our solution. It involves the optimizer component which instructs an aggregator
al to inherit (become the new owner of) the event subscription for data source
s together with the previously buffered events from aggregator a2 (point (1)
in the figure). Data source d continuously sends events to the currently active
subscriber. Before requesting transmission of the buffer contents from a2 (3), al
creates a temporary buffer (2). Depending on the buffer size, the transmission
may consume a considerable amount of time, and the events arriving at a2 are
now forwarded to al and stored in the temporary buffer. The next step is to
update the event subscription with the new receiver al (4). Depending on the
capabilities of the data source (e.g., a WS-Eventing service), this can either be
achieved by a single renew operation, or by a combination of an unsubscribe
and a subscribe invocation. However, the prerequisite for keeping the event data
consistent is that this operation executes atomically, i.e., at no point in time both
al and a2 may receive the events. Finally, after the transmission has finished,

Dynamic Migration of Processing Elements for Optimized Query Execution 463

the received buffer b is merged with the temporary buffer (5). If the execution
fails at some point, e.g., due to connectivity problems, a rollback procedure is
initiated and the process can be repeated.

7 Evaluation

To evaluate the performance effects that can be achieved with the proposed ap-
proach, we have set up an experimental evaluation in a private Cloud Computing
environment with multiple virtual machines (VM), managed by an installation
of Eucalyptus'. Each VM is equipped with 2GB memory and 1 virtual CPU core
with 2.33 GHz (comparable to the small instance type in Amazon EC2?). Our
experiments focus on three aspects: firstly, the time required to migrate event
buffers and subscriptions between aggregators (Section 7.1); secondly, evolu-
tion of the network topology for different optimization parameters (Section 7.2);
thirdly, performance characteristics of optimization weights (Section 7.3).

7.1 Migration of Event Buffers and Subscriptions

We first evaluate the effort required to switch from the current configuration to a
new (optimized) configuration. For each input i € I there are three possibilities:

1. If new(i) = cur(i) then there is nothing to do.

2. If new(z) # cur(i) A source(i) € buf(new(i)) then the new aggregator a =
new(i) needs to be instructed to handle input 4, but no migration is required
because the target buffer already exists on a.

3. If new(i) # cur(i) A source(i) &€ buf(new(i)) then we need to perform full
migration (or duplication) of the event buffer and subscription.

B'g Migration Duration A——
55 L Linear Regression Pl
z 5f |
» 45
c 4
-% 35+
e 3 ol
a 25}
2F
1.5
q

0 500 1000 1500 2000 2500 3000
Event Buffer Size (KB)

Fig. 5. Duration for Migrating Event Subscriptions for Different Buffer Sizes

Obviously, the most time-consuming and resource-intensive possibility in the
list above is point 3. To measure the actually required time, we have executed var-
ious buffer migrations with different buffer sizes. Each data point in the scatter

! http://www.eucalyptus.com/
? http://aws.amazon.com/ec2

464 W. Hummer et al.

plot in Figure 5 represents a combination of buffer size and migration duration.
The duration measures the gross time needed for the old aggregator a; to con-
tact the new aggregator ap, transmitting the buffer, feeding the buffer contents
into the query engine on ag, and freeing the resources on a;. A linear regression
curve is also plotted, which shows an approximate trendline (variance of resid-
uals was 0.2735). Note that the numbers in the figure represent the net buffer
size, that is, the actual accumulated size of the events as they were transported
over the network (serialized as XML). The gross buffer size, which we evaluate
in Section 7.3, is the amount of Java heap space that is consumed by the objects
representing the buffer, plus any auxiliary objects (e.g., indexes for fast access).

7.2 Evolution of Network Topology

The effect of applying the optimization is that the network topology (i.e., connec-
tions between aggregators and data sources) evolves according to the parameter
weights. In our second experiment, we deployed 10 data sources (each emitting 1
event per second with an XML payload size of 250 bytes) and 7 aggregator nodes,
and started 30 eventing queries in 3 consecutive steps (in each step, 10 queries
are added). Each query instantiation has the following processing logic:

« Each query g consists of 3 inputs (il,i2,i3

g'lgly)- The inputs’ underlying data
sources are selected in round robin order. That is, starting with the fourth
query, some inputs target the same data source (because in total 10 data
sources are available) and the buffer can therefore be shared.

