
Int. J. Business Process Integration and Management, Vol. 2, No. 2, 2007 109

Model-driven and pattern-based integration of
process-driven SOA models

Uwe Zdun* and Schahram Dustdar
Distributed Systems Group,
Information Systems Institute,
Argentinierstrasse 8/184-1,
Wien A-1040, Austria
E-mail: zdun@infosys.tuwien.ac.at
E-mail: dustdar@infosys.tuwien.ac.at
*Corresponding author

Abstract: Service-Oriented Architectures (SOA) are increasingly used in the context of business
processes. However, the modelling approaches for process-driven SOAs do not yet sufficiently
integrate the various kinds of models relevant for a process-driven SOA – ranging from process
models to software architectural models to software design models. We propose to integrate
process-driven SOA models via a model-driven software development approach that is based
on proven practices documented as software patterns. We introduce pattern primitives as an
intermediate abstraction to precisely model the participants in the solutions that patterns convey.
To enable model-driven development, we develop domain-specific modelling languages for each
kind of process-driven SOA model – based on meta-models that are extended with the pattern
primitives. The various process-driven SOA models are integrated in a model-driven tool chain
via the meta-models. Our tool chain validates the process-driven SOA models with regard to the
constraints given by the meta-models and primitives.

Keywords: SOA; process-driven SOA; software patterns; services modelling.

Reference to this paper should be made as follows: Zdun, U. and Dustdar, S. (2007)
‘Model-driven and pattern-based integration of process-driven SOA models’, Int. J. Business
Process Integration and Management, Vol. 2, No. 2, pp.109–119.

Biographical notes: Uwe Zdun is an Assistant Professor at the Vienna University of Technology.
His research interests include software patterns, software architecture, SOA, distributed systems,
language engineering and object orientation. He received his Doctoral Degree in Computer Science
from the University of Essen in 2002 and his Habilitation degree (venia docendi) from Vienna
University of Economics and BA in 2006. He is the coauthor of the books Remoting Patterns
(John Wiley & Sons, 2004) and Software-Architektur (Elsevier/Spektrum, 2005).

Schahram Dustdar is a Full Professor for the Internet Technologies at the Distributed Systems
Group, Information Systems Institute, Vienna University of Technology (TU Wien) where he is
the Director of the Vita Lab and an Honorary Professor of Information Systems at the Department
of Computing Science at the University of Groningen (RuG), the Netherlands. He received his
MSc (1990) and PhD (1992) in Business Informatics (Wirtschaftsinformatik) from the University
of Linz, Austria. He received his Habilitation degree (venia docendi) in April 2003.

1 Introduction

Many Service-Oriented Architectures (SOA) provide a
service composition layer that introduces a process engine
as the top-level layer (cf. Zdun et al., 2006). Services
realise individual activities in the process. This kind of
architecture is called process-driven SOA. The main goal of
process-driven SOAs is to increase the productivity,
efficiency and flexibility of an organisation. This is achieved
by aligning the high-level business processes with the
technical IT services. That is, the business goals get closely
integrated with the IT architecture.

One of the most important characteristics of SOAs
suggests heterogeneity of technologies and integration across

vendor-specific technologies (cf. Vinoski, 2003). This,
however, yields an important challenge for modelling
process-driven SOAs: many modelling domains need
to be considered and the different kinds of models
need to be integrated. Among many other modelling
domains, we need to consider component architectures,
message flows, transactions, security, workflows/business
processes, programming language (snippets), business
object designs and organisational models. Application
domains additionally introduce domain models, such as
banking or insurance domain models. Also, implicit or
explicit models for integrating existing legacy systems are
needed, sometimes using different concepts than the rest of
the SOA.

Copyright © 2007 Inderscience Enterprises Ltd.

110 U. Zdun and S. Dustdar

In other words, a central challenge for modelling
process-driven SOAs is that we generally need to integrate
different kinds of models and abstractions. This problem is
challenging because so far there is no modelling approach
for integrating all these kinds of models.

