
ARTICLE IN PRESS
Contents lists available at ScienceDirect
Information Systems

Information Systems 35 (2010) 735–757
0306-43

doi:10.1

� Cor

fax: +4

E-m

(F. Skop

dustdar
journal homepage: www.elsevier.com/locate/infosys
Modeling and mining of dynamic trust in complex
service-oriented systems
Florian Skopik �, Daniel Schall, Schahram Dustdar

Distributed Systems Group, Vienna University of Technology, Argentinierstr 8/184-1, 1040 Vienna, Austria
a r t i c l e i n f o

Article history:

Received 11 March 2010

Accepted 12 March 2010
Recommended by: D. Shasha
typically require dynamic and context-based interactions between people and services.

However, finding the right partner to work on joint tasks or to solve emerging problems
Keywords:

Collaborative environment

Service-orientation

Social trust

Interaction patterns

Flexible composition

Crowdsourcing
79/$ - see front matter & 2010 Elsevier B.V. A

016/j.is.2010.03.001

responding author. Tel.: +43 1 58801 58418;

3 1 58801 18491.

ail addresses: skopik@infosys.tuwien.ac.at, flo

ik), schall@infosys.tuwien.ac.at (D. Schall),

@infosys.tuwien.ac.at (S. Dustdar).
a b s t r a c t

The global scale and distribution of companies have changed the economy and

dynamics of businesses. Web-based collaborations and cross-organizational processes

in such scenarios is challenging due to scale and temporary nature of collaborations.

Furthermore, actor competencies evolve over time, thus requiring dynamic approaches

for their management. Web services and SOA are the ideal technical framework to

automate interactions spanning people and services. To support such complex

interaction scenarios, we discuss mixed service-oriented systems that are composed

of both humans and software services, interacting to perform certain activities. As an

example, consider a professional online support community consisting of interactions

between human participants and software-based services. We argue that trust between

members is essential for successful collaborations. Unlike a security perspective, we

focus on the notion of social trust in collaborative networks. We show an interpretative

rule-based approach to enable humans and services to establish trust based on

interactions and experiences, considering their context and subjective perceptions.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The way people interact in collaborative environments
and social networks on the Web has evolved in a rapid
pace over the last few years. Services have become a
key-enabling technology to support collaboration and
interactions. Pervasiveness, context-awareness, and adap-
tiveness are some of the concepts that emerged recently in
service-oriented systems. A system is not only designed,
deployed, and executed; but rather evolves and adapts over
time. This paradigm shift from closed systems to open,
loosely coupled Web services-based systems requires new
approaches to support interactions [1].
ll rights reserved.

rian.skopik@gmx.at
We present a novel approach addressing the need for
flexible discovery and involvement of experts and knowl-
edge workers in distributed, cross-organizational colla-
boration scenarios. Experts register their skills and
capabilities as Human-Provided Services (HPS) [2] using
the very same technology as traditional Web services to
join a professional online help and support community.
This approach is inspired by crowdsourcing techniques
following the Web 2.0 paradigm. People can contribute
HPSs to offer their skills to a broad number of Web users,
service compositions, and enterprises that need to have
on-demand access to experts. In such communities, not
only humans participate and provide services to others,
but also autonomous software agents and semantic Web
services with sophisticated reasoning capabilities. A
mixed service-oriented system comprises human- and
software services that can be flexibly and dynamically
composed to perform various kinds of activities. There-
fore, interactions in such a system do not only span
humans, but also software services. Recently, trust has

www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2010.03.001
mailto:skopik@infosys.tuwien.ac.at
mailto:florian.skopik@gmx.at
mailto:florian.skopik@gmx.at
mailto:schall@infosys.tuwien.ac.at
mailto:dustdar@infosys.tuwien.ac.at

ARTICLE IN PRESS

F. Skopik et al. / Information Systems 35 (2010) 735–757736
been identified as a beneficial concept in large-scale
networks [3,4]. Considering trust relations when selecting
people for communication or collaboration, services to be
utilized, and resources to be applied leads to more
efficient cooperation and compositions of human- and
software services [5]. In contrast to many others, we do
not discuss trust from a security perspective. In this work
we share the view of [6] that is related to how much
humans or other systems can rely on services to
accomplish their tasks.

Unlike several other systems in the agent domain, e.g.,
see [7], we follow a centralized trust management
approach [5]. In SOA, central registries and logging
facilities are common mechanisms. Applying them avoids
various issues, such as the malicious manipulation of
interaction data and dishonesty regarding recommenda-
tions. Moreover, some trust inference mechanisms are
only applicable if the participants of the network have a
global view on the system. However, on the other side, a
centralized approach may raise privacy issues that have to
be considered in the system design. In this paper, we
present the following key contributions:
�
 Social and behavioral trust model. We define a trust
model that relies on interaction dynamics, supporting
wide personalization by accounting for user prefer-
ences, and discuss its realization in the introduced use
case.

�
 VieTE framework. We outline VieTE (Vienna Trust

Emergence), a modular framework that supports the
management of trust in SOA-based environments.
In particular, we introduce key implementation
aspects, such as interaction mining, and Web of Trust

provisioning.

�
 Evaluation and discussion. Since our work is not only

theoretical, but closely coupled to SOA technology, we
evaluate various functional and non-functional aspects
of VieTE and its trust model.

The paper is organized as follows. In Section 2, we
introduce the Expert Web case showing the need for
flexible expert discovery and involvement. Our novel
approach is based on social trust. We introduce trust
Fig. 1. Service-oriented large-scale co
concepts in collaborative environments in Section 3.
Section 4 details the concept of interaction-based beha-
vioral trust which will be the basis for our trust inference
model. Trust can be based on different metrics whose
meaning is highly subjective. In Section 5, we show our
trust model established on fuzzy set theory. The trust
model manages context-dependent trust between actors,
i.e., humans and services, emerging from interactions. The
subsequent Section 6 formalizes the fundamental trust
model relying on captured and interpreted interactions.
Successful, thus highly trusted network members, are
valuable collaborators. However, overload due to large
amounts of work represent bottlenecks. In Section 7, we
present a balancing approach to prevent inefficient
interactions. Our architecture is implemented on-top of
SOA and Web services. We show the implementation
details of the system in Section 8. Section 9 deals with
evaluations to test the performance of the presented
system as well as effectiveness of balancing algorithms.
Finally, we discuss related work in the area of SOA, social
trust, and flexible interactions models in Section 10 and
conclude the paper in Section 11.
2. Service-oriented collaborations

In virtual communities, where people dynamically
interact to perform activities, reliable and dependable
behavior promotes the emergence of trust. As collabora-
tions are increasingly performed online, supported by
service-oriented technologies, such as communication-,
coordination-, and resource management services, inter-
actions have become observable. By monitoring and
analyzing interactions, trust can be automatically inferred
[1,7–9]. In contrast to manual rating approaches for
mainly static communities, automatic inference is well-
suited for complex networks with short-running interac-
tions between potentially thousands of rapidly changing
network members.

We motivate our work with a scenario showing
discovery of experts and flexible interaction support
as depicted in Fig. 1. In this use case, a higher level
process model may be composed of single tasks assigned
to responsible persons, describing the steps needed to
llaboration in the Expert Web.

ARTICLE IN PRESS

F. Skopik et al. / Information Systems 35 (2010) 735–757 737
produce a software module. After finishing a common
requirements analysis, and in parallel a reusability check
of existing software artifacts produced in related projects,
a software architect designs the actual software
framework. The implementation task is carried out by a
software developer, and additionally software test cases
are generated with respect to functional properties (e.g.,
coverage of requirements) and non-functional properties
(e.g., performance and memory consumption). We
assume that this task is deployed in a global enterprise
spanning multiple departments and locations. Thus, the
single task owners in this process exchange only
electronic files and interact by using communication
tools. While various languages and techniques for
modeling such processes already exist, for example
BPEL, we focus on another aspect in this scenario:
interactions with trusted experts. A language such as BPEL
demands for the precise definition of flows and input/
output data. However, even in carefully planned processes
with human participation, for example modeled as
BPEL4People activities [10], ad hoc interactions and
adaptation are required due to the complexity of human
tasks, people’s individual understanding, and
unpredictable events. In Fig. 1, the software architect
receives the requirement analysis document from a
preceding step. But if people have not yet worked
jointly on similar tasks, it is likely that they need to set
up a meeting for discussing relevant information and
process artifacts. Personal meetings may be time and cost
intensive, especially in cases where people belong to
different geographically distributed organizational units.
Various Web 2.0 technologies, including forums, Wiki
pages and text chats, provide well-proven support for
online-work in collaborative environments.

Several challenges remain unsolved: (i) If people, partici-
pating in the whole process, are not able to solve problems by
discussion, who should be asked for support? (ii) How can
experts be flexibly involved in ongoing collaborations? (iii)
What are influencing factors for favoring one expert over
others. (iv) How can we support trusted interactions in such
dynamically changing environments and how can this
situation be supported by service-oriented systems?

Traditionally, discovering support is simply done by
asking third persons in the working environment, the
discussion participants are convinced they are able to
help, namely trusted experts. In an environment with a
limited number of people, persons usually tend to know
who can be trusted and what data have to be shared in
order to proceed with solving problems of particular
nature. Furthermore, they easily find ways to contact
trusted experts, e.g., via phone or e-mail. In case
requesters do not know skilled persons, they may ask
friends or colleagues, who faced similar problems before,
to recommend experts. The drawbacks of this approach
are that people need extensive knowledge about the skills
of colleagues and internal structures of the organization
(e.g., the expertises of people in other departments).
Discovering support in such a manner is inefficient in
large-scale enterprises with thousands of employees and
not satisfying if an inquiry for an expert becomes a major
undertaking. Today’s communication and collaboration
technologies cannot fully address the mentioned chal-
lenges because many existing tools lack the capability of
managing and utilizing dynamic trust.

The Expert Web: We propose the Expert Web, consist-
ing of connected experts that provide help and support in
a service-oriented manner. The members of this Expert
Web are either humans, such as company employees
offering help as online support services, or software
services encapsulating knowledge bases. Such an enter-
prise service network, spanning various organizational
units, can be consulted for efficient discovery of available
support. Users, such as the engineer or drawer in our use
case, send requests for support (RFSs). The users establish
trust in experts’ capabilities based on their response
behavior (e.g., availability, response time, quality of
support). This trust, reflecting personal positive or
negative experiences, fundamentally influences future
selections of experts. As in the previous case, experts
may delegate RFSs to other experts in the network, for
example, when they are overloaded or not able to provide
satisfying responses. Following this way, not only users of
the enterprise service network establish trust in experts,
but also trust relations between experts emerge.

3. Communication, coordination, and composition

3.1. Social trust in collaborations

In contrast to a common security perspective, social
trust refers to the interpretation of previous collaboration
behavior [1] and may additionally consider the similarity
of dynamically adapting interests [11,12]. Especially in
collaborative environments, where users are exposed to
higher risks than in common social network scenarios
[13], and where business is at stake, considering social
trust is essential to effectively guide interactions [14].
Hence, we define trust as follows (see also [1,8,9]):

Trust reflects the expectation one actor has about
another’s future behavior to perform given activities
dependably, securely, and reliably based on experi-
ences collected from previous interactions.

This definition includes several key characteristics that
need to be supported by a foundational trust model:
�
 Trust reflects an expectation and, therefore, cannot be
expressed objectively. It is influenced by subjective
perceptions of the involved actors.

�
 Trust is context dependent and is basically valid within

a particular scope only, such as the type of an activity
or the membership in a certain team.

�
 Trust relies on previous interactions, i.e., from well-proven

previous behavior a prediction of the future is inferred.

We strongly believe that trust and reputation mechan-
isms are key to the success of open dynamic service-
oriented environments. However, trust between human
and software services is emerging based on interactions.
Interactions, for example, may be categorized in terms
of success (e.g., failed or finished) and importance.

ARTICLE IN PRESS

F. Skopik et al. / Information Systems 35 (2010) 735–757738
Therefore, a key aspect of our approach is the monitoring
and analysis of interactions to automatically determine
trust in mixed service-oriented systems. We argue that in
large-scale SOA-based systems, only automatic trust
determination is feasible. In particular, manually assigned
ratings are time-intensive and suffer from several draw-
backs, such as unfairness, discrimination or low incentives
for humans to provide trust ratings. Moreover, in the
mentioned mixed system, software services demand for
mechanisms to determine trust relations to other services.
Much research effort has been spent on defining and
formalizing trust models (for instance [7,9,15,16]).
Although most of these models are closely related, e.g.
in terms of concepts for recommendation and reputation,
we add the following novel contributions.

Personalized trust inference: A fundamental character-
istic of trust is its subjective perception. Humans have
different requirements to establish trust to others. There-
fore, we use a rule-based system, relying on fuzzy set
theory that allows each participant of the network to
define his/her own rules and influencing factors to
establish trust. Instead of a ‘hard-wired’ logic to deter-
mine trust, we enable participants to model their
individual trust perception, e.g., their optimistic and
pessimistic views.

Multi-faceted trust: We support the diversity of trust by
enabling the flexible aggregation of various interaction
metrics that are determined by observing ongoing collabora-
tions. Furthermore, data from other sources, such as human
profiles and skills, as well as service features and capabilities
may influence the trust inference process.