* The events arriving from the data sources are preprocessed in a way that each
group of 10 events is aggregated. The contents of these 10 events collectively
form the input that becomes available to the query.

* Since we are interested in inter-aggregator traffic, each instance of the test
query contains a data dependency between the inputs ié and ig. This means
that, if these two inputs are handled by different nodes, the results from i}l
are forwarded over the network to the node responsible for z'g.

* Finally, the query simply combines the preprocessed inputs into a single
document, and the client continuously receives the new data.

Figure 6 graphically illustrates how the network topology evolves over time
for different parameter settings. Each of the subfigures ((a),(b),(c)) contains six
snapshots of the system configuration: for each of the 3 steps in the execution
(10/20/30 queries), we record a snapshot of the system configuration before and
after the optimization has been applied. In each step, the optimization algorithm
runs for 30 seconds, and the best found solution is applied. Data sources are de-
picted as circles, aggregators are represented by triangles, and the nodes with
data flow are connected by a line. The size of the nodes and lines determines
the load: the bigger a circle, the more event subscriptions are executed on this
data source; the bigger a triangle, the more data this aggregator is buffering; the
thicker a line, the more data is transferred over the link. Furthermore, the aggre-
gators’ colors determine the stress level (green-yellow-red for low-medium-high).

Dynamic Migration of Processing Elements for Optimized Query Execution 465

10 Queries | 20 Queries | 30 Queries

Before Opt. | After Opt. | Before Opt. | After Opt. | BeforeOpt. | After Opt.

5 NN I'hlx
N

Q
2\
NN

==
e

O
dwp=1lLwr=1wr=1,wy =1

Fig. 6. Effect of Optimization With Different Weights

We can see clearly that different optimization weights result in very distinct
topological patterns. A characteristic outcome of emphasizing the wp parameter
(Figure 6(a)) is that few aggregators handle many event subscriptions and are
hence loaded with a high data transfer rate. If the goal of preventing duplicate
buffering is fully achieved, then there are at most |S| active aggregators (and
possibly less, as in Figure 6(a)), however, there is usually some inter-aggregator
traffic required. In Figure 6(b) only the weight wz, is activated, which results in
a more dense network graph. The inputs are spread over the aggregators, and
in many cases multiple aggregators are subscribed with the same event source.
Also in the case where wr is set to 1, the resulting network graph becomes very
dense. We observe that in Figure 6(c) there are no inter-aggregator connections,
L.e., this setting tends to turn the network topology into a bipartite graph with
the data sources in one set and the aggregator nodes in the second set. Finally,
in Figure 6(c) all weights, including the penalty weight for migration (wys) are
set to 1. Note that the weights are subject to further customization, because
setting equal weights favors parameters that have higher absolute values. In our
future work, we plan to evaluate the effect of automatically setting the weights
and normalizing the units of the optimization dimensions (D,L,T,M).

S

466 W. Hummer et al.

7.3 Performance Characteristics of Optimization Parameters

We now use the same experiment setup as in Section 7.2 and evaluate in more de-
tail how the platform’s performance characteristics evolve over time when opti-
mization is applied. Again, 10 data sources and 7 aggregator nodes were deployed
and queries were successively added to the platform. This time we took a snapshot
30 seconds after each query has been added for execution. The 4 subplots in Fig-
ure 7 illustrate the test results as a trendline over the number of active queries (x
axis). To slightly flatten the curves, each experiment has been executed in 5 itera-
tions and the numbers in the figures are mean values. The gross heap size of event
buffer objects (Figure 7(a)) is determined using the Java instrumentation toolkit
(java.lang.instrument) by recursively following all object references.

Figure 7(a) shows that the global memory usage is particularly high (up to
600MB for 20 queries) for wz, = 1 and also for wp = 1. Figure 7(b) depicts the
inter-aggregator transfer, which in our experiments was quite high for wp = 1,
and near zero for the other configurations. The box plots in Figure 7(c) show
the minimum and maximum event rates over all aggregators. We see that the
absolute values and the range difference are high for wp =1 and wy =1, but, as
expected, considerably lower for the load difference minimizing setting w;, = 1.
Finally, the combined event frequency of all aggregators is plotted in F igure 7(d).