In this paper, we propose a concept for a
model-driven tool chain that addresses these challenges
through Model-Driven Software Development (MDSD)
(cf. Greenfield and Short, 2004; Stahl andVoelter, 2006). Our
concept is based on the precise specification of the models
in Domain-Specific Languages (DSL) which are themselves
precisely specified by meta-models and constraints on them.
The code in the executable languages is generated from the
models expressed in the DSLs. That is, the integration issues
raised above are solved at the meta-model level.

Our tool chain and MDSD concepts break the
integration issues down to the problem of finding adequate
meta-models for representing all concerns to be modelled
in the various modelling languages used in the modelling
domains. In this paper, we propose to develop the
meta-models according to proven practices that can be found
in existing process-driven SOAs. Our assumption is that using
proven practices as a foundation for meta-modelling leads to
a close match between the modelling abstractions and the
real-world requirements.

In our approach, software patterns are used to describe the
proven practices. Software patterns capture reusable design
knowledge and expertise that provides proven solutions to
recurring software design problems that arise in particular
contexts and domains (cf. Schmidt and Buschmann, 2003).
A software pattern, however, is described in an informal form
and cannot easily be described formally, for example, by
using a parameterisable, template-style description. Hence,
as such, patterns are not usable as elements of meta-models.
We remedy this problem by introducing an intermediate
abstraction called pattern primitives. A pattern primitive
is a fundamental, precisely specified modelling element in
representing a pattern.

Our general approach to apply pattern primitives for
process-driven SOAs is to define meta-models for all kinds of
models that are needed and specify the pattern primitives as
extensions of these meta-models. The connection between
the various kinds of models and the validation of the
models – with regard to model integrability and consistency
in and across the modelling domains – is the main task of
our model-driven tool chain concepts. To demonstrate our
approach, we use a precisely specified subset of UML2
and OCL to depict the various refinements of processes in
process-driven SOA models. We use the precisely specified
subset of UML2 and OCL only for demonstration purposes.
Any other precisely specified meta-model can be used as well.
‘Precisely specified’ means in this context that no informal
elements are part of the meta-models or constraints (like the
informal constraints used in some parts of the UML standard)
and the semantics of the meta-model or constraint elements
are specified in the generator – to define precisely how models
need to be validated and how valid code can be generated.

In this paper, we first provide the background on MDSD
and patterns/pattern primitives in Section 2. Next, in
Section 3, we explain our model-driven tool chain to give
an overview of our approach. In Section 4, we explain

how we use meta-models to integrate process-driven SOA
models. In Section 5, we explain the pattern primitives
approach for process-driven integration of services using flow
abstractions as the primary modelling domain. In Section 6,
we demonstrate how architectural abstractions – as one
example of another modelling domain – can be integrated
with the flow models. We explain all primitive models with
running examples from a pattern language for process-driven
integration of services, which we have implemented in our
MDSD tool chain to validate our approach.

2 Background on MDSD

2.1 Model-driven software development

Our approach to MDSD (cf. Greenfield and Short, 2004;
Stahl and Voelter, 2006)1 for process-driven SOAs is
based on the notion of Domain-Specific Languages (DSL)
for modelling the various types of models. DSL are
‘small’ languages that are tailored to be particularly
expressive in a certain problem domain. The DSL
describes knowledge via a graphical or textual syntax (the
DSL’s concrete syntax in the terminology of Greenfield
and Short (2004)), which is tied to domain-specific
modelling elements through a precisely specified language
meta-model (the DSL’s abstract syntax in the terminology
of Greenfield and Short (2004)). The meta-model can be
instantiated in concrete application models. The semantics
of the DSL are defined via unambiguous specifications of
model-to-model or model-to-code transformations. There
are different ways to specify transformations, such
as transformation rules, imperative transformations or
template-based transformations.

