2015 3rd International Conference on Future Internet of Things and Cloud

Open Government Data as a Service (GoDaaS): Big
Data Platform for Mobile App Developers

Soheil Qanbari, Navid Rekabsaz and Schahram Dustdar
Distributed Systems Group, Vienna University of Technology, Vienna, Austria
Email: {qanbari, dustdar}@dsg.tuwien.ac.at, rekabsaz @ifs.tuwien.ac.at

Abstract—The next web of open and linked data leverages
governmental data openness to improve the quality of social
services. This data is a national asset. In this study, we elaborate
on this emerging open government movement, together with the
underlying data transparency to drive novel business models
which utilize these assets under a functioning platform called
Open Government Data as a Service (GoDaaS). These business
models actively engage civic-minded programmers in developing
sustainable applications, contextualizing and utilizing the govern-
ment open data resources. This leads to an expansive government
marketplace, with many civic-minded developers might be new to
doing business with the federal or state government. By means of
a consultation service prototype, we provide development advices
for programmers on how to work out the specific details of
their applications business model. Having the business models
in focus, this study also proposes a novel abstraction unit called
Gov. Data Compute Unit (DCU), so that governments are able to
feed developers with formalized, structured and programmable
data resource units rather than just data catalogs. Such DCUs
enable developers to cope with an increasing heterogeneity of
state government data sets, by providing a unified interface on
top of diverse data schemata from various states.

I. INTRODUCTION

Information theory begins with the representation, inter-
pretation and transmission of patterns of data, i.e., patterns
made up of different kinds of “things”. We attach meanings
to these patterns and call the result, “information”. Patterns
of data are mainly of interest when they are transmitted from
a source to a receiver [1]. Along with this idea, governments
are rich in such valuable information, as they must re-imagine
their roles as an information provider. The Gov 2.0 movement
welcomes civic intelligence with its data transparency, i.e.,
enabling governments to adapt to the ever-changing needs
of their citizens. The Data.gov initiative, for instance, does
not just catalog raw data; it takes this idea to a new level
by providing a collection of open APIs!' to government data.
The rationale for data.gov is laid out in a reliable information
infrastructure that “exposes” the underlying data to the public
(i.e., online) at large. The Gov 2.0 platform model takes the
further step of highlighting third-party mobile applications
created by independent developers in a real “AppStore” like
Washington, D.C.%. These repositories of data-driven apps can
be open-sourced as a means for sharing best practices with
other governmental bodies and cities. Code for America® is an
instance of such open source collaborative business model.

Uhttp://data.gov/developers/apis
Zhttp://Apps.DC.gov
3http://codeforamerica.org/

978-1-4673-8103-1/15 $31.00 © 2015 IEEE
DOI 10.1109/FiCloud.2015.34

398

Opening up and publishing raw data such as maps, em-
ployment statistics, weather surveys, agricultural statistics, and
educational records, together with their associated APIs, while
enforcing and respecting privacy policies of course, makes two
things possible: (i) Enabling government as a platform and
data infrastructure provider, who leverages GoDaaS to a new
level of transparency to queryable sources of large amounts
of underlying operational data. This leads to more control by
citizens over their governments, as well as closer cooperation
with them. (ii) Civic-minded programmers and the private
sectors can build and deploy applications on government’s data
infrastructure to achieve optimal utilization of the data. This
utilization is realized by creating new interfaces to government
using the Open311* standard, developing MobileApps and
offering new services in the AppStore as aided by government-
provided GoDaaS data APIs. For instance, developers can
register for a key at api.data.gov to access data offerings, via
REST-full requests and returned responses in JSON or XML.

Moving forward, we frame the research question of Go-
DaaS: How does government become an open platform that
allows civic-minded developers inside and outside govern-
ment to develop practical applications? How to transform
and expose government big data into tradable services? This
study addresses these challenges by driving new classes of
GoDaaS business models, in which stakeholders participate
and share things. These business models evolve through in-
teractions between government and its citizens, like a service
provider enabling its user community. The increasing amounts
of government data made available, coupled with unpredictable
and ever-changing business requirements, triggered us to in-
corporate cloud service delivery models to define flexible and
adaptive business models. To this end, our contribution is three-
fold: (i) Deriving seven business models for Government Open
Data as a Service (GoDaaS) platform. (ii) Novel government
data abstraction unit, called Gov. DataComputeUnit(DCU)
as a programming construct for developers. (iii) GoDaaS
consultation service that generates a tailored and application-
specific business model.