Compositional trust: The majority of today’s trust models
in the agent domain, such as typical buyer–seller scenarios,
deal with the establishment of trust between exactly two
entities. In contrast to that, we focus a compositional
perspective, and study trust in group formation processes
and compositions of services. In our environment, we
understand compositions not from a structural perspective
with pre-defined interaction paths (e.g., as in BPEL), but from
a dynamic point of view, where members of the network
select interaction partners flexibly [17].
Trust Projection Layer

Reputation

Recommendation

Trust Teleportation

Trust Mapping Trust Mirroring

Trust Aggregation

Personalized Metric
Interpretation

Scope-dependent
Trust Relations

Temporal Trust
Evaluation

Interaction Logging Context-aware
Interaction Analysis

Actor Profile
Extraction

Personal Trust Layer

Interaction Layer

Fig. 2. Layered trust emergence approach.
3.2. The cycle of trust

Previously, we introduced a conceptual approach for
determining trust based on interactions: the cycle of trust

[5]. This cycle, adopting the MAPE concept [18], consists
of four phases, which are M onitor, A nalyze, P lan and E

xecute. Periodically running through these four phases
establishes a kind of environmental feedback control,
and therefore allows to adapt to varying circumstances.
Applied in our environment, we are able to infer trust
dynamically during ongoing collaborations. In the mon-

itoring phase the trust management system observes
interactions between humans and services, including
their types, context and success. In the analyzing phase

interactions are used to infer trust relationships. For this
purpose, interaction metrics are calculated and inter-
preted using personal trust rule sets that depend on the
purpose of and situation for trust determination. The
following planning phase covers the set up of collaboration
scenarios, including user activities and human-, and
service compositions, taking the inferred trust relations
into account. The execution phase provides support to
enhance the execution of planned collaboration, including
observing activity deadlines, checking the availability of
actors, and compensation of resource limitations. The
interactions of actors are observed in the execution phase;
and the loop is closed.

4. From interactions to social trust

In this paper, we demonstrate the inference of trust
depending on captured collaboration data considering
individual trust perceptions. Conceptually we follow a
three layer approach (Fig. 2), realizing trust emergence
concepts that support our motivating scenario.

Interaction layer: On the bottom layer logging and
analyzing of interactions take place. From atomic inter-
actions, more meaningful and aggregated interaction
metrics are extracted in subsequent time intervals by
the means of message correlation and pattern detection.
Domain-specific interaction metrics are determined in
pre-configured scopes.

Personal trust layer: On the middle layer interaction
metrics are combined and weighted individually (‘inter-
preted’) by applying configured rules, and a fundamental
trust network is established. These personal trust rela-
tions reflect the individual trust perception of the actors.

Trust projection layer: On the top-layer potential future
trust relations are predicted where no personal trust has
been established yet.

While the interaction- and trust metrics on the first
two layers are calculated offline in fixed subsequent time
intervals (due to potentially high computational effort for
personalized trust relations in large networks), trust
projection on the top layer is performed dynamically
when needed. In the following we discuss the three layers
in detail focusing on personal trust.

4.1. Interaction layer

The identified key concepts on that layer are (i)
harnessing diverse available collaboration data, (ii) en-
abling and capturing various types of interactions in SOA-
based mixed systems environments, (iii) accounting for
context models associated with these interactions, and

ARTICLE IN PRESS

F. Skopik et al. / Information Systems 35 (2010) 735–757 739
(iv) defining trust scopes to allow a rule-based inference
of trust from observed interactions.
4.1.1. Collaboration data

Recently, various trust models have been published
relying on various mathematical concepts, e.g. probability
[19–21] or reasoning rules [22]. Most works make no
assumption about the data used to determine trust, so
trust models are completely decoupled from the data
underneath. In particular, many approaches account only
for one-dimensional manual user feedback (rating) and
categorize interactions only in cooperative and defective
ones. However, the support of automatic inference
demands for observable evidence of trust. Therefore, the
large part of used data comes from observing interactions
(see the research area of complex event processing1).
Besides interactions, there are more data sources in
collaborative and social networks that can be used to
express the diversity of trust, and are utilized for some
higher level trust projection concepts.

Finally, we identified the following sources, common
in most large-scale SOA-based networks, such as de-
scribed in the motivating use case:
�
 Interactions: Interactions provide evidence about the
success of previous collaboration encounters. We
categorize in fundamental interactions, such as e-mail
traffic, instant messaging, VoIP communication and
SOAP/REST-based service invocations; and in higher-
level interactions, mostly relying on fundamental
interactions, but annotated with their semantic mean-
ing, e.g., file exchange, report submission, and task
delegation.

�
 Profiles: Profiles contain valuable information about

actors. Human profiles are about professional back-
ground, job position, skills, and expertises; service
profiles can contain vendor information, features, and
capabilities. Similarities of profiles are utilized by
higher-level trust concepts, including trust mirroring
and teleportation (detailed in the following sections).
Profiles may be entered completely manually, or are
(partly) determined dynamically based on interactions.
An example for inferring expertise from activity
involvements can be found in [23].

�
 Structural relations and hierarchies: Knowledge about

memberships in groups, roles of humans or services,
joint activities and projects can be used to extend the
notion and perception of trust. For instance, in a
business environment someone may require that
potentially trusted partners are members in the same
team or are employed by a certain organization.

�
 Manually declared relations: Nowadays, standardized

technologies for specifying friend (buddy) networks
(FOAF,2 XFN3) are used. This enables, people on the one
side to define trust relationships explicitly, but on the
other side also distrust (‘foes’). Using such explicit
1 http://complexevents.com/
2 Friend-Of-A-Friend http://xmlns.com/foaf/0.1/.
3 XHTML Friends Network http://www.gmpg.org/xfn/11.
commitments may override and fine-tune automatically
inferred relations.

Capturing all these information may raise privacy
concerns. However, neither content of interaction mes-
sages is stored nor semantic analysis is performed. We
follow a pure structural approach, which makes extensive
use of metadata instead of the actual message content.
Furthermore, after analyzing interactions, logs can be
deleted, and there remain only higher level metrics. Data
are stored and managed by a centralized architecture, so
there is no need to propagate sensitive data through the
network (as in peer-to-peer networks).

4.1.2. Context-aware interaction observation

Our approach considers two different levels of inter-
actions. On the bottom level we capture basic interactions,
including fundamental exchanges of e-mail messages,
VoIP calls, instant messages, and basic Web services
invocations via SOAP or REST. In most cases there is no
possibility to determine the semantic meaning of these
interactions, i.e., the reason for initiating a Skype call. It
can be only observed if a call is accepted and its duration.
However, on the top level, Web service enabled interac-

tions, using dedicated tools for delegating activities,
performing periodic reports, and requesting help and
support, provide more information on the reason of
interactions and nature of collaboration.

Furthermore, in mixed service-oriented systems, con-
sisting of humans and software services, we distinguish
interactions according to the type of interacting entities.
Our framework—VieTE—accounts for the following types
of interactions: (i) human–human, including instant
messaging and e-mail via dedicated services with inte-
grated interaction sensors; (ii) human–service typically
service invocations via SOAP or REST interfaces, using an
external access layer that intercepts and captures mes-
sages; (iii) service–human, e.g., reminder service or meet-
ing scheduling service, notifying humans about events;
(iv) service–service, in typical service compositions, e.g.,
modeled with BPEL.

4.1.3. Interaction metrics and scopes

Interaction metrics are calculated by observing (monitor-
ing) interactions and further analysis. Therefore, metrics
describe the interaction behavior of actors, either humans or
services, in a mixed service-oriented system. Such metrics
are, for instance, their responsiveness (e.g., measured by
an average response time), the reliability in responding to
requests, the ratio of performed to delegated tasks, or the
variance in delivering periodic status reports.

However, these interaction metrics are of course valid
only in particular situations. For example, interaction
behavior varies depending on the risk actors are facing, or
the benefit they are receiving. Depending on the environ-
ment, several external factors may influence the interac-
tion behavior of actors, such as their motivation, interest
or expertise. For example, in the outlined help and
support environment in Section 2, people might be more
responsive in their dedicated expertise areas than in
topics outside their interests.

http://complexevents.com/
http://xmlns.com/foaf/0.1/
http://www.gmpg.org/xfn/11

ARTICLE IN PRESS

Fig. 3. Social and collaborative network model.

F. Skopik et al. / Information Systems 35 (2010) 735–757740
Therefore, we introduce the notion of scopes. In
general, scopes describe what activities are relevant for
determining certain interaction metrics. All interactions
within relevant activities are taken into account for
metrics determination. Scopes are defined specifically
for a domain and depending on business areas. In the
previous Expert Web use case, for instance, one scope can
define that all software implementation and software
testing activities should be considered, to describe some-
one’s collaboration behavior in the area of software
engineering. Other scopes could define to account for
interactions regarding management activities of team
leaders (e.g., delivering status reports, delegating tasks to
team members etc.), or aggregate interactions from risky
activities only.

The definition of scopes is supported in two different
forms:
�
 Tag-based scopes: Scopes are represented as lists of
key-words (tags). All interactions within activities
whose descriptions incorporate these keywords, are
taken into account for metrics calculation.

�
 Activity-based scopes: Scopes are determined by match-

ing constraints on explicitly defined activities, e.g.,
matching activity type, a minimum team size to
indicate mass collaboration, or a maximum risk.

All interactions that take place in the context of
matching activities are considered for interaction metrics
calculation. In case more than one tag is set and
constraints defined, respectively, there will be interaction
contexts (i.e., activities) that match only partly (e.g., only
two of three tags). Then the impact of interactions on a
metric is weighted based on the degree of match. More
information on observing, logging, aggregating, and
analyzing interactions in mixed systems, as well as
calculating metrics have been studied in [5,23,24].

4.2. Personalized trust inference

We model the network of humans and services with
their trust relations as a directed graph G=(V,E), where the
vertices V denote the members of the network, and
edges E reflect their trust relations in between. General
profiles of network members are attached to the vertices.
Furthermore, both vertices and edges are annotated with
various metrics that describe collaboration behaviors of
network members and their relationships. A community

comprises a subset of vertices (and references to their
connecting edges). Fig. 3 visualizes this model.

We distinguish the following classes of metrics:
�
 Interaction metrics (subsets of MEdge) describe the
interaction behavior as explained before, such as an
actor’s responsiveness and reliability in distinct scopes.

�
 Similarity metrics (subsets of MEdge) provide informa-

tion about skill-, feature-, or expertise similarities,
depending on the type of actors.

�
 Trust metrics (subsets of MEdge) are interpreted from

interaction- and similarity metrics, e.g., personal trust,
symmetry of trust relations (bidirectional trust) and
trust trends in certain time intervals.

�
 Collaboration metrics (MCollaboration) are bound to

a user, and describe independent from collaboration
partners someone’s previous experiences, such as
collected expertise by performing activities, and
behavior, e.g., reciprocity [9]. Furthermore, edge
metrics can be aggregated to calculate collaboration
metrics; for instance, an average value of someone’s
responsiveness or availability.

�
 Group metrics (MGroup) provide information about aver-

age values and distribution of vertex- and edge metrics in
a community, therefore, they are a valuable mean to
determine a metric value relative to others in the same
group.

Users of the system, i.e., the network members, specify
rules for evaluating calculated interaction metrics to trust.
For this purpose, we utilize an approach based on fuzzy
set theory (see more details in the next section) that (i)
enables users to express their rules in almost natural
language (similar to a domain specific language), and (ii)
offers elegant and efficient mechanisms to aggregate
fuzzy expressions of trust.

We decided to build a rule-based system, instead of a
certain analytical model, because of the flexibility of the
environment. Humans and services (i.e., service vendors)
should be able to define their personal rules that have to
be satisfied to establish trust in others. For instance, let us
assume the members of the network want to describe
influencing factors for establishing trust in a software
engineer. There are various factors on that trust may rely:
(i) based on formal skills provided by profiles including
certificates such as university degrees, (ii) based on
collected experience and previous success (e.g., performed
activities of different types in the scope of software
engineering), (iii) based on particular interaction beha-
vior, such as support reliability and quality in the
previously introduced Expert Web use case), or (iv)
accounting for capabilities and behavior in related scopes
of software engineering.

ARTICLE IN PRESS

3624 724812 60

0.25

0.75

0.5

1.0

μ
(t r

)
HIGHLOW MEDIUM

5010 100

0.75

0.5

1.0

success rate sr [%]

LOW HIGHMEDIUM

18 75

If tr is low and sr is high then trust is full

If tr is low and sr is medium then trust is high

If tr is medium and sr is high then trust is high

If tr is medium and sr is medium then trust is medium

0.60.40.2 0.8 1.0

0.75

1.0

μ
(tr

us
t)

FULLLOW MEDIUM HIGH

trust
0.61

μ
(s

r)

0.25

0.5

0.25

response time tr [h]

Fig. 4. An example showing fuzzy trust inference. Applied interaction metrics are response time tr=18 h and success rate sr=75%: (a) definition of

membership functions and fuzzified interaction metrics; (b) four applied fuzzy rules following the max–min inference and (c) defuzzification by

determining the center of gravity.