The meta-models presented in this paper are based
on the UML2 meta-model (and extensions of it): for
example we use UML2 activity diagrams to model flow
abstractions and UML2 class/component diagrams to model
object-oriented design and architecture models. To make
the UML2 meta-models usable in our approach, we first
specify a precise subset of the UML meta-model (using model
elements, transformations and constraints). We use the UML
only for demonstration purposes (and because it was required
in some of our projects); any other meta-models can be used
equally. For instance, if a project goal is to generate BPEL
code using the full BPEL specification, it is advisable to use a
DSL that is closer to BPELs constructs to minimise potential
transformation problems.

Meta-models are defined in terms of a
meta-meta-model. In UML (and the OMG’s MDA proposal),
for instance, this is MOF. Most MDSD tools support their own
meta-meta-model, which basically represents a mapping
from meta-model definitions to the implementation of
the MDSD tool chain. Below, in the examples from our
prototype, we use a simple meta-meta-model to define both
the UML2 meta-model and pattern primitives extensions.
It is not particularly important for our approach, which
meta-meta-model is used, there must be some way to just
specify the relationships and transformations between a
meta-model and the target models/code of the
transformations. The meta-meta-model is not visible to

Model-driven and pattern-based integration of process-driven SOA models 111

Figure 1 Relations of artifacts in MDSD

Application
Model

DSL
Concrete Syntax

Meta-Model
(DSL Abstract Syntax)

Meta-Meta-
Model

based on

defined in

based on

*

Transformation

1

*

1

represents

1

*

* 1

use defined using

**

Schematic
Recurring Code

produces

1..

1..* 1..*

Individual Code
uses

* *

developers who build application models, but only to those
who build meta-models.

The ultimate goal of the transformations in MDSD
tools is to generate code in executable languages, such
as programming languages or process execution languages.
The MDSD tools are used to generate all those parts of
the executable code which are schematic and recurring and
hence can be automated. Of course, some code must be
hand-written either because it is individual code for a system
or the semantics of the code are not fully covered by the DSLs
(yet). The individual code and the generated code use each
other and interact through well defined interfaces.

Figure 1 summarises the relations of artifacts in MDSD.

2.2 Software patterns and pattern primitives

Software patterns and pattern languages have gained wide
acceptance in the field of software development, because
they provide systematic reuse strategies for design knowledge
(cf. Schmidt and Buschmann, 2003). A pattern encodes
proven practice in the form of a reusable design solution
to a recurring design problem. A pattern language is a
collection of patterns that solves the prevalent problems in a
particular domain and context. Patterns informally describe
many possible variants of one software solution that a human
developer or designer can recognise as one and the same
solution.

Even though these properties of the pattern approach
are highly valuable in the software design process, they
also make pattern instances hard to trace in the models and

implementations. To overcome this problem, we introduced
an approach to document precisely specified primitive
abstractions that can be found in the patterns (cf. Zdun
and Avgeriou, 2005). Documenting pattern primitives means
to find precisely describable modelling elements that are
primitive in the sense that they represent basic units of
abstraction in the domain of the pattern. Our original pattern
primitives concept presented in Zdun and Avgeriou (2005)
is only targeted at modelling architectural patterns. In this
realm, basic architectural abstractions like components,
connectors, ports and interfaces are used. An interesting
challenge in describing the pattern primitives for the patterns
of process-driven SOA is that this area requires various design
and architecture concepts, as well as various design and
implementation languages.

We specify an extension of a meta-class for each
elicited primitive, using the UML’s extension mechanisms:
stereotypes, tag definitions and constraints. We use the
Object Constraint Language (OCL) to precisely specify the
constraints of the primitives.