The paper continues with a survey on some contemporary
related work on defining open government business models at
section II. With some definitive clues on how the government
data is currently traded, we define a new abstraction unit,
called Gov. Data Compute Unit (DCU), for government data
at section III. This unifies our data resource trading unit within
all proposed business models. To elicit and illustrate the need
for GoDaaS from the requirements engineering perspective,
section IV is devoted to the core stakeholders and their

“http://open311.org

IEEE
computer
® psouety

relationships in GoDaaS ecosystem. Having the stakeholders’
interest in the provision of government as GoDaaS platform,
the focus is put on implementing this new model with the API
requirements at section V. Subsequently, the API requirements
associated with the corresponding stakeholders for GoDaaS
are derived. Then, section VI presents a detailed view on
GoDaaS platform architecture in support of our requirements.
Having the architecture in place enables the proposed business
models. As a proof of concept, three business models are
described from developers view at section VIIL. In support of
our model, we develop a primary GoDaaS consultation service
for developers. The running prototype® is detailed at section
VII-B. Finally, section VIII concludes the paper and presents
an outlook on future research directions.

II. RELATED WORK

In relation to our work, there are some prominent studies
on capturing business models for open government data. The
European commission prepared a study on business models
for Linked Open Government Data (LOGD) for the ISAS
programme by PwC EU Services in late 2013 [2]. In this
report, the authors provide a theoretical framework to analyze
the LOGD. Fourteen entities who offered publishing, linking
and accessing open government data as a service were se-
lected as case studies for further analysis. The framework is
structured according to the nine areas in the Business Model
Canvas (BMC) [3]. There are considerable studies on how
to provide government’s data as Linked Data’[4]. In [5], [6],
[71, [8] and [9], the authors propose a semantic approach on
attaching meaning to government data by applying ontologies
to formally and semantically represent data.

Our paper outlines a set of abstractions for serving govern-
mental data. Governments produce data that members of the
public are entitled to access but format, size, and technology
hurdles often prevent such access. GoDaaS is a proposal to
mandate that all government data be made available in a form
that can be accessed through a unifying set of programming
abstractions.

III. GOVERNMENT DATA COMPUTE UNITS (DCU)

In the current Gov. 2.0 movement, governments are un-
able to feed developers with formalized and structured data.
Government data is available in data catalogs or APIs, which
are not published as a unit, but rather accessible on the
data portal. For instance, the data.gov and its CKAN® API
only contain meta-data about datasets. This meta-data includes
URLs and descriptions of datasets, which is not handy for
programmers. As a reaction to this complexity, we designed
a new abstraction layer called Data Compute Unit (DCU),
that allows governments to express their data packages more
structured and consistent, so that developers can utilize these
packages by treating them as objects. DCU copes with an
increasing heterogeneity of state government data sets, by
providing a unified interface on top of diverse data schemata
from various states. In this context, every state government

Shitp://soheil4tuwien. github.io/GoDaaS/tool.html

SInteroperability Solutions for European Public Administrations (ISA)
7Tim Berners-Lee view: http://www.w3.org/DesignIssues/LinkedData.html
8http://ckan.org/

399

]

Gov. AppStore

o>

weatherApp** forcastApp***
MAAS DCU**** MAAS App*+* | °onsume
P P Citizens
Gov. Platform Services ICompose
Configure
O : <________Civic
DCUO1 DCU04 MAAS_DCU Dgveloper
DCU02 :
MAAS_WeatherDCU <i---4
+convertToMarsDate() Implement
+convertToEarthDate()

® |

|
Govenn DCUs

7{@

‘7 Gov. Data Infrastructure

DataComputeUnit
—-dculD
-dataURI
-domainTopic
-dataSchema
-dataContract
-fromUnit : DataComputeUnit
-toUnit : DataComputeUnit

+retrieveData()
+validateData()
+transformData()
+evaluateQoD()

|
|
|
<<abstract>> I
|
|
1

Provide DCUs

- - Gov. Data
Provider

Fig. 1: GoDaaS Stakeholders together with their relationships.

provides its data in a unified interface of DCU. Then external
systems, like SOAP services or even programmers are able to
invoke an API from DCU library like transformData().