F. Skopik et al. / Information Systems 35 (2010) 735–757 741
4.3. Trust projection layer

In large-scale networks with thousands of humans and
services, each member interacts only with a small amount
of potential partners leading only to a small portion of
personal trust relations from each member’s point of
view. Therefore, several concepts have been introduced to
predict not existing relations, e.g., recommendation by the
means of trust propagation, and reputation by the means
of trust aggregation. We extend this list by three novel
concepts, based on the similarities of actors, their trust
perceptions, and the situations described by context data.
�
 Trust mapping deals with using trust relations estab-
lished in other, but to some extent similar scopes (e.g.,
related expertise areas).

�
 Trust mirroring [12], implies that actors with similar

profiles (interests, skills, community membership),
tend to trust each other more than completely
unknown actors.

�
 Trust teleportation [12] rests on the similarity of human

or service capabilities, and describes that trust in a
member of a certain community can be teleported to
other members. For instance, if an actor, belonging to a
certain expert group, is trusted because of his
distinguished knowledge, other members of the same
group may benefit from this trust relation as well.

5. Fuzzy set theory for trust inference

Fuzzy set theory, developed by Zadeh et al. [25], and
fuzzy logic emerged in the domain of control engineering,
but are nowadays more and more used in computer
science to enable lightweight reasoning on a set of
imperfect data or knowledge. The concept of fuzziness
has been used earlier in trust models [26–28], however, to
our best knowledge not to enable a personalized inter-
pretation of trust from larger and diverse sets of metrics,
calculated upon observable interactions. As fuzzy infer-
ence is a key mechanisms of our trust model, we
introduce the fundamental definitions in this section.
There exists various further literature on fuzzy set theory,
for instance [29].

Zadeh et al. [25] defined a fuzzy set A in X (ADX) to be
characterized by a membership function mAðxÞ : X/½0;1�
which associates with each point in X a real number in the
interval [0,1], with the value of mAðxÞ at x representing the
‘grade of membership’ of x in A. Thus, the nearer the value
of mAðxÞ to 1, the higher the grade of membership of x in A.
When A is a set in the ordinary sense of the term, its
membership function can take only two values
(mAðxÞ : X/f0;1g, Eq. (1), according as x does or does not
belong to A. Thus, in this case mAðxÞ reduces to the familiar
characteristic function of a set A.

mAðxÞ ¼
1 if x 2 A

0 if x=2A

(
ð1Þ

Eq. (2) depicts an example definition of a membership
function mAðxÞ describing a fuzzy set. This membership
function is part of the linguistic variable ‘responsiveness’
highlighted in Fig. 4(a), left side.

mAðxÞ ¼

0 if 0rxo12
x

12
�1 if 12rxo24

1 if 24rxo48

�
x

12
�5 if 48rxo60

0 else

8>>>>>>>><
>>>>>>>>:

ð2Þ

ARTICLE IN PRESS

0.2

0.4

0.6

0.8

1

tr
us

t
τ

tr = 18h
sr = 75 %
τ = 0.609

F. Skopik et al. / Information Systems 35 (2010) 735–757742
Two or more fuzzy sets, describing the same char-
acteristic (i.e., metric), can be merged to a linguistic

variable.For instance in Fig. 4(a), the linguistic variable
‘responsiveness’ is described by three fuzzy sets: high,
medium, and low.

The definition of linguistic variables (and the their
single membership functions, respectively), has to be
performed carefully as they determine the operation of
the reasoning process. Linguistic variables are defined
either for the whole community, or for groups, and even
single network members, by:
80
100
0

�
 0
20

40
60

80
1000

20
40

60

response tim
e t r [h

ours]
success rate sr [%]
A domain expert, using his experience and
expertise. However, depending on the complexity of
the rules and aggregated metrics continuous manual
adjustments are needed (especially when bootstrap-
ping the trust system).

�

Fig. 5. Trust values after defuzzification for all possible input values of tr

and sr.
The system itself based on knowledge about the whole
community. For instance, the definition of a ‘high’ skill
level is determined by the best 10% of all network
members in certain areas.

�
 The users based on individual constraints. For

example, a ‘high’ skill level from user u’s point of view
starts with having more than the double score of
himself.

Let XA and XB be two feature spaces, and sets that are
describes by their membership function mA and mB,
respectively. A fuzzy relation mRðxA; xBÞ : XA � XB/½0;1�
describes the set X, whereas mRðxA; xBÞ associates each
element (xA,xB) from the cartesian product XA � XB a
membership degree in [0,1]. Fuzzy relations are defined
by a rule base (see example in Listing 1), where each rule,
as shown in Eq. (3), comprises a premise p (condition to
be met) and a conclusion c:

IF p THEN c ð3Þ
Listing 1. Given the linguistic variables response time tr, success rate

sr, and trust t, with the membership functions as defined in Fig. 4,

we provide this rule base to the fuzzy engine.

Approximate reasoning by evaluating the aforemen-
tioned rule base, needs some fuzzy operators to be
defined [25]: OR, AND, and NOT.

A OR B� A [B� mðxÞ ¼maxðmAðxÞ;mBðxÞÞ for x 2 X ð4Þ

A AND B� A \ B� mðxÞ ¼minðmAðxÞ;mBðxÞÞ for x 2 X ð5Þ

NOT A� mðxÞ ¼ 1�mAðxÞ for x 2 X ð6Þ
The defuzzification operation [30] determines a discrete
(sharp) value xs from the inferred fuzzy set X. For that
purpose all single results obtained by evaluating rules
(see Fig. 4(b)) are combined, forming a geometric shape.
One of the most common defuzzification methods is to
determine the center of gravity of this shape, as depicted
in the example in Fig. 4(c). In general, center of gravity
defuzzification determines the component x of xs of the
area below the membership function mxðxÞ (see Eq. (7)).

xs ¼

R
xx � mxðxÞ � dxR

xmxðxÞ � dx
ð7Þ

Fig. 5 depicts possible trust values after defuzzification
for metrics tr and sr when applying membership functions
defined in Fig. 4 and the rule base in Listing 1.

6. Trust model definitions

The trust model manages context-dependent trust
between actors, i.e., humans and services, emerging from
interactions (see Fig. 7(a)) that are captured and inter-
preted. A trust relation is always asymmetric, i.e., a
directed edge from one vertex to another one in G. We call
the trusting actor the trustor u (the source of an edge), and
the trusted entity the trustee v (the sink of an edge).
Analyzed interactions are any kind of communication,
coordination or execution actions initiated by u regarding
v. The context of interactions reflects the situation and
reason for their occurrences, and is modeled as activities.
Activities, as presented in [5] and shortly discussed
before, describe work-relevant context elements. When
interactions are interpreted, only a minor subset of all
describing context elements is relevant within a trust

scope. In the motivating use case of this paper, such a trust
scope may describe the expertise area.

6.1. Fundamental trust model

Available metrics are processed by individually con-
figured fuzzy (event)-condition-action-rules. These rules

ARTICLE IN PRESS

4 http://www.itl.nist.gov/div898/handbook/

F. Skopik et al. / Information Systems 35 (2010) 735–757 743
define conditions to be met by metrics M for interpreting
trustworthy behavior, e.g., ‘the responsiveness of the
trustee must be high’ or ‘a trustworthy software pro-
grammer must have collected at least average experiences
in software integration activities’. Rules reflect a user’s
trust perception, e.g., pessimists may demand for stricter
trustworthy behavior, than optimists.

On top of metrics, the confidence csðu;vÞ 2 ½0;1� of u in v

in scope s is determined. This confidence upon available
interaction-, collaboration-, and similarity metrics M(u,v)
that describe the relationship from u to v, represents
recent evidence that an actor behaves dependably,
securely and reliably. Besides highly dynamic interaction
metrics, actor profiles P may be considered during
calculation, e.g., a human actor’s education or a service’s
vendor. The function Cs

c (Eq. (8)) evaluates u’s fuzzy rule
set Rc(u) to determine confidence c in scope s in his
collaboration partners (e.g., v). This confidence value is
normalized to [0,1] according to the evaluation results
of the rule base:

csðu;vÞ ¼Cs
cðu;Mðu;vÞ; PðvÞ;RcðuÞ; sÞ ð8Þ

The reliability of confidence rðcsðu;vÞÞ 2 ½0;1�, ranging
from totally uncertain to fully confirmed, depends mainly
on the amount of data used to calculate confidence (more
data provide higher evidence), and the variance of metric
values collected over time (e.g., stable interaction beha-
vior is more trustworthy; see later about temporal
evolvement). The function Cs

r (Eq. (9)) determines the
reliability r of confidence cs(u,v) relying on utilized
metrics in Rc(u). As the determination of reliability
can be quite complex (considering temporal trends and
variances of metrics), and the additional personal setup of
this measure could be very demanding for the end-users,
we let a domain expert configure a global reliability
measure that accounts for metrics in Rc(u) of respective
network members:

rðcsðu;vÞÞ ¼Cs
rðu;Mðu;vÞ; PðvÞ;RcðuÞ; sÞ ð9Þ

Our engine infers personal trust tsðu;vÞ 2 ½0;1� by
combining confidence with its reliability (see operator �
in Eq. (10)). This can be performed either rule-based by
attenuating confidence respecting reliability, or arithme-
tically, for instance by multiplying confidence with
reliability (as both are scaled to the interval [0,1]). Since
trust relies directly on confidence that is inferred by
evaluating personal rules, an actor’s personal trust
relation in this model indeed reflects its subjective criteria
for trusting another actor:

tsðu;vÞ ¼/csðu;vÞ;rðcsðu;vÞÞ;�S ð10Þ

We introduce the trust vector ~T
s
ðuÞ to enable efficient

trust management in the Web of Trust. This vector is
combined of single personal trust relations (outgoing
edges of a vertex in G) from an actor u to others in
scope s (Eq. (11)):

~T
s
ðuÞ ¼/tsðu;vÞ; tsðu;wÞ; tsðu; xÞ; . . .S ð11Þ
The trust matrix Ts comprises trust vectors of all actors
in the environment, and is therefore the adjacency matrix
of the mentioned trust graph G. In this matrix, as shown in
Eq. (12) for four vertices V={u,v,w,x}, each row vector
describes the trusting behavior of a particular actor (~T

s
),

while the column vectors describe how much an actor is
trusted by others. If no relation exists, such as self-
connections, this is denoted by the symbol ?:

Ts
¼

? tsðu;vÞ tsðu;wÞ tsðu; xÞ

tsðv;uÞ ? tsðv;wÞ tsðv; xÞ

tsðw;uÞ tsðw;vÞ ? tsðw; xÞ

tsðx;uÞ tsðx;vÞ tsðx;wÞ ?

0
BBBB@

1
CCCCA ð12Þ

In cases where actors define their personalized trust
inference rules, the trust perception ps

tðuÞ represents the
‘trusting behavior’ of u, i.e., its attitude to trust others in
scope s. The absolute value of ps

tðuÞ is not of major
importance, but it is meaningful to compare the trust
perceptions of various actors. Basically, this is performed
by comparing their rule bases for trust inference
(Eq. (13)), e.g., if actors account for the same metrics, or if
they are shaped by optimism or pessimism. Therefore, more
similar rules means more similar requirements for trust
establishment. The application of trust perception becomes
clear when discussing the trust projection concepts, such as
weighting received recommendations based on the simi-
larity of the recommender’s trust perception:

simpercepðp
s
tðuÞ; p

s
tðvÞÞ ¼ simðRs

cðuÞ;R
s
cðvÞÞ ð13Þ

6.2. Temporal evaluation

Personal trust tsðu;vÞ from u in v is updated periodi-
cally in successive time intervals ti, numbered with
consecutive integers starting with zero. We denote the
personal trust value calculated at time step i as ts

i . As trust
is evolving over time, we do not simply replace old values,
i.e., ts

i�1, with newer ones, but merge them according to
pre-defined rules. For this purpose we apply the concept
of exponential moving average,4 to smoothen the se-
quence of calculated trust values as shown in Eq. (14).

ts
i ¼ a �Dt

s
i þð1�aÞ � t

s
i�1 ð14Þ

With this method, we are able to adjust the impor-
tance of the most recent trust behavior Dts compared to
history trust values ts (smoothing factor a 2 ½0;1�). In case,
there are no interactions between two entities, but an
existing trust relation, the reliability of this trust relation
is lowered by a small amount each evaluation interval.
Therefore, equal to reality, trust between entities is
reduced stepwise, if they do not interact frequently:

Fig. 6(a) shows an example of applied EMA. The dashed
line represents the trustworthiness of an actor’s behavior,
i.e., Dts

i , for the i th time interval, calculated
independently from previous time intervals. In this
extreme situation an actor behaves fully trustworthy,
drops to zero, and behaves trustworthy again. Similar to
reality, EMA enables us to memorize drops in recent

http://www.itl.nist.gov/div898/handbook/

ARTICLE IN PRESS

0

0.2

0.4

0.6

0.8

1

0
time

ev
al

ua
tio

n

Behavior
EMA a = 0.2
EMA a = 0.5
EMA a = 0.8

0

0.2

0.4

0.6

0.8

1

0
time

ev
al

ua
tio

n

Behavior
Pessimist
Optimist

5 10 15 20 25 30 5 10 15 20 25 30

Fig. 6. Smoothing of trust values over time: (a) evolution of trust applying EMA and (b) optimistic and pessimistic perception of trust modeled with

adaptive EMA.