3 MDSD for process-driven SOA

3.1 Model-driven tool chain

Our approach requires a model-driven tool chain that loosely
follows an architecture similar to our tool chain depicted in
Figure 2. We mainly use UML2 models that are extended
with UML2 profiles for modelling the pattern primitives as
inputs. These UML2 models can either be developed with

Figure 2 Tool chain overview

UML2 Activity
Diagrams:

Process Flow

UML2 Activity
Diagrams:

Message Flow

UML2 Component
Diagrams:

Architecture

UML2 Class/Object
Diagrams:

Business Objects

Frag UML2
Meta-Model

Individual
Code

Frag Syntax-Based
DSLs

Frag UML2 Profile:
SOA Pattern Primitives

XMI2Frag
Transformation Plugin

Frag2EMF
Transformation Plugin

Frag Model Validator Code Generator

Transformation
Rules/Templates

System Code

112 U. Zdun and S. Dustdar

UML tools (with XMI export) or directly in the textual DSL
syntax. If a UML tool is used, the XMI export is transformed
into the textual DSL syntax.

We use Frag (cf. Zdun, 2005, 2006) as the syntactic
foundation of the textual DSLs and for defining the
meta-models of the DSLs. Frag’s main goal is to provide
a tailorable language. Among other things, Frag supports
the tailoring of its object system and the extension with new
language elements. Hence, Frag provides a good basis for
defining a UML2-based textual DSL because it is easy to
define a meta-meta model on top of which we can define the
UML meta-classes. Frag automatically provides us with a
syntax for defining application models using the UML2 meta-
classes. In addition, we have defined a constraint language
which follows the OCL’s constructs.

The model validator gets all input models and validates the
conformance of the application models to the meta-models.
It also checks all OCL constraints, in particular, the
constraints given by the pattern primitive definitions.

After the model is validated it is transformed into an EMF
model, which is understood by the code generator. We then
generate code in executable languages using transformation
specifications provided to the code generator.

3.2 Model integration concepts: meta-meta
-model based integration

The model-driven concepts described in the previous section
only concentrate on the individual modelling domains. For
integration of the models, we propose further integration

concepts that extend the general model-driven approach.
Because they are independent of external tools, languages
or models, in our concept, the central point of integration
are the meta-models that we need to define for the DSLs.
Also, they are located at the central place of the model-driven
architecture: at the point in the tool chain where all different
models are assembled.

We propose to define the meta-models on top of one
common meta-meta-model. The meta-meta-model can be
very simple or more elaborate like MOF. The most important
criterion for the meta-meta-model is that the elements of the
meta-meta-model allow the model validator to check models
against the meta-models. In addition, it should be possible
to define a constraint language using the meta-meta-model,
with which models can be constrained at the meta-level and
hence validated at the model level.

As an example, Figure 3 shows the relevant excerpt of
the meta-meta-model that we use in Frag to define precisely
specified subsets of the UML2 meta-model. This meta-meta-
model is very simple and reuses Frag’s language features
wherever possible. It is derived from the most general class
in the Frag object system: Object. The meta-meta-model
classes are subclasses of ConstrainedClass which
allows us to add OCL-style constraints to classes. The
convenience class ConstraintChecker looks up to all
ConstrainedClass instances via reflection and checks
the constraints. Constraints are specified in a language
similar to OCL (defined using the class FCL). The
meta-models are defined using Class. We introduce also
a number of relationships between classes: dependencies,

Figure 3 Meta-meta-model excerpt

MMM

Frag

Object

ConstrainedClassConstraintChecker

Class

attribute

AssociationEnd

Association

ends

CompositionAggregation

EnumStereotype

FCL

FCL

Dependency

class

extends

supplier

client

«instanceOf»
«instanceOf»

«instanceOf»

«instanceOf»

«use»
«use»

Model-driven and pattern-based integration of process-driven SOA models 113

associations, compositions, and aggregations. In addition,
typed attributes can be specified. Please note that we do
not define the generalisation relationship, because multiple
inheritance is suitably predefined by Frag and we can
reuse this implementation. The Stereotype class defines
the UML2 extends-relationship, which is used to extend
meta-classes. Enum is a convenience class to define
Enumeration types.