We define a DCU abstraction as a GoDaaS platform pro-
gramming construct, containing raw data and associated meta-
data together with its utilization APIs. DCUs can be considered
as a programming construct, like Classes, for developing data-
intensive applications. Civic developers can compose, program
and configure those DCUs to a package like Linked Compute
Units[10] and expose them to services delivered in mobile apps
to citizens. As shown in Fig. 1, DCUs are composed of two
parts: The DCU meta data and set of APIs. The meta data pro-
vides: (i) a unique ID for future object referencing, (ii) an URI
that identifies the data source, which is actually a URL that
supports the data schema protocol for the retrieval purposes,
(iii) a schema for an structured data extraction and loading, (iv)
a contract where terms and usage licenses are detailed, and (v)
two fromUnit plus toUnit elements to wire DCUs together for

composition purposes. DCU provides programmatic access to
the contents and meta-data of the government data repository
and fosters re-use for programmers. We believe governments
must provide underlying data resources as DCUs.

In this study, our resource unit granularity is a
Gov. DataComputeUnit. Developers pull and program
these units from government data infrastructure and expose
DCUs as web services or mobile apps. For instance, NASA
has developed an open source REST API, called MAAS?, to
provide information on the weather data being transmitted
by the Curiosity Rover on Mars. We consider the MAAS
API together with its meta data as MAAS_WeatherDCU.
Developers can program and override this unit by building
mobile weather apps or analytic applications to utilize the
weather data for their research purposes. The MAAS API is

available as an open source project under the Apache license!”.

Listing 1: Excerpt of DataComputeUnit Class Implementation

// Sample MAAS DCU class
// DataComputeUnit class

extending the abstract

public class MAAS_WeatherDCU extends DataComputeUnit{
private XML data;
public MAAS_WeatherDCU () {
dculD new GUID();
dataURI =
“http :// marsweather.ingenology.com/vl/../”;
dataSchema define XSD schema; }
public XML retrieveData (){
data curl =X GET uri;
return data; }
public bool validateData(){
return dataSchema.validate (data); }
public JSON transformData (){
return JSON.convert(data); }
public float convertToFahrenheit(){
int cels_temp data . getTemprature ();
return (cels_temp * 9 / 5) + 32;} }

Listing 1 provides a closer touch of programming a DCU
by the pseudo-code of some implemented procedures. The
MAAS_WeatherDCU class implements abstract methods of
DataComputeUnit class. In the class constructor, all dculD,
dataURI, and dataSchema attributes are initialized. The dculD
is of the GUID type, which makes it unique in the whole
ecosystem. This unique value is useful for tracing and logging
DCU objects. The dataURI points to the data source location
for data retrieval, which can be an internal service. The
dataSchema is defined as an XSD file in order to validate
the quality of data variable structure. Invoking retrieveData(),
fetches the data provided in URI address using curl command
and stores it as XML format in the data variable. The validate-
Data() procedure handles schema validation using XSD valida-
tion. Next, transformData() is a simple function for converting
the data into JSON format. In the context of MAASWeath-
erDCU, the convertToFahrenheit() method fetches the stored
temperature data and converts it to Fahrenheit. It implements
a light-weight logic regarding to MAAS_WeatherDCU.

The GoDaaS architecture employs an enterprise service
bus for its messaging, service integration and orchestration

“http://marsweather.ingenology.com
10https://github.com/ingenology/mars_weather_api

400

of processes. In Listing 2, we show the pseudo-code of core
methods of Government Service Bus (GSB). Each service
subscribes for a specific domain fopic. The GovServiceBus
discovers the queried fopic in its governance repository and
creates a new one if it is not already defined. Then, the service
is added to the instantiated topic. The publish() function stores
the DCU in the service bus topic queue. Using the mediate()
function, the dcu objects stored in the queue are processed
one by one. Based on the topic of the dcu object, subscribed
services are discovered. Having these services identified, GSB
checks whether the service has access to the dcu object.
Finally, GSB delivers the dcu object by calling the receive()
function of the service.