F. Skopik et al. / Information Systems 35 (2010) 735–757744
behavior. If an actor once behaved untrustworthy, it will
likely take some time to regain full trust again. Therefore,
depending on the selected tuning parameter a, different
strategies for merging current trust values with the
history can be realized. According to Eq. (14), for a40:5
the actual behavior is counted more, otherwise the history
gains more importance. Fig. 6(a) shows three smoothened
time lines, calculated with different smoothing factors.
There exist several other approaches to trust evolution
which work with deep histories, e.g., [31], however, EMA
requires less memory and lower computational effort.

As shown in Fig. 6(a), by applying EMA previous or
current behavior is given more importance. However,
personal traits, such as being optimistic or pessimistic,
demands for more sophisticated rules of temporal
evaluation. In our case, we define an optimist as some-
body who predominantly remembers positive and con-
tributing behavior and tends to quickly forgive short-term
unreliability. In contrast to that, a pessimist loses trust
also for short-term unreliability and needs more time to
regain trust than the optimist. Examples of this behavior
are depicted by Fig. 6(b). Optimistic and pessimistic
perceptions are realized by adapting the smoothing factor
a according to Eq. (15). Whenever the curve depicted in
Fig. 6(b) changes its sign, ts

i is re-calculated with adapted
a. A small deviation e denotes that the smoothing factor is
either near 0 or near 1, depending on falling or rising
trustworthiness. An enhanced version of this approach
may adapt parameters in more fine-grained intervals,
for instance, by considering lower and higher drops/rises
of trustworthiness.

a¼

0þe if optimistic and ts
i ots

i�1

1�e if optimistic and ts
i Zts

i�1

0þe if pessimistic and ts
i Zts

i�1

1�e if pessimistic and ts
i ots

i�1

8>>>><
>>>>:

ð15Þ

6.3. Trust projection

The concepts of trust projection combine existing
personal trust relations or compare the similarity of
profiles to predict potentially emerging trust relations.
Projected relations, predicted by the means of recom-
mendation or reputation, are fundamentally different
from personal trust relations, because they do not rely
on personal experience, therefore, not personally proven.

Trust mapping: tmap describes a mechanism to predict a
trust relation in a particular scope s, when trust relations
between the same actors in different, but to some extent
similar scopes S¼ fsxjtsx ðu;vÞa ?g, already have been
established. For instance, if a trust relation in an engineer
regarding software implementation activities has already
been established, this relation can be mapped to software
modeling as well. However, a good programmer may not
be a good software architect, the software programmer
may be trusted because of his knowledge, experience,
and expertise, that are similar for both types of activities.
Therefore, we define trust mapping to rely on the
similarity of scopes. Trust tsx ðu;vÞ can be mapped to
scope s. For that purpose each tsx is weighted and

attenuated by the scope similarity, as shown in Eq. (16).
We assume that the function simscope(s1,s2) returns the
similarity of two scopes between 0 (totally different) and
1 (totally equal). An example of simscope for tag-based
scope definitions, is measuring the amount of matching
tags:

ts
mapðu;vÞ ¼

P
sx2Sts

xðw;vÞ � ðsimscopeðsx; sÞÞ
2P

sx2Ssimscopeðsx; sÞ
ð16Þ

Recommendation: ts
recðu;vÞ is built by aggregating u’s

trustees’ trust relations to v. Recommendation represents
therefore second-hand experiences. Potential recommen-
ders of u for v are all RecDfn 2 V jtsðu;nÞa ?4tsðn;vÞ

a ?g. According to Fig. 7(c), the recommenders’ Rec={w,x}
perception of trust will likely be different from the actor’s
u perception (that is receiving the recommendation),
because all of them define trust upon different rule sets.
For instance, optimists generally tend to provide better
recommendations of third parties than pessimists.
Considering ps

t allows to account for differences in trust
perceptions between the set of recommenders Rec and a
user u of recommendations. Thus, u could define to utilize
only recommendations of trustees having similar percep-
tions of trust, i.e., ps

tðuÞ 	 ps
tðwÞ 	 ps

tðxÞ. As common in

ARTICLE IN PRESS

?
vu

context 1

context 2
interactions

trustee
?

vu

scope1

scope2
?

w

vu

x

?

w

vu
y

z

x

?
vu

similarity

?

w

vu

similarity

trustor

scope

Fig. 7. Trust inference concepts: (a) direct trust inference; (b) trust mapping; (c) recommendation; (d) reputation; (e) trust mirroring and (f) trust

teleportation.

F. Skopik et al. / Information Systems 35 (2010) 735–757 745
other models, e.g., [7], we weight the recommendation of
each w 2 Rec with the trustworthiness of u in w (Eq. (17)):

ts
recðu;vÞ ¼

P
w2Rectsðw;vÞ � tsðu;wÞP

w2Rectsðu;wÞ
ð17Þ

Reputation: trep is similar to recommendation, how-
ever, according to Fig. 7(d) the actor u inferring the
reputation of v does not require a personal trust relation
to v’s trustors {w,x,y,z} (‘reputing’ entities RepDfn 2
V jtsðu;nÞa ?g described by a column vector of the matrix
Ts). Reputation represents a kind of global (community)
trust, calculated on top of each trustor’s personal trust
relations. Because these relations rest upon individually
set-up rules, the results of our reputation model reflect
someone’s real standing, influenced by the subjective trust
perceptions of his trustors. As in other models, single trust
relations can be weighted before aggregation, e.g.,
according to the similarities of respective ps

t (Eq. (18)).
More advanced models may account for the reputation of
the trustors, leading to a PageRank-like model (see also
TrustRank [32]):

ts
repðu;vÞ ¼

P
w2Reptsðw;vÞ � simpercepðps

tðuÞ; p
s
tðwÞÞP

w2Repsimpercepðps
tðuÞ; p

s
tðwÞÞ

ð18Þ

Trust mirroring: tmir is typically applied in environ-
ments where actors have the same roles (e.g., online social
platforms). Depending on the environment, interest and
competency similarities of people can be interpreted
directly as an indicator for future trust (Eq. (19)). There
is strong evidence that actors ‘similar minded’ tend to
trust each other more than any random actors [33,34];
e.g., movie recommendations of people with same inter-
ests are usually more trustworthy than the opinions of
unknown persons. Mirrored trust relations are directed, iff
simprofileðPðuÞ; PðvÞÞasimprofileðPðvÞ; PðuÞÞ. For instance an
experienced actor v might have at least the same
competencies as a novice u in a scope s (expressed by
the profile Ps tailored for s). Therefore, v covers mostly all
competencies of u and ts

mirðu;vÞ is high, while this is not
true for ts
mirðv;uÞ. If simprofileðPðuÞ; PðvÞÞ ¼ simprofileðPðvÞ;

PðuÞÞ, then ts
mirðu;vÞ can be mirrored along the main

diagonal of the trust matrix Ts to ts
mirðv;uÞ:

ts
mirðu;vÞ ¼ simprofileðP

sðuÞ; PsðvÞÞ ð19Þ

Trust teleportation: ttel is applied as depicted in Fig. 7(f).
We assume that u has established a trust relationship to w

in the past, for example, based on w’s capabilities to assist
u in work activities. Therefore, others having interests and
capabilities similar to w may become similarly trusted by
u in the future. In contrast to mirroring, trust teleportation
is applied in environments comprising actors with
different roles. For example, a manager might trust a
software developer belonging to a certain group. Other
members in the same group may benefit from the existing
trust relationship by being recommended as trustworthy
as well. We attempt to predict the amount of future trust
from u to v by comparing w’s and v’s profiles Ps, especially
the parts relevant in scope s. Eq. (20) deals with a
generalized case where several trust relations from u to
members of a group Tele(
 ~T

s
ðuÞ) are teleported to a still

untrusted actor v. Similar to trust mapping, teleportation
is weighted and attenuated by the similarity measure-
ment results for actor profiles (see [12] for details on
profile similarity measurement):

ts
teleðu;vÞ ¼

P
w2Telets

xðu;wÞ � ðsimprofileðP
sðwÞ; PsðvÞÞÞ2P

w2TelesimprofileðPsðwÞ;PsðvÞÞ
ð20Þ

7. Towards flexible compositions

Established trust relations advise network members to
keep interacting with successful (and thus trusted)
collaboration partners, and to avoid—or even refuse—

interactions with partners from unsuccessful collabora-
tions. However, recommending actors to collaborate only
with their most trusted partners might have negative side
effects for the whole community. For instance in our
Expert Web scenario, some actors will provide support

ARTICLE IN PRESS

F. Skopik et al. / Information Systems 35 (2010) 735–757746
highly above average (similar to common Internet
forums). Therefore, as a small amount of network
members become very popular, they will also become
more and more overloaded with help and support
requests. Furthermore, once somebody lost his trustors,
it will be hard—if not impossible—for him/her to regain
trust. An actor might lose his/her trustors not only if s/he
behaves untrustworthy, but also if another one behaves
more trustworthy (with respect to the configured trust
inference rules). We introduce two concepts for compen-
sating this load balancing problem that is mostly
neglected, but of paramount importance in collaborative
environments:
�
 Community balancing models enforce network mem-
bers to select interaction partners not only based on
trust, but considering at least one further impact, such
as costs (trade-off).

�
 Request delegation patterns enable network members to

delegate incoming request to third-parties, in case they
are overloaded. On the one side, this method balances
the work load within a community, on the other side, it
enables actors to establish trust relations to still
unknown members.

7.1. Community balancing models

Balancing communities is essential to distribute work-
load in professional environments, and to facilitate the
participation of erratically involved actors and new-
comers in social communities. For instance, in the Expert
Web use case of this paper, the load should be balanced
between all members of the network. This means on the
one side highly reputed actors should not become flooded
with requests (e.g., for each help request, independent
from how important or challenging it is, only actors with
highest reputation would be chosen). On the other side,
newcomers and lower reputed actors should get a chance
to increase their standing and visibility within the
community. Therefore, mechanisms are needed to let
actors not only select experts based on trust but also
further influencing factors. That is realized with trust

trade-off models.
The applicability of trade-off models is highly depen-

dent from the domain and environment. For example, for
a non-profit social Web platform, where people request
suggestions for planning their holidays, a trade-off model
will be fundamentally different from a business oriented
help and support network. Therefore, we categorize
balancing models in the following two classes:
�
 Business-oriented models rely on mechanisms of the
free economy, including supply and demand. For
instance, highly demanded services (usually from top
reputed actors) cause higher costs on the consumer
side than services offered by ordinary actors. Concepts
to realize rewarding of services and payment for
contributions are needed. In the Expert Web use case
of this paper, actors could earn rewards for providing
reliable and successful support, and would have to pay
for involving and interacting with other experts.

�
 Social-oriented models, as typically applied in free and

open social platforms, have other concepts for balan-
cing communities. For instance, reciprocity [9] reflects
the amount of obtained benefit from the network
compared to provided contribution. Actors may be
allowed to interact with high reputed community
members, if they do not only exploit the network, but
also contribute to a certain extent.

For both types of balancing models, reliable interaction
behavior and expedient support of community members
is rewarded. In a large-scale SOA environment, where
potentially thousands of actors may interact and are
flexibly composed for short-term collaborations, enabling
automatic rewarding is highly beneficial. Instead of rating
someone’s contribution manually (typical human feed-
back), we attempt to apply automatic rewarding as far as
suitable. For instance, tracking, if sent requests trigger
responses, and average time spans for processing requests
are common quality of service (QoS) measures in service-
oriented systems. However, simple structural interaction
analysis does not account for the value of interactions.
Therefore, on a more abstract level, contributions can be,
at least to some extent, automatically tracked. For
instance, achieving a predefined activity goal (milestone),
such as creating a project artifact, or starting a follow-up
activity in a process-centric environment, are strong
indicators that preceding collaborations have been
successful.

7.1.1. Business-oriented models

These models comprise concepts from the free econ-
omy, such as supply and demand, and costs and risks. In
business-oriented models as applied for instance in the
motivating scenario of this paper, each actor, offering
support and services to others, can demand a dynamically
adjustable amount of credits from service consumers. The
amount of this compensation is usually directly propor-
tional to the demand of the service, equally to the free
economy. Usually high quality services with higher
reputation are demanded more by network members.
On the one side, this mechanism motivates actors to
behave trustworthy (because than they will earn higher
rewards), on the other side paying for services will urge
consumers to distribute their requests between expensive
(e.g., highly reputed) and cheaper (e.g., newcomer)
services in the network.

7.1.2. Social-oriented models

In contrast to business-oriented system, socially
inspired environments do not (primarily) account for
payment. Normally, the participation in such networks is
for free, however, members expect others to participate in
a beneficial way. For instance, in a sharing portal, actors
share files for free, however, they expect the same from
others. This concept is described by reciprocity. This
definition of reciprocity, motivated by studies in which
repeated games are played between individuals [35],

ARTICLE IN PRESS

vu

w
+

I.
II.

III.

vu

w-
I.