3.3 Model integration concepts: proven
practices-based integration

Besides the common meta-meta-model concept, we use
proven practices descriptions as the second central model
integration concept: as explained above, we use software
patterns to describe proven practices of process-driven SOAs.
Patterns have two characteristics which make them useful for
model integration across modelling domains:

• Patterns describe recurring solutions in a particular
problem domain in an informal and holistic manner.
Hence, in contrast to most formal modelling notations,
they do not abstract away from details that go beyond a
specific modelling domain’s abstractions, but instead
explain the full solution. That is, if the solution has, for
instance, implications for the workflow, the
organisation, and the software architecture, all these
solution elements are described.

• As proven practice descriptions, patterns encode the
recurring themes in the same kinds of models. Hence,
they are also a good basis for defining a common
meta-model for a modelling domain, because patterns
typically describe the established, stable abstractions
that are used across different modelling approaches and
execution languages.

Because patterns are defined only informally, we use pattern
primitives as an intermediary abstraction to represent the
primitive concerns in the patterns precisely. At this point,
it is very important that we use a common meta-meta-model
and a common constraint language to define the meta-models
that represent the abstract syntaxes of the DSLs: this way,
the primitives can be connected via constraints and also
primitives that cut across different models can be defined.
The model validator can check all structural properties and
constraints in the complete model, even if modelling domains
are crossed.

4 Meta-models for SOA integration

There are many modelling domains that play a role for
a process-driven SOA. In our tool chain, we have so far
concentrated on a subset of these domains that deals with
the integration of processes and services. In this context,
the following types of languages/models are typically
used: component architectures, message flow specifications,
workflow or business process languages, programming
languages and snippets written in programming languages
and business object design models.

For our tool chain, we model both message flow
specifications and workflow or business process languages,
using extensions of UML2 activity diagrams.2

Component architectures are modelled using UML2
component diagrams. Business object design models are
modelled using UML2 class diagrams. In this paper, we
will concentrate on examples that illustrate the integration
of component architectures and flow abstractions, but
the integration with business object design models can
be done analogously. Programming language snippets are
introduced as individual code (as explained in Section 3.1,
cf. Figure 2).

As an example for a meta-model definition let us consider
the central flow abstractions: the different models that are
relevant for a process-driven SOA come together in various
kinds of ‘flow’ models. There are flow models for long-
running business processes, activity steps in long-running
processes, short-running technical processes and activity
steps in short-running technical processes. Even though these
flow models have highly different semantic properties, they
share the same basic flow abstraction concept and at the same
time they are a kind of glue for all the other models that are
involved in a process-driven SOA (such as architecture and
design models).

We can define meta-models by instantiating the meta-
meta-model classes from Figure 3. In addition to the graphical
DSL syntaxes that follow the UML’s symbols (see the
UML2 standard for details about the UML meta-models and
graphical syntax), we also introduce a textual Frag syntax.
To get a feel for these textual DSLs, here’s a small excerpt
of the Frag code specifying some classes and relationships.
In the rest of this paper, we omit the textual DSL syntaxes as
they are pretty much defined in the same way for the different
kinds of meta-models. That is, there is a 1:1 mapping between
the textual syntaxes and UML’s graphical syntaxes for the
various model types.

MMM::Class create Activity
MMM::Class create ActivityNode
MMM::Composition create ActivityNodes -ends {

{Activity -roleName activity -multiplicity 0..1
-navigable 1 -aggregatingEnd 1}

{ActivityNode -roleName node -multiplicity *
-navigable 1}

}
MMM::Class create ActivityEdge
MMM::Composition create ActivityEdges -ends {

{Activity -roleName activity -multiplicity 0..1
-navigable 1 -aggregatingEnd 1}

{ActivityEdge -roleName edge -multiplicity *
-navigable 1}

}
...