Listing 2: Excerpt of Gov. Service Bus Class Implementation

// Sample Government Service Bus (GSB) class
// dealing with DCU objects .

public class GovServiceBus {
public void subscribe(Service service ,Topic topic){
topic find topic in the repository ,
create if not exist
topic.addSubscriber(service); }
public void publish (DataComputeUnit dcu){
queue . push(dcu); }
private void mediate (){
DataComputeUnit dcu queue . pull ();
for all dcu.topic.getSubscribers(){
authenticate (subscriber);
subscriber.receive (dcu);} } }

IV. STAKEHOLDERS IN GODAAS

To investigate and elicit the requirements, we classify
core stakeholders into three main groups of Government Data
Provider, Civic-minded Developers and Citizens. Their depen-
dencies are illustrated in Fig. 1.

& Government Data Provider: This entity owns and pro-
vides the data. They provision an operating open DCU infras-
tructure together with the development platform.

< Civic-minded Developers: The civic developers imple-
ment the logic aspects of their DCU-based applications. They
can program DCUs using the associated APIs for an intended
behavior.

& Citizens: A citizen is the government service consumer.
The government body opens up its data to its citizens for
more transparency over their services. Citizens eventually may
consume the data via mobile applications on the government
AppStore.

V. API REQUIREMENTS FOR GODAAS

The Eight Open Government Data Principles'! document
outlines the key requirements for open government data. Em-
bracing these eight principles, we delve into our perception
of the APIs and derive technical requirements for the Cloud-
based government platform (GoDaaS). In our approach, the
government is to offer the GoDaaS platform and a set of APIs,
so that developers consume those APIs for their application
programming.

https://public.resource.org/8_principles.html

Gov. App Store Oa®
N
Datalj:nc:;ts\pute Web Services - Web Apps pletliefipes
Citizens

Gov. Data Infrastr
Database as a Service

ructure \
Storage as a Service

Data Cluster
Data Nodes
Data Partition

Data Collection
Key/Value Pair

Column / Row S

— >

Government Serwce Bus (GSB) —regiaioss
e

SNg 9IS AOD) (seeeea

Publish

1

Gov. Dev Platform
Search as a Service

Analytics as a Servicx

Data Corpus Data Model
Indexed Document 4 Yee > Data Cube
Word Vector Diagrams

Data Compute Unit % ata as a Service
S
e Data URT (URL,...) < < . [Data Block %
Data APIs (Get(), Set () & s Data Tuple g
MetaData (QoD, Schema)) Batch Data
F—
. =
N Infra as a Service Platform as a Service \L‘“ e .0
gl - v o
[Data Center Service Source code Repository 1
Coanment Virtual Machmes io Programming Library Civie—"
Agents Computing Resources Jobs Developers

Fig. 2: GoDaaS system architecture in layers.

A. RQI. End-to-End Governance Coverage throughout Data
Compute Unit Life Cycle:

Governance enforces government policies, governing all
aspects (e.g., manipulate, compose, expose, evaluate and con-
trol) of the DCUs throughout its life cycle. The stages of
DCUs:s life cycle, through which published-data passes, can be
sequenced as collection, processing, use, storage, application,
provision and disposition.

B. RQ2. PaaS-enabled DevOps Integration for Government
DCU-based App Programming:

This requirement deals with enabling the development
environment, composition, adoption and use of DCU-based
apps. As such, it incorporates full development life cycle
tooling in support of application programming, debugging,
testing, building and deploying processes. Government must
provide the open DCU programming interfaces to its data.

C. RQ3. Discover, Subscribe and Provision Assets/Apps
through a Government AppStore Interface:

Developers compose and program DCUs and expose them
as services or mobile apps. Subsequently, the AppStore pub-
lishes these apps as marketable entities; then citizens are able
to subscribe, keep them in use and pay as they go. This leads to
more economies of scale for all parties involved. GoDaaS asset
store not just enables the on-demand and automated provision
of these apps, but also couples with clients’ satisfaction and
app recommendation service that meets citizens’ requirements.

As the stakeholders and requirements relationship is listed
in Table I, the need for asset/app store by each stakeholder
stands out. In support of these requirements, we propose
the GoDaaS platform. Next, we detail the GoDaaS layered
architecture design, indicating the logical separation or division
of components.

401

Stakeholders | Requirements —
Civic-minded Developer
Government (Federal, State)
Citizens (Crowd, Individual)

RQ1 \ RQ2 | RQ3

TABLE I: Stakeholders/Requirements relation in GoDaaS.