II.
-

Fig. 8. Delegations and their impact on trust: (a) successful delegation

and (b) failed delegation.

F. Skopik et al. / Information Systems 35 (2010) 735–757 747
describes the expectation that actors will respond to each
other in similar ways, i.e., with similar benevolence of
their own. More general, reciprocity describes an actor’s
contributing behavior with respect to the whole commu-
nity (social reciprocity). This concept can be applied in a
wide range of social networks, to enable a kind of ‘soft
access control system’.

In a non-commercial version of the Expert Web, such
an access control system can evaluate for each actor
which network members (providing support services) can
be contacted and interacted with. For that purpose, we
define reciprocity as the ratio of obtained help from the
network (i.e., delegated tasks to others), and provided
help (i.e., accepted and processed tasks from others).
5 http://ws.apache.org/axis2/
7.2. Request delegation patterns

A common problem of trust and reputation mechan-
isms in online communities is that there emerge only a
minority of highly trusted actors, while the majority
remains in the background. Therefore, network members
tend to consult and interact with the same (already
trusted) partners again and again, leading to work over-
loads of these actors, and hindering the emergence of new
trust relations. We utilize the means of delegations to
compensate this load and interaction balancing problem
that is often neglected, but of paramount importance in
collaborative environments. In the motivating Expert Web
scenario of this paper, actors send and process requests
for support (RFS). Once an actor gets overloaded s/he
should be able to delegate requests to other actors (with
potentially free resources). If the receivers of such
delegations behave trustworthy, i.e., respond fast and
reliably, the original requesters will establish trust to
them. Fig. 8 visualizes this model. In case of a successful
delegation, u sends an RFS to v who delegates to w, and w

responds directly to u. This interaction will positively
impact the metrics that describe the relation from u to w,
and finally tðu;wÞ increases. The relation tðu;vÞ is neither
rewarded nor punished, because on the one side v did not
serve u’s RFS, but on the other side, v was able to
successfully delegate, and thus did not harm u. The
relation tðv;wÞ is also not influenced, since v is not the
original requester. If a delegation fails (Fig. 8(b)), i.e., an
RFS is not responded, metrics that describe both tðu;vÞ
and tðv;wÞ are negatively influenced (for instance the
success rate is decreased), because of v’s and w’s
unreliable behavior. But in that case, we assume that
tðu;wÞ remains unchanged. Although w has not served u’s
request, we do not know the reasons for that behavior. For
instance, a denial of service attack could maliciously harm
w’s reputation (the sum of trust relations), if s/he is
flooded with delegated RFSs.

The described delegation mechanisms and their influ-
ence on trust are configured by a domain expert in VieTE,
and are feasible for our Expert Web scenario, where all
participants in the network have similar collaboration
roles (in particular to provide help and support). Other
delegation and trust mechanisms, accounting for different
roles of network members and restrictions of delegations
due to confidentiality reasons, may be desirable in other
domains.

One of the major challenges to enable sophisticated
balancing is to determine the receivers of delegations in
the whole network. Usually, the selection will rely on
trust, because, as shown in Fig. 8(b), it is in v’s interest to
delegate successfully and not to get punished. A funda-
mental selection strategy randomly picks an actor from a
pool of service providers that are personally trusted above
a pre-defined limit. Based on each individual’s interaction
history, every network member has his/her own pool of
trusted actors. More advanced selection models are out of
scope of this paper, and are subject to further research.

8. Architecture and implementation

We discuss the VieTE—Vienna Trust Emergence Frame-

work [5,36] to research and evaluate novel concepts of
trust and reputation in mixed systems environments.
An overview of the framework is provided in Fig. 9.
Briefly, the system captures various kinds of interac-
tions, calculates metrics, such as responsiveness, skill-
Level, availability, performs a personalized rule-based
interpretation of these metrics, and finally infers trust
between each pair of interacting members. The main
components, developed as SOAP-based Web services in
Java, hosted by Axis2,5 are as follows:

Interaction monitoring: Interactions are either captured
by interaction sensors, included in infrastructure services,
or external access layers. An example for the first case is
the activity management service that notifies a logging
service about activity delegations and assignments. In the
second case, service invocations via SOAP are routed over
an access layer that captures the SOAP messages. Later on,
VieTE periodically analyzes captured interactions offline
and calculates higher level interaction metrics. While the
depicted architecture follows a centralized approach, the
logging facilities are replicated for scalability reasons, and
monitoring takes place in a distributed form. Interactions
are purged in predefined time intervals, depending on the
required depth of history needed by metric calculation
plugins.

Activity management: Actors use activities to manage
their work as introduced before. Activities are structures
to describe work and its goals, as well as participating
actors, used resources, and produced project artifacts.

http://ws.apache.org/axis2/

ARTICLE IN PRESS

Trust Rules WS

Trust Rules
- Personal Rules
- Projection Rules

Trust Rules Mgmt. WS

Interaction Mgmt. WS

Interaction DB
- Raw Interactions
- Optional Subscribers

Logging WS

Interaction Mgmt. WS

Interaction DB
- Raw Interactions
- Optional Subscribers

Logging WS

Interaction Mgmt. WS

Interaction DB
- Raw Interactions
- Optional Subscribers

Logging WS

A
ct

iv
ity

 M
gm

t.
W

S

Activities
- Activity Structures
- Tags

Trust Administration WS

Scope Definitions
- Activity Constraints
- Tag Lists

Metric
Calculation

Plugins

Configuration Mgmt. WS

Scope-dependent
Metrics Calculation

Interaction Correlation
and Abstraction

Interaction Retrieval
and Pre-Processing

Trust Interpretation
and Fuzzy Reasoning

Interaction Mgmt. WS

Interaction DB
- Raw Interactions
- Optional Subscribers

Logging WS
A

ct
iv

ity
 A

dm
in

. W
S

<context elements>

<interactions@context>

<metric definitions>
<scope>

<rules@scope>
<trust@scope>

D
is

tri
bu

te
d

In
te

ra
ct

io
n

Lo
gg

in
g

C
en

tra
liz

ed
V

ie
TE

C
or

e
P

ro
vi

si
on

 a
nd

C

on
fig

ur
at

io
n

Social Network Provisioning WS

Members
- Profiles
- Collaboration Metrics - Interaction-, Trust-, and

 Similarity Metrics

SN and Metrics Update WS

Trust Projection

Relations

<metrics@scope>

<rules>

Fig. 9. VieTE framework overview.

F. Skopik et al. / Information Systems 35 (2010) 735–757748
A detailed description of this model, used to capture the
context of interactions, is provided by [5].

Trust model administration: A domain expert configures
certain properties of the trust inference process that are
applied for all participants of the network. For instance, s/
he defines meaningful trust scopes in the given domain
and business area, configures available metric calculation
plugins that provide the metrics for personal trust rules,
and sets up the general trust model behavior, such as
temporal constraints for interaction analysis and end-
points of logging facilities.

Personal trust rules management: Personal trust rules,
configured by each member of the network, enable the
inference of a subjective and personalized view on trust.
On the one side a fuzzy inference engine utilizes sets of
trust rules to interpret available interaction metrics and
establish personal trust in predefined scopes. On the other
side rules configure the mode of operation of some higher
level trust projection concepts to establish relations
between non-interacting network members.

Social network management and provisioning: This compo-
nent enables the registration of humans and services,
including their individual profiles. All registered actors build
the set of vertices of a trust graph G=(V, E) (see the Web of

Trust in [3]). We support the discovery of actors during
ongoing collaborations (similar to a Web service registry),
relying on actor capabilities (profiles), and periodically
inferred metrics (interaction-, similarity-, collaboration-, and
trust metrics). Furthermore, for evaluating the trustworthi-
ness of small sets of actors, flexibly applied concepts of trust
projection can be used. An example use case is the
composition of actors to a human–service ensemble, where a
group of potential participants is pre-selected based on their
capabilities or professional affiliations, and finally a subset of
them flexibly composed with respect to their trust relations.
This mechanism enables late binding, as common in a (Web)
services world.

VieTECore: The VieTE core is the heart of the VieTE
framework and connects all the aforementioned compo-
nents. As depicted in Fig. 9 it retrieves interactions from
the replicated interaction management services, performs
an analysis and calculates interaction metrics using
metric plugins. Finally, updated metrics are interpreted
and personal trust is inferred utilizing a fuzzy rule engine.
These actions are periodically scheduled, e.g. on a daily or
weekly basis.

ARTICLE IN PRESS

F. Skopik et al. / Information Systems 35 (2010) 735–757 749
8.1. Human provided services in the expert web

An excerpt of the RFS schema definitions is shown in
Listing 2 defining complex data structures.
Listing 2. RFS schema definition.

Listing 3 shows the binding of the HPS WSDL to the
(HPS) infrastructure services.
Listing 3. HPS WSDL binding.

The GenericResource defines common attributes
and metadata associated with resources such as docu-
ments or policies. A GenericResource can encapsulate
remote resources that are hosted by a collaboration
infrastructure (e.g., document management). Request

defines the structure of an RFS (here we show a simplified
example). A Reply is the corresponding RFS response (we
omitted the actual XML definition). The protocol (at the
technical HPS middleware level) is asynchronous allowing
RFSs to be stored, retrieved, and processed. For that
purpose we implemented a middleware service (HPS
Access Layer—HAL) which dispatches and routes RFSs.
GetSupport depicts a WSDL message corresponding to
the RFS SupportRequest.

Upon receiving such a request, HAL generates a session
identifier contained in the output message AckSuppor-
tRequest. A notification is sent to the requester (assum-
ing a callback destination or notification endpoint has
been provided) to deliver RFS status updates for example;
processed RFSs can be retrieved via GetSupportReply.
The detailed notification mechanism can be found in [23].
8.2. Interaction monitoring and logging

The HPS Access Layer logs each service interaction
(request and response message) through a logging service.
RFSs and their responses, exchanged between community
members, are modeled as traditional SOAP calls, but with
various header extensions, as shown in Listing 4.
Listing 4. Simplified RFS via SOAP example.

The most important extensions are:
�
 Timestamp capture the actual creation of the message
and is used to calculate temporal interaction metrics,
such as average response times.

�
 Delegation holds parameters that influence delega-

tion behavior, such as the number of subsequent
delegations numHops (to avoid circulating RFSs) and
hard deadlines.

�
 Activity uri describes the context of interactions

(see [37] for activity model).

�
 MessageID enables message correlation, i.e., to prop-

erly match requests and responses.

�
 WS-Addressing tags, besides MessageID, are used to

route RFSs through the network.

8.3. Metric calculation

Metrics describe the interaction behavior and dyna-
mically changing properties of actors. Currently, we
account for the metrics described in Table 1 for trust
interpretation upon logged SOAP calls in the Expert Web
scenario. Note, as described before, these metrics are
determined for particular scopes; i.e., based on a subset of
interactions that meet certain constraints. The availability
of a service, either provided by humans or implemented in
Software, can be high in one scope, but much lower
in another one. Furthermore, these metrics are calculated
for each directed relation between pairs of network
members. An actor u might serve v reliably, but not a
third party w.

ARTICLE IN PRESS

Table 1
Metrics utilized for trust inference.

Metric name Range Description

Availability [0,100] Ratio of accepted to received RFSs

Response time [0,96] Average response time in hours

Success rate [0,100] Amount of successfully served RFSs

Experience ½0,1� Number of RFSs served

RFS reciprocity [�1,1] Ratio of processed to sent RFSs

Manual reward [0,5] Optional manually assigned scores

Costs [0,5] Price for serving RFSs

Table 2
Social network provisioning WS interface specification.

Method name Parameter Description

getVertex vertexURI Get the vertex object

with the given uri

getVerticesByName vertexName

(regex)

Get a list of vertices with

matching names

getAllVertices – Get all vertices (can be

restricted to a maximum

number due to

performance reasons)

getEdge edgeURI Get the specified edge

getEdges sourceVertexURI,

sinkVertexURI

Get all directed edges

from sourceVertex to

sinkVertex

getOutEdges sourceVertexURI Get all out edges of the

specified vertex

getInEdges sinkVertexURI Get all in edges of the

specified vertex

getScope scopeURI Get one particular scope

in the network

getAllScopes Get all available scopes

in the network

getSourceVertex edgeURI Get the vertex object

which is the source of

the given edge

getSinkVertex edgeURI Get the vertex object

which is the sink of the

given edge

getNeighbours vertexURI,

numHops

Get neighbors

(independent of edge

orientation); the

optional parameter

numHops may set the

F. Skopik et al. / Information Systems 35 (2010) 735–757750
Our approach relies on mining of metrics, thus, values
are not manually entered but are frequently updated
by the system. This enables collaboration partners to
keep track of the dynamics in highly flexible large-
scale networks. Besides interaction behavior in terms of
reliability or responsiveness, also context-aware experi-
ence mining can be conducted. This approach is explained
in detail in [23].