5 SOA patterns and pattern primitives

We next discuss how to extend the meta-models with pattern
primitive extensions. Before we can go into detail, we first
give an overview of the pattern language from which we
derive the pattern primitives.

5.1 Overview: patterns for process-oriented
integration of services

We have mined the pattern primitives from a pattern language
for process-oriented integration of services (for details
see Hentrich and Zdun, 2006). The patterns and pattern

114 U. Zdun and S. Dustdar

Figure 4 Overview: pattern language for process-oriented integration of services

PROCESS-BASED INTEGRATION ARCHITECTURE

CONFIGURABLE ADAPTER
REPOSITORY

PROCES INTEGRATION

ADAPTER

manages

MACROFLOW INTEGRATION

SERVICE

RULE-BASED DISPATCHER

is realised with

forwards
requests

delegates requests

offers

is composed of

MICROFLOW ENGINE
BUSINESS-DRIVEN SERVICE

CONFIGURABLE ADAPTER

is realised with

manages

MACRO-MICROFLOW

conceptual foundation

is specialisation of

MACROFLOW ENGINE

sends requests for
activity execution

interdependent design

is realised with

MICROFLOW EXECUTION

SERVICE

same
service interface

relationships are shown in Figure 4. In the pattern language,
the pattern MACRO-MICROFLOW lays out the conceptual
basis to the overall architecture. The pattern divides the
flow models into so-called macroflows, which describe the
long-running business processes and microflows,
which describe the short-running technical processes.
The PROCESS-BASED INTEGRATION ARCHITECTURE pattern
describes how to design a layered architecture, which is
following the MACRO-MICROFLOW pattern.

The remaining patterns in the pattern language provide
detailed guidelines for the design of a PROCESS-BASED

INTEGRATION ARCHITECTURE. The automatic functions
required by macroflow activities from external systems
are designed and exposed as dedicated MACROFLOW

INTEGRATION SERVICES. PROCESS INTEGRATION ADAPTERS

connect the specific interface and technology of the
process engine to an integrated system. A RULE-BASED

DISPATCHER picks up the (macroflow) activity execution
requests and dynamically decides based on (business)
rules, where and when a (macroflow) activity is executed.
A CONFIGURABLE ADAPTER connects to another system
in a way that allows to easily maintain the connections,
considering that interfaces may change over time.
A CONFIGURABLE ADAPTER REPOSITORY manages
CONFIGURABLE ADAPTERS as components, such that
they can be modified at runtime without affecting the
systems sending requests to the adapters. A MICROFLOW

EXECUTION SERVICE abstracts the technology specific
API of the MICROFLOW ENGINE and encapsulates
the functionality of the microflow as a service.
A MACROFLOW ENGINE allows for configuring business
processes by flexibly orchestrating execution of macroflow

activities and the related business functions. A MICROFLOW

ENGINE allows for configuring microflows by flexibly
orchestrating execution of microflow activities and the
related BUSINESS-DRIVEN SERVICES. To define BUSINESS-

DRIVEN SERVICES, high-level business goals are mapped to
to-be macroflow business process models that fulfil these
goals and more fine grained business goals are mapped to
activities within these processes.

Figure 5 shows an exemplary configuration of a
PROCESS-BASED INTEGRATION ARCHITECTURE, in which
multiple macroflow engines execute the macroflows.
Process-integration adapters are used to integrate the
macroflows with technical aspects. A dispatching layer
enables scalability by dispatching onto a number of
MICROFLOW ENGINES. Business application adapters connect
to backends.

5.2 Pattern primitives for process and service
integration

In this section, we present the pattern primitives for flow
abstractions that we have mined from the pattern language
explained in the previous section. We will concentrate only
on one detailed primitive example and summarise a few
other primitives that are needed for the examples in the
following sections in Table 1. The other primitives in
the full catalogue of primitives have been defined in the
same way.

Each primitive is precisely specified in the context
of the UML2 meta-model using OCL constraints. To
illustrate the precise specification of the primitives let
us consider the Macro-Microflow Refinement Primitive.