600 100

wp=1w =O0wr=0 —— ' ' Wp=1w =0w=0 —
500 + WD=0,WL=1,W~|—=0 — 2 . - 80 | WD=0,WL=1,WT=0 —_—
wp=0,w =0wr=1 —s— c wp=0,w =0,wr=1 —=—
é 400 + wWp=1,w=1wr=1 —a— § 60 | WO 1W(=T,wr=1
7}
® 300 @
o Q 40 +
@ =
= 200 r 8
100 g 27 '
0 0t eaeyepssesesasoyet
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Nr. of Active Queries Nr. of Active Queries
(a) Global Size of All Event Buffers (b) Inter-Aggregator Data Transfer
18 F i1,y Z0wrE0 mamm * T T T T T T R T AT e ey
- 16 | wp=0,w =1,wr=0 - ot Wp=0,w =1,wr=0 —e—
= 14 WD=0'WL:0'WT=1 %ot R LR s SR _ @ 2000 | WD=0’WL=0'WT=1 —e—
g 12 L wWo=Tw =1wr=1 mm e i,] = Wp=T,W =1, Wr=1 — g
w |] i] i : | ‘E— 1500 r ¥ g
% 10 S
‘g‘ 8+ : ; BLERETE L] g 1000 b
ﬁ 6_’ § H H L%-I’ e :E,
£ oothbh E]?EI P o] e
I I L LU LYLI RO T B B ol L i § §§]]
12345678 91011121314151617181920 02 46 81012141618 20
Nr. of Active Queries Nr. of Active Queries
(c) Minimum/Maximum Event Data Rates (d) Global Event Frequency

Fig. 7. Performance Characteristics in Different Settings

8 Conclusions

The placement of event processing elements plays a key role for the performance
of query processing in distributed event-based systems. We have proposed an

Dynamic Migration of Processing Elements for Optimized Query Execution 467

approach that performs dynamic migration of event buffers and subscriptions
to optimize the global resource usage within such platforms. The core idea is
that event buffers can be reused if multiple query inputs operate on the same
data stream. We identified a non-trivial tradeoff that can be expressed as a
“magic triangle” with three optimization dimensions: balanced load distribution
among the processing nodes, minimal network traffic, and avoidance of event
buffer duplication. Variable Neighborhood Search (VNS) has proven effective
for exploring the search space and generating possible solutions.

We have exemplified our solution on the basis of several experiments car-
ried out with the WS-Aggregation framework. The platform integrates well with
the Cloud Computing paradigm and allows for elastic scaling based on the cur-
rent system load and event data frequency. Our evaluation has illustrated how
different optimization parameters can be applied to influence the evolution of
the network topology over time. Furthermore, we have evaluated how different
performance characteristics evolve in different settings. The experience we have
gained in the various experiments conducted has shown that the (short-term)
costs of migration or duplication are often outweighed by the (long-term) bene-
fits gained in performance and robustness. As part of our ongoing work we are
experimenting with very high-frequency event streams that cannot be handled
by a single node. We envision an extension of the current query processing model
to allow splitting up such streams to multiple aggregators. Furthermore, we are
investigating Machine Learning techniques to automatically derive reasonable
optimization parameters for the target function based on prior knowledge.

Acknowledgements. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme [FP7/2007-
2013] under grant agreement 257483 (Indenica).

References

1. Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient Pattern Matching
Over Event Streams. In: SIGMOD Int. Conference on Management of Data (2008)

2. Armbrust, M., et al.: Above the clouds: A berkeley view of cloud computing. Tech.
Rep. UCB/EECS-2009-28, University of California at Berkeley (2009)

3. Ayad, A., Naughton, J.: Static optimization of conjunctive queries with sliding
win- dows over infinite streams. In: SIGMOD Int. Conf. on Management of Data
(2004)

4. Babu, 8., Srivastava, U., Widom, J.: Exploiting k-constraints to reduce memory
overhead in continuous queries over data streams. ACM Transactions on Database
Systems 29, 545-580 (2004)

9. Babu, S., Widom, J.: Continuous queries over data streams. In: ACM SIGMOD
International Conference on Management of Data, vol. 30, pp. 109-120 (2001)