In trust inference examples in previous sections, we
accounted for the average response time tr (Eq. (21)) of a
service and its success rate sr (Eq. (22)). These are typical
metrics for an emergency help and support environment,
where fast and reliable support is absolutely required, but
costs can be neglected. We assume, similar complexity of
requests for support (RFS) in a scope s, thus different RFSs
require comparable efforts from services (similar to a
traditional Internet forum).

The response time is calculated as the duration
between sending (or delegating) a request (tsend) to a
service and receiving the corresponding response (treceive),
averaged over all served RFSs. Unique IDs of calls (see
SOAP header in Listing 4) enable sophisticated message
correlation to identify corresponding messages:

ts
r ¼

P
rfs2RFSðtreceiveðrfsÞ�tsendðrfsÞÞ

jRFSj
ð21Þ

An RFS is considered successfully served (sRFS) if
leading to a result before a predefined deadline, otherwise
it fails (fRFS):

srs ¼
numðsRFSÞ

numðsRFSÞþnumðfRFSÞ
ð22Þ

8.4. Trust provisioning

The Social Network Provisioning WS (see Fig. 9) is
a WSDL-based Web Service that provides the dynamically
changing Web of Trust as standardized directed graph
model. It is a major part of the VieTE framework and used
by other services, such as partner discovery tools, to
retrieve social relations for service personalization and
customization in virtual communities. The Web service
interface deals with the following fundamental types of
entities:
maximum path length

from the specified vertex

�

to resulting neighbours

getSuccessors sourceVertexURI Get successors of
Vertex: A vertex describes either a human, software
service, or HPS.
specified vertex
�

getPredecessors sinkVertexURI Get direct predecessors
Edge: An Edge reflects the directed relation between
two vertices.
of specified vertex
�

getVersion – Get version string
Metric: Metrics describe properties of either vertices
(such as the number of interactions with all partners,
or the number of involved activities) or edges (such as
the number of invocations from a particular service by
a particular human). Metrics are calculated from
interactions and provided profiles with respect to
pre-configured rule sets (e.g., only interactions of a
particular type are considered in the trust determina-
tion process).

�
 Scope: Rules determine which interactions and colla-

boration metrics are used for trust calculation. These
rules describe the constraints for the validity of
calculated metrics, i.e., the scope of their application.
Common scopes are pre-configured and can be
selected via the Web Service interface.
The Social Network Provisioning WS enables the succes-
sive retrieval of the Web of Trust starting with a predefined
vertex, e.g., reflecting the current service user. We specify its
interface as shown in Table 2. Note, for data retrieval,
metrics are merged in the entities vertex and edge. All
entities are identified by an URI, which is a combination of a

ARTICLE IN PRESS

101 102
100

101

103

k

N
 (

k)

Ν (k)~k−2.5

102

100

Fig. 10. Generated network applying preferential attachment: (a) scale-free

graph structure and (b) power-law distribution.

F. Skopik et al. / Information Systems 35 (2010) 735–757 751
basepath (e.g., http://www.infosys.tuwien.ac.at/coin), the
entity type (e.g., vertex) and an integer id.

9. Evaluation and discussion

In this section, we show the results of performance

evaluations that discuss major design decisions and VieTE’s
applicability in large-scale networks; and a functional

evaluation that deals with the actual application of our trust
inference approach for balancing communities.

9.1. Computational complexity of trust management

A fundamental aspect of our trust management approach
is the context-awareness of data and social relations. Due to
the high complexity of large-scale networks comprising
various kinds of interactions and distinct scopes of trust, we
evaluate the feasibility of our framework by well-directed
performance studies. We focus on the most critical parts, i.e.,
potential bottlenecks, in our system, in particular, on (i)
trust inference upon interaction logs, (ii) profile similarity
measurement for trust mirroring and teleportation, (iii) the
calculation of recommendations based on mined graph
structures and (iv) provisioning of graph segments to users.
The conducted experiments address general technical and
research problems in complex networks, such as emerging
relations in evolving structures, graph operations on large-
scale networks, and information processing with respect to
contextual constraints.

9.1.1. Experiments setup and data generation

For conducting our performance studies, we generate an
artificial interaction and trust network that we would expect
to emerge under realistic conditions. For that purpose we
utilize the preferential attachment model of Barabasi and
Albert to create6 network structures that are characteristic
for science collaborations [38]. As shown in Fig. 10 for a graph
with 500 vertices, the output is a scale-free network with
vertex degrees7 following a power-law distribution. These
structures are the basis for creating realistic interaction logs
that are used to conduct trust inference experiments. For a
graph G, we generate in total 100 � jEj interactions between
pairs of vertices (u,v). In our experiments, we assume that
80% of interactions take place between 20% of the most
active users (reflected by hub vertices with high degree).
Generated interactions have a particular type (support
request/response, activity success/failure notification) and
timestamp, and occur in one of two abstract scopes. While
we payed attention on creating a realistic amount and
distribution of interactions that are closely bound to vertex
degrees, the interaction properties themselves, i.e., type,
timestamp, do not influence the actual performance study
(because they do not influence the number of required
operations to process the interaction logs).

For the following experiments, VieTE’s trust provision-
ing service is hosted on a server with Intel Xeon 3.2 GHz
6 See JUNG graph library: http://jung.sourceforge.net.
7 The vertex size is proportional to the degree; white vertices

represent ‘hubs’.
(quad), 10 GB RAM, running Tomcat 6 with Axis2 1.4.1 on
Ubuntu Linux, and MySQL 5.0 databases. The client
simulation that retrieves elements from the managed
trust graph runs on a Pentium 4 with 2 GB on Windows
XP, and is connected with the server through a local
100 MBit Ethernet.
9.1.2. Trust inference performance

Through utilizing available interaction properties, we
calculate the previously discussed metrics (i) average

response time tr, and (ii) success rate sr (ratio of success to
the sum of success and failure notifications). Individual
response times are normalized to [0,1] with respect to the
highest and lowest values in the whole network. The rule
base to infer confidence between each pair of connected
vertices has been shown in Listing 1. If the amount of
interactions jIðu;vÞj between a pair (u,v) is below 10, we
set the reliability of confidence to jIðu;vÞj=10, else we
assume a reliability of 1. Trust is calculated by multiplying
confidence with its reliability.

Interactions take place in context of activities. Instead
creating artificial activity structures, we randomly
assign context elements to synthetic interactions. These
elements are represented by tags that are randomly
selected from a predefined list. This list holds 5 different
tags, and each interaction gets 2–4 of them assigned. Such
tags may describe the activity type where an interaction
takes place, e.g., ‘software development’; but also certain
constraints, e.g., ‘high risk’. We define 5 scopes, each
described by exactly one possible tag. Thus, each interac-
tion belongs to 2–4 scopes; and scopes may overlap.
Interactions are uniformly distributed among scopes.

We measure the required time to completely process
the synthetic interaction logs, including reading logs from
the interaction database (SQL), aggregating logs and
calculating metrics, normalizing metrics (here only the
response time, because the values of the success rate are
already in [0,1]), inferring trust upon a predefined rule
base, and updating the trust graph (EMA with a¼ 0:25).
Experiments are performed for three networks of different
sizes: small-scale with 100 vertices and 200 trust edges;
medium-scale with 1000 vertices and 2000 edges; and
large-scale with 10 000 vertices and 20 000 edges.
Furthermore, trust is inferred (i) neglecting scopes (i.e.,
tags), (ii) for the defined scopes as above. The results in
Table 3 show that especially for medium and large

http://www.infosys.tuwien.ac.at/coin
http://jung.sourceforge.net

ARTICLE IN PRESS

Table 3
Trust inference performance results.

Network characteristics Mode Computation time

Small-scale No scopes 1 m 11 s

5 scopes 1 m 56 s

Medium-scale No scopes 11 m 41 s

5 scopes 19 m 48 s

Large-scale No scopes 109 m 03 s

5 scopes 182 m 37 s

L0L1L2L3L4L5
0

5

10

15

20

25

30

35

40

45

cluster level of comparison

#A
TP

 s
im

ila
rit

y
m

ea
su

re
m

en
ts

Sim (0.0,0.2)
Sim (0.2,0.4)
Sim (0.4,0.6)
Sim (0.6,0.8)
Sim (0.8,1.0)

Fig. 11. Similarity results among 10 realistic actor tagging profiles

(ATPs).

F. Skopik et al. / Information Systems 35 (2010) 735–757752
networks only a periodic offline calculation is feasible.
Note, the difference of computational efforts accounting
for no context (no scopes) and all scopes is not as high as
one might expect. The reason is that a significant amount
of time is required for SOAP communication in both cases.

9.1.3. Profile similarity measurement

Trust mirroring and trust teleportation, as explained in
Section 6, rely on mechanisms that measure the simila-
rities of actors in terms of skills, capabilities, expertise and
interests. In contrast to common top-down approaches
that apply taxonomies and ontologies to define certain
skills and expertise areas, we follow a mining approach
that addresses inherent dynamics of flexible collaboration
environments. In particular, skills and expertise as well as
interests change over time, but are rarely updated if they
are managed manually in a registry. Hence, we determine
and update them automatically through mining. However,
since trust mirroring and teleportation are mainly used in
the absence of interaction data, we need to acquire other
data sources.

The creation of interest profiles without explicit user
input has been discussed in [12]. That work assumes that
users tag resources, such as bookmarks, pictures, videos,
articles; and thus express their distinct interests. In
particular, a dataset from citeulike8 expresses people’s
use and understanding of scientific articles through
individually assigned tags.

We use these data to create dynamically adapting
interest profiles based on tags (ATPs—actor tagging
profiles) and manage them in a vector space model [12].
However, since arbitrary tags may be freely assigned—

there is no agreed taxonomy—no strict comparison can be
performed. Therefore, we cluster tags according to their
similarities and compare the actors’ usage of tags on
higher cluster levels. For instance, actors using tags
belonging to the same cluster have similar interests, even
if they do not use exactly the same tags. Hierarchical
clustering enables us to regulate the fuzziness of similar-
ity measurements, i.e., the size of tag clusters. The
concrete mechanisms and algorithms are described in
[12] and therefore out of scope of this work. But we
outline the evaluation results of [12] to demonstrate the
8 http://www.citeulike.org/
applicability of automatic actor profile creation and cluster

similarity measurement, supporting the realization of trust
mirroring and teleportation.

We determine for 10 representative citeulike users
their tagging profiles (ATPs) in the domain of social
networks. Then we compare these ATPs to find out to
which degree actors use similar/same tags. The funda-
mental question is, if we are able to effectively distinguish
similarities of different degrees among ATPs. In other
words, in order to apply trust mirroring and teleportation
we need distinguishable similarity results; and not e.g., all
ATPs somehow similar. Fig. 11 shows the results of
various profile similarity measurements. As explained,
we compare profiles with varying fuzziness, i.e., on 5
different tag cluster levels. While on L5 each tag is in its
own cluster, these clusters are consecutively merged until
all tags are in the same cluster (L0). Hence, on L5 the most
fine-grained comparison is performed, while on L0 all
profiles are virtually identical. As shown, on L2 and L3 a
small set of highly similar ATPs are identified, while the
majority is still recognized as different. This is the desired
effect required to mirror/teleport trust only to a small
subset of available actors.

From a performance perspective, retrieving tags,
aggregating and clustering them, and creating profiles
takes some time. Especially mining these data on the Web
is time-intensive. The overall performance highly depends
on external systems that provide required data, such as
citeulike in our case. Therefore, further performance
studies have been omitted here.
9.1.4. Network management

This set of experiments, deal with managing trust in a
graph model and the calculation of recommendation and
reputation on top of a large-scale trust network with
10 000 vertices. Table 4 depicts the required time in
seconds to calculate the recommendation ts

recðu;vÞ, having
10 and 100 recommender in the same scope (i.e.,
intermediate vertices on connecting parallel paths (u,v)
of length 2).

http://www.citeulike.org/

ARTICLE IN PRESS

Table 4
Calculation times for ts

rec with 10 and 100 recommender.

Recommendation calculation method 10 rec. (s) 100 rec. (s)

Client-side 1.1 6.3

Servicer-side (SQL) 0.46 2.2

Server-side (in memory model) 0.28 0.34

Server-side (pre-calculation) 0.18 0.18

1

10

100

1000

10000

10
#vertices

tim
e

(s
ec

)

0,1

1

10

100

1000

1 100 1000 10000 100000

#vertices

m
em

or
y

(M
B

)

mem (full service)
mem (graph model)

100 1000 10000 100000

10

Fig. 12. Performance tests for mapping the graph model: (a) graph

mapping time and (b) memory consumption.

0

10

20

30

40

50

60

70

1
#trustees (avg)

#c
on

ne
ct

ed
 v

er
tic

es

n=10
n=100
n=1000
n=10000

2 3 4 5

Fig. 13. Number of discovered potential collaboration partners through

personal relations and recommendations for different network structures.