VI. GODAAS ARCHITECTURE

The impetus behind GoDaaS platform is how to adopt a
data-driven cloud-enabled platform, which provides interfaces
for developers and private sectors to develop their publicly
available applications that expose the underlying data.

Fig. 2 illustrates the GoDaaS architecture, which encom-
passes in four major layers: (i) Gov. Data Infrastructure, (ii)
Gov. Development Platform, (iii) Gov. Service Bus and (iv)
Gov. AppStore. Using Gov. data infrastructure, the government
incorporates cloud computing technologies to virtualize its data
resources into DCUs. This enables elastic DCU provisioning,
meaning that government is able to dynamically allocate
DCUs to developers in an on-demand fashion. Conversely,
the apps can pull DCUs by invoking storage or database
services to complete a transaction. Along with this layer, the
Gov. development platform layer is in place, where authorized
developers can implement and deliver their applications on
top of government data. This platform enables programming,
composing and deployment of DCU-based applications. It is
basically a government-class cloud platform, which employs
data-intensive programming models supported by integrated
development libraries and services like data analytics and
search facilities, which will empower the development process.
On top of these layers, the government AppStore stands
out. The AppStore supports multi-tenancy, where identities
like state governments, third parties and civic developers are
authorized to deploy their applications for trading. Through
governance services, the AppStore ensures that deployed apps

Resource / Asset Required Competency PaaS <<enumeration>> <<enumeration>>
-SourceCode +InstantiateSandbox() Model Repository
-Library demands|+CompileCode() MapReduce Git
-SourceRepository +RunApp() drives Yarn SVN
-JobQueue +Checkin/out() Spark Mercurial
e rovide +Streamjob(<] Value Progaston addresses <<enumeration>>
-JobLogs +ih;}°ﬂ;{)ob() +Eistr|:blu[')te:iﬁl;ppDeve_:Io;z)rnent() Customer Needs LBty
+LogJo +ParallelDataProcessing A ; |
z - A -AppDevelopment : Language DK
. . +Notify() +DistributedMonitoring() —ProgrammingModel : Model K
<<enumeration>> impac £ f [l .
Bhicin Cost and Revenue Products and Services DevLibrary : Library NoSQLDBDrivers
g — —— -SourceControl : Repository
ExecutionTime-basis ~PricingModel : Pricing | \eljver |*IMplementApp() .. |-JobConfiguration <<enumeration>>
lJob-basis +Billing() +DeployApp() at'Sﬁes—DeveIopmentEnv Language
Library-basis +RevenueSharing() drive +DebugCode() has /]\ lava
NetworkTraffic-basis) +ServiceMetering() +SourceControl() targeted to R
impact i +ScheduleJob() Customer htion
Partner ' +TrackJob() -CivicDeveloper PigLatin
<<:nt:tmerat|:9n>> —-PartnershipModel : Partnership delivered through SEIVeS
d ne.rs 1p -DAaaSProvider : DAaaS Channels —/, <<enumeration>>
fJUblgontr'aCtmg [t Da ~Gavsenicebus affect and demand Protocol
0: Df:;z -STaaSProvider : STaa$ -CommunicationProtocol : Protocol 5 S SOAP
-DBaaSProvider : DBaaS ’ v) eographies and Locales | |pesT
Hybrid Combination ||_ s hffect|+Subscribe(domainTopic) % -
Yy laaSProvider : laaS +Publish(DataComputeUnit) . _?ataS;mceHost Socket
+ContractManagement() +Receive(DataComputeUnit) rect P cURL
+MonitorQoS() XMPP

Fig. 3: GoDaaS Platform as a Service (PaaS) business motivation model class diagram.

comply with the government policies and regulations respec-
tively. Moving forward, the monitoring, metering and billing
services track the asset/app usage and debit citizens.

GoDaaS multi-layer architecture needs an integration en-
abler for its implementation and a uniform service delivery
model. Government service bus (GSB) layer glues all the
entities, agencies and services together through its messaging
and queuing mechanisms. Together with the integration, GSB
also provides data adapters to the DCUs registry, which is
a point of access to all provided and customized DCUs by
governments or developers. It acts as an intermediary compo-
nent to accept and provision the requests to DCUs. Then it
invokes the associated adapter to retrieve the DCU, validates
and transforms it through data schema and forwards it to the
developer, for instance.