6. Bohm, C., Ooi, B.C,, Plant, C., Yan, Y.: Efficiently processing continuous k-nn
queries on data streams. In: Int. Conf. on Data Engineering, pp. 156-165 (2007)

7. Bonfils, B.J., Bonnet, P.: Adaptive and decentralized operator placement for in-
network query processing. Telecommunication Systems 26, 389-409 (2004)

468 W. Hummer et al.

8. Chen, J., DeWitt, D., Tian, F., Wang, Y.: NiagaraCQ: a scalable continuous query
system for Internet databases. In: ACM SIGMOD International Conference on
Management of Data, pp. 379-390 (2000)

9. Chen, Q., Hsu, M.: Data stream analytics as cloud service for mobile applications.
In: Int. Symp. on Distributed Objects, Middleware, and Applications, DOA (2010)

10. Cugola, G., Margara, A.: TESLA: a Formally Defined Event Specification Lan-
guage. In: International Conference on Distributed Event-Based Systems (2010)

11. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications (2010)

12. Hansen, P., Mladenovié¢, N.: Handbook of metaheuristics. Springer, Heidelberg
(2003)

13. Hummer, W., Leitner, P., Dustdar, S.: WS-Aggregation: Distributed Aggregation
of Web Services Data. In: ACM Symposium on Applied Computing (2011)

14. Hummer, W., Satzger, B., Leitner, P., Inzinger, C., Dustdar, S.: Distributed Con-
tinuous Queries Over Web Service Event Streams. In: 7th IEEE International Con-
ference on Next Generation Web Services Practices (2011)

15. Ioannidis, Y.E.: Query optimization. ACM Computing Surveys 28, 121-123 (1996)

16. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1) (2003)

17. Li, X., Agrawal, G.: Efficient evaluation of XQuery over streaming data. In:
International Conference on Very Large Data Bases, pp. 265-276 (2005)

18. Liu, L., Pu, C., Tang, W.: Continual queries for Internet scale event-driven infor-
mation delivery. IEEE Trans. on Knowledge and Data Engineering 11(4) (1999)

19. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Process-
ing in Distributed Enterprise Systems. Addison-Wesley Longman (2001)

20. Maybury, M.T.: Generating Summaries From Event Data. International Journal
on Information Processing and Management 31, 735-751 (1995)

21. Motwani, R., et al.: Query processing, approximation, and resource management
in a data stream management system. In: Conference on Innovative Data Systems
Research, CIDR (2003)

22. Miihl, G., Fiege, L., Pietzuch, P.: Distributed event-based systems. Springer, Hei-
delberg (2006)

23. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.:
Network-aware operator placement for stream-processing systems. In: International
Conference on Data Engineering, ICDE (2006)

24. Roy, P., Seshadri, S., Sudarshan, S., Bhobe, S.: Efficient and extensible algorithms
for multi query optimization. In: ACM SIGMOD International Conference on Man-
agement of Data, pp. 249-260 (2000)

25. Seshadri, S., Kumar, V., Cooper, B.: Optimizing multiple queries in distributed
data stream systems. In: Int. Conference on Data Engineering, Workshops (2006)

26. Seshadri, S., Kumar, V., Cooper, B., Liu, L.: Optimizing multiple distributed
stream queries using hierarchical network partitions. In: IEEE International Par-
allel and Distributed Processing Symposium, pp. 1-10 (2007)

27. Vitria: Complex Event Processing for Operational Intelligence (2010),
http://www.club-bpm. com/Documentos/DocProd00015 .pdf

28. W3C: Web Services Addressing, http://www.w3.org/Submission/WS-Addres sing/

29. W3C: Web Services Eventing, http://www.u3.org/ Submission/WS-Eventing/

30. W3C: XQuery 3.0: An XML Query Language, http: //www.w3. org/TR/xquery-30/

31. W3C: Web Services Activity (2002), http://www.w3.0rg/2002/us/

32. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over
streams. In: SIGMOD International Conference on Management of Data (2006)

33. Zhu, Y., Rundensteiner, E., Heineman, G.: Dynamic plan migration for continuous
queries over data streams. In: SIGMOD Int. Conf. on Management of Data (2004)