F. Skopik et al. / Information Systems 35 (2010) 735–757 753
Several ways to implement recommendations exist.
First, a client may request all recommender vertices and
their relations and calculate recommendations on the
client-side. However this method is simple to implement
on the provider side, it is obviously the slowest one due to
large amounts of transferred data. Still retrieving all
recommender and relations directly from the backend
database, but performing the calculation server-side,
dramatically improves the performance. However, this
method produces heavy load at the provider and its
database and deems not to be scalable. Therefore, we map
the network data, i.e., a directed graph model with
annotated vertices and edges, in memory and perform
operations without the backend database. Since all data
are held in memory, the performance of calculating
recommendations online is comparable to provisioning
of pre-calculated data only. Hence, we design our system
with an in-memory graph model, and further measure
some aspects of this design decision. Fig. 12(a) illustrates
required time for mapping the whole graph from the
backend database to its in-memory representation.
The effort increases linear with the number of vertices
in the graph. Fig. 12(b) shows the memory consumption
for graph instances of different sizes, first for the whole
Social Network Provisioning Service, and second
only for the graph object itself.

9.1.5. Trust graph provisioning

Retrieving trust values of certain relations, and even
recommendations as shown before, causes minor compu-
tational effort. However, imagine someone frequently
wants to calculate reputation based on network structures
(see TrustRank [32]), would like to get notified if his
neighborhood in the Web of Trust has grown to a certain
size or if his collaboration partners have reached a
particular experience level. Then, periodically retrieving
larger segments of the trust graph G from the Social

Network Provisioning Service is required. Therefore,
we run some experiments to estimate the produced load
in such situations.

The first experiment investigates the average size of
potential collaboration partners who are either personally
trusted or can be recommended (i.e., are connected
through exactly one intermediate vertex). Experiment
are conducted for various network sizes n and different
average connection degrees of vertices. We pick random
vertices from this set and run experiments for each of
them until we calculate stable average results. Fig. 13
shows that in higher cross-linked networks (i.e.,
#trustees42), personal relations and recommendations
(so called ‘second hand experiences’) deem to be sufficient
to discover new collaboration partners. However, in case
of sparsely connected graphs, other mechanisms, such as
trust mirroring or teleportation may be of high benefit.

Propagating trust over more than one intermediate
vertex is of course possible (and widely applied), but leads

ARTICLE IN PRESS

1

10

100

1000

10000

1
#trustees (avg)

#g
ra

ph
 o

pe
ra

tio
ns

pp = 2 pp = 3
pp = 4 pp = 5
pp = 6

2 3 4 5

Fig. 14. Average number of required graph operations (for different

average number of trustees) to determine all neighbors of a given vertex

that are reachable on a path not longer than pp.

F. Skopik et al. / Information Systems 35 (2010) 735–757754
to significantly higher computational effort. Fig. 14
depicts the number of required graph operations
depending on the average number of trustees (average
outdegree of vertices). These graph operations mainly
consist of retrieving vertices and edges, including their
assigned metrics and trust values. For higher propagation
path lengths pp, costs increase exponentially.
Fig. 15. Network structure after simulation round n={0,100,250}.
9.2. Interaction balancing in large-scale networks

We evaluate the functional application of the VieTE
framework, by simulating typical scenarios in large-scale
communities. In this experiment, we utilize the popular
Repast Simphony9 toolkit, a software bundle that enables
round-based agent simulation. In contrast to researchers
in the agent domain, we do not simulate our concepts by
implementing different actor types and their behavior
only, but we use a network of actors to provide stimuli for
the actual VieTE framework. Therefore, we are not only
able to evaluate the effectiveness of our new approach of
fuzzy trust inference, but also the efficiency of the
technical grounding based on Web service standards.

We focus on the motivational Expert Web use case
from Section 2. In this scenario, a small set of simulated
network members interact (sending, responding, and
delegating RFSs), and these interactions are provided to
the logging facilities of VieTE. The framework infers trust
by calculating the described metrics tr and sr, and using
the rule set of Listing 1 for behavioral interpretation.
Finally, emerging trust relations between the simulated
actors influence the selection of receivers of RFSs. Hence,
VieTE and the simulated actor network relies on each
other, and are used in a cyclic approach; exactly the same
way VieTE would be used by a real Expert Web. For this
demonstration, all interactions take place in the same
scope.
9 http://repast.sourceforge.net
9.2.1. Simulation setup

Simulated agent network: Repast Simphony offers
convenient support to model different actor behavior. As
an inherent part of our environment, we make no
distinction between human users and software services.
Each actor owns a unique id (a number), creates SOAP
requests, and follows one of the following behavior
models: (i) malicious actors accept all RFSs but never
delegate or respond, (ii) erratic actors accept all RFSs but
only process (respond directly or delegate) RFSs originally
coming from requesters with odd-numbered IDs, (iii) fair

players process all requests if they are not overloaded, and
delegate to trustworthy network neighbors otherwise.

We set up a network comprising 15 actors, where only
one is highly reputed and fully trusted by all others as
depicted in Fig. 15(a). This is the typical starting point of a
newly created community, where one actor invites others
to join.

VieTE setup: After each simulation step (round) seven
randomly picked actors send one RFS to its most trusted
actor (in the beginning this will only be the highly reputed
one who starts to delegate). Each actor’s input queue has
exactly 5 slots to buffer incoming RFSs. A request is
always accepted and takes exactly one round to be served.
An actor processes an RFS itself if it has a free slot in its
input queue, otherwise incoming RFSs are delegated to
randomly picked trusted (t40:8) neighbors in the net-
work. Note, one actor does not delegate more than one
RFS per round to the same neighbor, however, an actor
may receive more than one RFS from different neighbors
in the same round. Delegations require one additional
simulation round. There is an upper limit of 15 rounds for
an RFS to be served (deadline); otherwise it is considered
failed. A request can be delegated only three times (but
not back to the original requester) (hops) to avoid
circulating RFSs. Because the simulation utilizes only
Elliptic vertices are fair players, rectangular shapes represent erratic

actors, diamond shaped vertices reflect malicious actors: (a) initial n=0;

(b) intermediate n=100; (c) balanced n=250 and (d) balanced (reduced).

http://repast.sourceforge.net

ARTICLE IN PRESS

F. Skopik et al. / Information Systems 35 (2010) 735–757 755
two fully automatically determined metrics (tr and sr),
and no manual rewarding of responses, we assume an RFS
is successfully served if a response arrives within 15
rounds (no fake or low quality responses). After each fifth
round, VieTE determines tr based on interactions in the
most recent 25 rounds, and sr upon interactions in the last
50 rounds, and purges older logs. New values are merged
with current ones using EMA with a fixed a¼ 0:25.

9.2.2. Simulation results

We perform 250 simulation rounds of the described
scenario with the aforementioned properties, and study
the network structure in certain points of the simulation.
The depicted networks in Fig. 15 show actors with
different behavior and the temporal evolvement of trust
relations between them. The size of the graph’s vertices
depend on the amount of trust established by network
neighbors. Beginning with a star structure (Fig. 15(a)), the
network structure in Fig. 15(b) emerges after 100 rounds,
and Fig. 15(c) after 250 rounds, respectively. Note, since
the behavior of actors is not deterministic (i.e., RFSs are
sent to random neighbors that are trusted with t40:8
(lower bound of full trust; see Fig. 4)), the simulation
output looks differently for each simulation run, however,
the overall properties of the network are similar (number
and strength of emerged trust relations).

In the beginning, all RFSs are sent to actor 0, who
delegates to randomly picked trusted actors. If they
respond reliably, requesters establish trust in that third
parties. Otherwise they lose trust in actor 0 (because of
unsuccessful delegations). Therefore, actors with even-
numbered IDs lose trust in actor 0 faster than odd-
numbered actors, because if actor 0 delegates requests to
erratic actors, they are not replied. As an additional
feature in round 100, actors that are not trusted with
t40:2 by at least on other network member, are removed
from the network, similar to Web communities where
leechers (actors that do not contribute to the network) are
banned. Therefore, actors with malicious behavior dis-
appear, while actors with erratic behavior still remain in
the network. Fig. 15(d) shows a reduced view of the
balanced network after 250 rounds. Only trust relations
with t40:8 are visualized. As expected, most vertices
have strong trust relations in at least one fair player
(actors who reliably respond and delegate RFSs). How-
ever, remember that erratic actors reliably serve only
requests coming from actors with odd-numbered IDs.
Therefore, actor 3 and actor 9 also establish full trust in
actors from this class. Note, if actor 3 and actor 9 would
have re-delegated many RFSs coming from even-num-
bered actors to erratic actors, than those RFSs would have
failed and only low trust would have emerged. However,
due to the comparatively low load of the network (less
than half of the actors receive RFSs per round (until
n=100)), only a low amount of re-delegations occur
(approx. 8% of RFSs).

10. Background and related work

Flexible and context-aware collaborations: In collabora-
tions, activities are the means to capture the context in
which human interactions take place. Activities describe
the goal of a task, the participants, utilized resources, and
temporal constraints. Studies regarding activities in
various work settings are described in [39]. They identify
patterns of complex business activities, which are then
used to derive relationships and activity patterns [40,41].
The potential impact of activity-centric collaboration
is highlighted [37] with special focus on the value to
individuals, teams, and enterprises. Studies on distributed
teams focus on human performance and interactions
[42,43], even in Enterprise 2.0 environments [44].
Caramba [45] organizes work items of individuals as
activities that can be used to manage collaborations. For
example, one can see the status of an activity, who
contributed to an activity, documents created within a
particular activity, etc. Based on log analysis, human
interaction patterns can be extracted [17].

Interactions in mixed systems: Major software vendors
have been working on standards addressing the lack of
human interaction support in service-oriented systems.
WS-HumanTask [46] and Bpel4People [10] were released
to address the emergent need for human interactions in
business processes. These standards specify languages to
model human interactions, the lifecycle of human tasks,
and generic role models. Role-based access models [46]
are used to model responsibilities and potential task
assignees in processes. While Bpel4People based applica-
tions focus on top-down modeling of business processes,
mixed systems target flexible interactions and composi-
tions of Human-Provided and software-based services.
This approach is aligned with the vision of the Web 2.0,
where people can actively provide services. An example
for a mixed system is a virtual organization (VO) using
Web 2.0 technologies. A VO is a temporary alliance of
organizations that come together to share skills or core
competencies and resources in order to better respond to
business opportunities, and whose cooperation is sup-
ported by computer networks [47]. Nowadays, virtual
organizations are more and more realized with SOA
concepts, regarding service discovery, service descriptions
(WSDL), dynamic binding, and SOAP-based interactions.
In such networks, humans may participate and provide
services in a uniform way by using the HPS framework
[2,23].

Behavioral and social trust models for SOA: Marsh [48]
introduced trust as a computational concept, including a
fundamental definition, a model and several related
concepts impacting trust. Based on his work, various
extended definitions and models have been developed.
Some surveys on trust related to computer science have
been performed [3,4,8], which outline common concepts
of trust, clarify the terminology and describe the most
popular models. From the many existing definitions of
trust, those from [8,9] describe that trust relies on
previous interactions and collaboration encounters, which
fits best to our highly flexible environment. Context
dependent trust was investigated by [3,4,8,48]. Context-
aware computing focusing modeling and sensing of
context can be found in [49,50].

Recently, trust in social environments and service-
oriented systems has become a very important research

ARTICLE IN PRESS

F. Skopik et al. / Information Systems 35 (2010) 735–757756
area. SOA-based infrastructures are typically distributed
comprising a large number of available services and huge
amounts of interaction logs. Therefore, trust in SOA has to
be managed in an automatic manner. A trust management
framework for service-oriented environments has been
presented in [51–53], however, without considering
particular application scenarios with human actors in
SOA. Although several models define trust on interactions
and behavior, and account for reputation and recommen-
dation, there is hardly any case study about the applica-
tion of these models in service-oriented networks. While
various theoretically sound models have been developed
in the last years, fundamental research questions, such as
the technical grounding in SOA and the complexity of
trust-aware context-sensitive data management in large-
scale networks are still widely unaddressed.

Depending on the environment, trust may rely on the
outcome of previous interactions [1,9], and the similarity
of interests and skills [11,12,33,34]. Note, trust is not
simply a synonym for quality of service (QoS). Instead,
metrics expressing social behavior and influences are used
in certain contexts. For instance, reciprocity [9] is a
concept describing that humans tend to establish a
balance between provided support and obtained benefit
from collaboration partners. The application of trust
relations in team formations and virtual organizations
has been studied before, e.g., in [54,55]. Trust propagation
models [56–59] are intuitive methods to predict relations
where no personal trust emerged; e.g., transitive recom-
mendations.

In this paper, we described an approach to trust
inference that is based on fuzzy set theories. This technique
has been applied in trust models before [26–28], however,
to our best knowledge, not to interpret diverse sets of
interaction metrics. Utilizing interaction metrics, in parti-
cular calculated between pairs of network members,
enables us to incorporate a personalized and social
perspective. For instance, an actor’s behavior may vary
toward different network members. This aspect is usually
out of scope in Web Services trust models, that are often
closely connected to traditional QoS approaches [60].