In order to catalyze the adoption of cloud delivery mod-
els, we have come up with seven business models for the
government open data. GoDaaS can include the following
types of data-driven business models: Data Infrastructure as
a Service (laaS), Storage as a Service (STaaS), Data as a
Service (DaaS), Database as a Service (DBaaS), Platform
as a Service (PaaS), Search as a Service (SEaaS) and Data
Analytics as a Service (DAaaS). All seven business models
and their associated elements are consistently specified and
modeled in details, mostly from the developer’s view.

In this context, business modeling is driven by the value
of API calls chain, as a sequence of service invocations to ex-
change DCUs among governments and developers. This value
can be realized through developed mobile applications, that are
consumed by citizens. For modeling purposes, we consider two
main languages: the Business Model Ontology (BMO)'?

2http://www.businessmodelgeneration.com/canvas

402

and the OM G Business Motivation Model (BMM)"3.

VII. GODAAS BUSINESS MODELS

Due to space limitations, we only present Database as
a Service and Platform as a Service business models in the
paper. Since DCU is an abstraction layer between data corpus
and developers, we integrate the DCU with several business
models to help civic-minded programmers make better use
of GoDaaS framework. All the interactions among business
models in GoDaaS are based on the unified interface exposed
by the DCU. We briefly recap the three models here, and refer
the reader to the GoDaas$ site'* for further details of all seven
implemented business models.

A. Gov. Database as a Service (DBaaS)

Government’s parallel computation and distributed storage
requirements to perform data-intensive analytic processes on
their big data, motivate the use of elastic and scalable NoSQL
databases such as Apache Hbase!’ or Casandra'®.

DBaaS allows federal governments to provide a single
logical database to span geographically dispersed state gov-
ernments’ data centers, while maintaining intelligent load
balancing. Storage load is provisioned on laaS clouds in
the form of virtual disks that can be attached and detached
from running VM instances[11]. Dealing with such state-aware
loads means enabling storage nodes to scale elastically, tightly
interfaced with the STaaS and IaaS layers. Eventually the
GoDaaS platform will expose database services as APIs to
developers and will govern patterns of API usage.

Bhttp://www.omg.org/spec/BMM
4http://soheildtuwien.github.io/GoDaaS/index.html
I5HBase Homepage. http://hbase.apache.org
16Casandra Homepage. http://cassandra.apache.org

B. Gov. Platform as a Service

Government PaaS implements an application factory plat-
form, enabling developers to Code-on-Demand[12]. The plat-
form then incorporates the state or federal SLAs to ensure the
government applications which are built through this process,
follow a set of enforced guidelines. Data intensive government
application development often involves large volumes and dis-
tributed data sets. Hence, the platform provides data-intensive
parallel programming models to provide distributed control
of code execution during job enactment. For instance, in the
MapReduce programming model, data processing is broken up
into distributed fine-grained Map and Reduce tasks to devise a
parallel solution, performed by a Master-Slave design pattern.

As shown in Fig. 3 the government PaaS objective outlines
the need for a “Collaborative & Composable Platform”, where
the federal government would need to leverage “sharing” of
DCU resources and fork open source applications among
state governments for civic developers. This contributes to
sharing best development practices and lessons learned from
current celebrated “government-ready” mobile applications.
Sharing such code artifacts leads to agility in the development
cycle. The platform provides a collaborative development
environment (using SVN, Git, etc.), accompanied with a set
of programming APIs like compileCode(), debugCode(), etc.,
and some development libraries for seamless coding. The de-
velopers can import the available DCUs from the registry into
their IDE, then program and compose configuration and code
artifacts into a single development project and deployment
archive called composite application.

As a prototype, we have developed a consultation service
where developers can clarify their application specification and
receive advice on their application’s technical requirements
for it’s commercial possibilities. The aim of the tool is to
design a tailored business model conforming to the needs
of a new application. As a proof of concept, the service
forms a business model for the DAaaS. The service is fed
with a sequence diagram available in the referenced project
repository, demonstrating the internal relations between the
methods and attributes of the DAaaS business model. The
service parses the sequence diagram and traces model element
dependencies for new model generation. The tool is hosted and
running on the GoDaas$ site.!”