Bootstrapping addresses the cold start problem and
refers to putting a system into operation. Trust—from our
perspective—cannot be negotiated or defined in advance.
It rather emerges upon interactions and behavior of actors
and thus, needs a certain time span to be built. However,
until enough data has been collected, interests and skills
can be used to predict potentially emerging trust
relations. Mining, processing, and comparing user profiles
is a key concept [11,12,33].
11. Conclusion and further work

Emerging service-oriented platforms no longer operate
in closed enterprises. An increasing trend can be observed
towards temporary alliances between companies requir-
ing composition models to control and automate interac-
tions between services. The resulting service-oriented
application needs to be flexible supporting adaptive
interactions. In this paper, we have motivated the need
for adaptive interactions discussing an Expert Web
scenario where people can register their skills and
capabilities as services. Mixed service-oriented systems
are open ecosystems comprising human- and software-
based services. Trust mechanisms become essential in
these systems because of changing actor interests and the
dynamic discovery capabilities of SOA. Our trust model is
based on fuzzy logic and rule-based interpretation of
observed (logged) interactions. This makes the inference
of trust in real systems possible as interaction data are
monitored and interpreted based on pre-specified rules.
We have demonstrated the application of our trust model
by supporting dynamic, trust-based partner discovery and
selection mechanisms. This scenario is based on advanced
interaction patterns in flexible compositions such as
trusted delegations to achieve load-balancing and scal-
ability in the Expert Web. Our future work will include the
deployment and evaluation of the implemented frame-
work in cross-organizational collaboration scenarios. This
will be done within the EU FP7 COIN project focusing on
collaboration in VOs. The emphasis of COIN is to study
new concepts and develop tools for supporting the
collaboration and interoperability of networked enter-
prises. The end-user evaluation in COIN will discover the
usability of trusted expert discovery and balancing
mechanisms.
Acknowledgement

This work is supported by the European Union through
the FP7-216256 Project COIN.

References

[1] F. Skopik, D. Schall, S. Dustdar, Trustworthy interaction balancing in
mixed service-oriented systems, in: ACM Symposium on Applied
Computing (SAC), ACM, 2010, pp. 801–808.

[2] D. Schall, H.-L. Truong, S. Dustdar, Unifying human and software
services in web-scale collaborations, IEEE Internet Computing 12
(3) (2008) 62–68.

[3] D. Artz, Y. Gil, A survey of trust in computer science and the
semantic web, Web Semantics 5 (2) (2007) 58–71.

[4] A. Jøsang, R. Ismail, C. Boyd, A survey of trust and reputation
systems for online service provision, Decision Support Systems 43
(2) (2007) 618–644.

[5] F. Skopik, D. Schall, S. Dustdar, The cycle of trust in mixed service-
oriented systems, in: Euromicro Conference on Software Engineer-
ing and Advanced Applications (SEAA), IEEE, 2009, pp. 72–79.

[6] M. Salehie, L. Tahvildari, Self-adaptive software: landscape and
research challenges, ACM Transactions on Autonomous and
Adaptive Systems 4 (2) (2009) 1–42.

[7] T.D. Huynh, N.R. Jennings, N.R. Shadbolt, An integrated trust and
reputation model for open multi-agent systems, Autonomous
Agents and Multiagent Systems (AAMAS) 13 (2) (2006) 119–154.

[8] T. Grandison, M. Sloman, A survey of trust in internet applications,
IEEE Communications Surveys and Tutorials 3 (4) (2000).

[9] L. Mui, M. Mohtashemi, A. Halberstadt, A computational model of
trust and reputation for e-businesses, in: Hawaii International
Conferences on System Sciences (HICSS), 2002, p. 188.

[10] A. Agrawal, et al., WS-BPEL Extension for People (BPEL4People),
Version 1.0, 2007 (specification available online).

[11] J. Golbeck, Trust and nuanced profile similarity in online social
networks, ACM Transactions on the Web (TWEB) 3 (4) (2009) 1–33.

[12] F. Skopik, D. Schall, S. Dustdar, Start trusting strangers? bootstrapping
and prediction of trust, in: International Conference on Web Informa-
tion Systems Engineering (WISE), Springer, 2009, pp. 275–289.

ARTICLE IN PRESS

F. Skopik et al. / Information Systems 35 (2010) 735–757 757
[13] C. Dwyer, S.R. Hiltz, K. Passerini, Trust and privacy concern within
social networking sites: a comparison of facebook and myspace, in:
Americas Conference on Information Systems (AMCIS), 2007.

[14] M.J. Metzger, Privacy, trust, and disclosure: exploring barriers to
electronic commerce, Journal of Computer Mediated Communica-
tion 9 (4) (2004).

[15] A. Abdul-Rahman, S. Hailes, Supporting trust in virtual commu-
nities, in: Hawaii International Conferences on System Sciences
(HICSS), 2000.

[16] J. Sabater, C. Sierra, Social regret, a reputation model based on social
relations, SIGecom Exchanges 3 (1) (2002) 44–56.

[17] S. Dustdar, T. Hoffmann, Interaction pattern detection in process
oriented information systems, Data and Knowledge Engineering
(DKE) 62 (1) (2007) 138–155.

[18] IBM, An architectural blueprint for autonomic computing, White-
paper 2005.

[19] A. Jøsang, R. Ismail, The beta reputation system, in: Bled Electronic
Commerce Conference, 2002.

[20] J. Patel, W.T.L. Teacy, N.R. Jennings, M. Luck, A probabilistic trust
model for handling inaccurate reputation sources, in: International
Conference on Trust Management (iTrust), vol. 3477, Springer,
2005, pp. 193–209.

[21] Y. Wang, M.P. Singh, Formal trust model for multiagent systems, in:
International Joint Conferences on Artificial Intelligence (IJCAI),
2007, pp. 1551–1556.

[22] M.A. Orgun, C. Liu, Reasoning about dynamics of trust and agent
beliefs, in: IEEE International Conference on Information Reuse and
Integration (IRI), 2006, pp. 105–110.

[23] D. Schall, Human interactions in mixed systems—architecture,
protocols, and algorithms, Ph.D. Thesis, Vienna University of
Technology, 2009.

[24] W.M.P. van der Aalst, M. Song, Mining social networks: Uncovering
interaction patterns in business processes, in: International Con-
ference on Business Process Management (BPM), vol. 3080, 2004,
pp. 244–260.

[25] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.
[26] N. Griffiths, A fuzzy approach to reasoning with trust, distrust and

insufficient trust, in: CIA, vol. 4149, 2006, pp. 360–374.
[27] J. Sabater, C. Sierra, Reputation and social network analysis in

multi-agent systems, in: International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), ACM, New York, NY, USA,
2002, pp. 475–482.

[28] W. Sherchan, S.W. Loke, S. Krishnaswamy, A fuzzy model for
reasoning about reputation in web services, in: ACM Symposium on
Applied Computing (SAC), 2006, pp. 1886–1892.

[29] H.-J. Zimmermann, Fuzzy set theory and its applications, third ed.,
Kluwer Academic Publishers, 1996.

[30] W.V. Leekwijck, E.E. Kerre, Defuzzification: criteria and classifica-
tion, Fuzzy Sets and Systems 108 (2) (1999) 159–178.

[31] M. Srivatsa, L. Xiong, L. Liu, Trustguard: countering vulnerabilities
in reputation management for decentralized overlay networks, in:
International World Wide Web Conference (WWW), ACM, 2005,
pp. 422–431.

[32] Z. Gyngyi, H. Garcia-Molina, J. Pedersen, Combating web spam with
trustrank, in: International Conference on Very Large Data Bases
(VLDB), 2004, pp. 576–587.

[33] C.-N. Ziegler, J. Golbeck, Investigating interactions of trust and interest
similarity, Decision Support Systems 43 (2) (2007) 460–475.

[34] Y. Matsuo, H. Yamamoto, Community gravity: Measuring bidirectional
effects by trust and rating on online social networks, in: International
World Wide Web Conference (WWW), 2009, pp. 751–760.

[35] M. Nowak, K. Sigmund, Evolution of indirect reciprocity by image
scoring, Nature 393 (1) (1998) 573–577.

[36] F. Skopik, H.-L. Truong, S. Dustdar, VieTE—enabling trust emer-
gence in service-oriented collaborative environments, in: Interna-
tional Conference on Web Information Systems and Technologies,
INSTICC, 2009, pp. 471–478.
[37] D. Schall, C. Dorn, S. Dustdar, I. Dadduzio, Viecar—enabling self-
adaptive collaboration services, in: Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), 2008, pp. 285–292.

[38] A. Reka, Barabási, statistical mechanics of complex networks,
Reviews in Modern Physics 74 (2002) 47–97.

[39] B.L. Harrison, A. Cozzi, T.P. Moran, Roles and relationships for
unified activity management, in: International Conference on
Supporting Group Work (GROUP), 2005, pp. 236–245.

[40] P. Moody, D. Gruen, M.J. Muller, J.C. Tang, T.P. Moran, Business
activity patterns: a new model for collaborative business applica-
tions, IBM Systems Journal 45 (4) (2006) 683–694.

[41] T.P. Moran, A. Cozzi, S.P. Farrell, Unified activity management:
supporting people in e-business, Communications of the ACM 48
(12) (2005) 67–70.

[42] P.A. Balthazard, R.E. Potter, J. Warren, Expertise, extraversion and
group interaction styles as performance indicators in virtual teams:
how do perceptions of it’s performance get formed? DATA BASE 35
(1) (2004) 41–64.

[43] N. Panteli, R. Davison, The role of subgroups in the communication
patterns of global virtual teams, IEEE Transactions on Professional
Communication 48 (2) (2005) 191–200.

[44] J. Breslin, A. Passant, S. Decker, Social web applications in
enterprise, The Social Semantic Web 48 (2009) 251–267.

[45] S. Dustdar, Caramba—a process-aware collaboration system sup-
porting ad hoc and collaborative processes in virtual teams,
Distributed and Parallel Databases 15 (1) (2004) 45–66.

[46] M. Amend, et al., Web Services Human Task (ws-humantask),
Version 1.0, 2007 (specification available online).

[47] L.M. Camarinha-Matos, H. Afsarmanesh, Collaborative networks—

value creation in a knowledge society, in: PROLAMAT, 2006,
pp. 26–40.

[48] S.P. Marsh, Formalising trust as a computational concept, Ph.D.
Thesis, University of Stirling, April 1994.

[49] M. Baldauf, S. Dustdar, F. Rosenberg, A survey on context aware
systems, International Journal of Ad Hoc Ubiquitous Computing 2
(4) (2007) 263–277.

[50] S.W. Loke, Context-aware artifacts: two development approaches,
IEEE Pervasive Computing 5 (2) (2006) 48–53.

[51] D. Kovac, D. Trcek, Qualitative trust modeling in soa, Journal of
Systems Architecture 55 (4) (2009) 255–263.

[52] W. Conner, A. Iyengar, T. Mikalsen, I. Rouvellou, K. Nahrstedt, A
trust management framework for service-oriented environments,
in: International World Wide Web Conference (WWW), 2009.

[53] Z. Malik, A. Bouguettaya, Reputation bootstrapping for trust
establishment among web services, IEEE Internet Computing 13
(1) (2009) 40–47.

[54] F. Kerschbaum, J. Haller, Y. Karabulut, P. Robinson, Pathtrust: A
trust-based reputation service for virtual organization formation,
in: International Conference on Trust Management (iTrust), 2006,
pp. 193–205.

[55] Y. Zuo, B. Panda, Component based trust management in the
context of a virtual organization, in: ACM Symposium on Applied
Computing, 2005, pp. 1582–1588.

[56] R. Guha, R. Kumar, P. Raghavan, A. Tomkins, Propagation of trust
and distrust, in: International World Wide Web Conference
(WWW), 2004, pp. 403–412.

[57] P. Massa, P. Avesani, Trust-aware collaborative filtering for recom-
mender systems, in: CoopIS, DOA, ODBASE, 2004, pp. 492–508.

[58] G. Theodorakopoulos, J.S. Baras, On trust models and trust
evaluation metrics for ad hoc networks, IEEE Journal on Selected
Areas in Communications 24 (2) (2006) 318–328.

[59] C.-N. Ziegler, G. Lausen, Propagation models for trust and distrust in
social networks, Information Systems Frontiers 7 (4–5) (2005)
337–358.

[60] E.M. Maximilien, M.P. Singh, Toward autonomic web services trust
and selection, in: International Conference on Service Oriented
Computing, 2004, pp. 212–221.

	Modeling and mining of dynamic trust in complex service-oriented systems
	Introduction
	Service-oriented collaborations
	Communication, coordination, and composition
	Social trust in collaborations
	The cycle of trust

	From interactions to social trust
	Interaction layer
	Collaboration data
	Context-aware interaction observation
	Interaction metrics and scopes

	Personalized trust inference
	Trust projection layer

	Fuzzy set theory for trust inference
	Trust model definitions
	Fundamental trust model
	Temporal evaluation
	Trust projection

	Towards flexible compositions
	Community balancing models
	Business-oriented models
	Social-oriented models

	Request delegation patterns

	Architecture and implementation
	Human provided services in the expert web
	Interaction monitoring and logging
	Metric calculation
	Trust provisioning

	Evaluation and discussion
	Computational complexity of trust management
	Experiments setup and data generation
	Trust inference performance
	Profile similarity measurement
	Network management
	Trust graph provisioning

	Interaction balancing in large-scale networks
	Simulation setup
	Simulation results

	Background and related work
	Conclusion and further work
	Acknowledgement
	References