VIII. CONCLUSION AND OUTLOOK

This paper presents a abstraction that combines government
data URL and its associated interface called DCU to enable
open government data as a service. The DCU also incorporates
the government policy. Based on DCU, the authors expand the
discussion to the opportunity of civil use of the government
data and its potential advantages. In support of such abstraction
layer, we present a reference architecture to enable the devel-
opment of GoDaas$, that is, Government Data as a Service. The
goal of the architecture is to provide a formal way for a given
government to expose open-data, in a way developers with
civic-minded ideas can easily reuse it instead of spreadsheets
or PDF files as classically used. The key idea is to expose
mechanisms that will allow developers to public application
in an app store, on top of governmental datasets.

Thttp://soheil4tuwien.github.io/GoDaaS/index.html

403

So far, we modeled seven possible business opportunities
on government open data. In order to take such opportunities,
governments should seek to ease any friction that limits devel-
opers’ ability to build their tailor-made applications on top of
these business models. We have proposed that governments
provide their underlying data resources as Data Compute
Units (DCUs) for the sake of seamless development. Civic
developers compose and program those DCUs and expose
them to services delivered in mobile Apps to citizens. We
envision Gov. DataComputeUnit to gain acceptance as a
de facto standard of an open government data resource unit
norm, through broad adoption. In this context, we extended
our contribution to an open government data service model
entitled GoDaaS as a government data processing platform,
where civic programmers are motivated to develop applications
for citizens. As an outlook, we plan to elaborate and extend
the GoDaaS to build a development blueprints tailored for a
specific application that logically combine, orchestrate, and
consume government data services.

REFERENCES

M. Burgess, In Search of Certainty - The Science of Our Information
Infrastructure, 1st ed. XtAxis Press, 2013.

E. Commission, “Study on business models for linked open government
data - BM4LOGD,” https://joinup.ec.europa.eu/node/72473, 12 Novem-
ber 2013, [Online; accessed 24 June 2014].

“Osterwalder, alexander; pigneur, yves; and tucci, christopher 1. (2005)
“clarifying business models: Origins, present, and future of the concept,”
communications of the association for information systems: Vol. 16,
article 1.”

N. Shadbolt and K. O’Hara, “Linked data in government,” Internet
Computing, IEEE, vol. 17, no. 4, pp. 72-77, July 2013.

M. Vafopoulos and M. Meimaris, “Weaving the economic linked open
data,” in Semantic and Social Media Adaptation and Personalization
(SMAP), 2012 Seventh International Workshop on, Dec 2012, pp. 92—
97.

J. Hoxha and A. Brahaj, “Open government data on the web: A
semantic approach,” in Emerging Intelligent Data and Web Technologies
(EIDWT), 2011 International Conference on, Sept 2011, pp. 107-113.

E. Kalampokis, E. Tambouris, and K. Tarabanis, “On publishing
linked open government data,” in Proceedings of the 17th Panhellenic
Conference on Informatics, ser. PCI ’13. New York, NY, USA:
ACM, 2013, pp. 25-32. [Online]. Available: http://doi.acm.org/10.
1145/2491845.2491869

M. Vafopoulos, “A framework for linked data business models,” in
Informatics (PCI), 2011 15th Panhellenic Conference on, Sept 2011,
pp- 95-99.

D. DiFranzo, A. Graves, J. Erickson, L. Ding, J. Michaelis, T. Lebo,
E. Patton, G. Williams, X. Li, J. Zheng, J. Flores, D. McGuinness,
and J. Hendler, “The web is my back-end: Creating mashups with
linked open government data,” in Linking Government Data, D. Wood,
Ed. Springer New York, 2011, pp. 205-219. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4614-1767-5_10

F. Leymann, “Linked compute units and linked experiments: Using
topology and orchestration technology for flexible support of scientific
applications,” in Software Service and Application Engineering, ser.
Lecture Notes in Computer Science, M. Heisel, Ed. Springer
Berlin Heidelberg, 2012, vol. 7365, pp. 71-80. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-30835-2_6

B. Nicolae, P. Riteau, and K. Keahey, “Bursting the cloud data bubble:
Towards transparent storage elasticity in iaas clouds,” in 28th IEEE
International Parallel & Distributed Processing Symposium, Phoenix,
AZ, 2014.

A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding code mobility,”

IEEE Transactions on Software Engineering, vol. 24, no. 5, pp. 342—
361, 1998.

[10]

[11]

[12]