Model-driven and pattern-based integration of process-driven SOA models 115

Figure 5 Example configuration of a process-based integration architecture

Process Integration Architecture

Process Integration
Adapter Repository

Rule-Based
Dispatcher

Microflow Execution Business Application
Adapter Repository

Process
Integration
Adapter A

Process
Integration
Adapter B

Process
Integration
Adapter C

Microflow Engine A
Business

Application
Adapter A

Business
Application
Adapter B

Business Application A

Business Application B

Macroflow Engine A

Macroflow Engine B

Macroflow Engine C

Microflow Engine B

S
er

vi
ce

1

S
er

vi
ce

2

S
er

vi
ce

3

S
er

vi
ce

4

S
er

vi
ce

1

S
er

vi
ce

2

S
er

vi
ce

3

S
er

vi
ce

4

S
er

vi
ce

1

S
er

vi
ce

2

S
er

vi
ce

3

S
er

vi
ce

1

S
er

vi
ce

2

S
er

vi
ce

3

Macroflow Composition
Layer

Macroflow Integration
Layer

Dispatching
Layer

Microflow Execution
Layer

Business Application Services Layer

Table 1 Overview: process flow refinement primitives

Primitive name Description Modelling solution

Process
Flow
Refinement

A macroflow or microflow is
refined using another process flow

The Activity meta-class is extended with the stereotype Process Flow
Refinement, which also introduces tagged values for identifying the
refinement

Process
Flow Steps

A macroflow or microflow is refined
by a number of sequential steps

A specialisation of the Process Flow Refinement stereotype, called Process
Flow Steps, is introduced and constrained to be a strictly sequential flow

Macroflow Model A macroflow can be refined by other
macroflows or macroflow steps

Macroflows are modelled by a Process Flow Refinement stereotype, called
Macroflow and macroflow steps are modelled as a specialisation of Process
Flow Steps, called Macroflow Steps

Microflow
Model

A microflow can be refined by other
microflows or microflow steps

The microflow model is modelled analogous to the Macroflow Model
primitive: The Microflow and Microflow Steps stereotypes are introduced

Macro-Microflow
Refinement

Microflow Models are allowed to
refine Macroflow Models

The Microflow Model primitive is extended: If refinedNodes of a Microflow
is not empty, the Microflow is a refinement of a Microflow, a Macroflow or
Macroflow Steps

This primitive models the situation that Microflow Models
are allowed to refine Macroflow Models. In addition to
macroflows and microflows, we must consider the Macroflow
Steps and Microflow Steps models, introduced by the Process
Flow Steps primitive: A process activity node in a macroflow
or microflow can optionally be refined by a number of
sequential steps that detail the steps performed to realise the
process activity.

To model this primitive, we first must introduce
UML2 stereotypes to distinguish the different kinds of
refined/refinement activities (see Figure 6) in the UML2
models. We can model the Macro-Microflow Refinement
primitive by constraining the Microflow Activities.
In particular, if a Microflow activity refines another activity,
then this other activity must be itself stereotyped as
Macroflow, MacroflowSteps or Microflow. This can be
precisely specified using the following OCL constraint:

context Microflow inv:
self.refinedNodes->forAll(rn |

Macroflow.allInstances()->exists(a |
a.baseActivity = rn.activity) or

MacroflowSteps.allInstances()->exists(a |
a.baseActivity = rn.activity) or

Microflow.allInstances()->exists(a |
a.baseActivity = rn.activity))

We have also provided a textual Frag DSL for expressing
such constraints. The OCL constraints in UML models can be
automatically mapped to this constraint DSL.The task of such
constraints is basically to limit the use of the primitives to the
acceptable parameters – following the pattern descriptions
in which the primitives are used – but no further. For
each primitive we have hence described all such constraints
(the others are omitted here for space reasons). Thus each
primitive describes a precisely specified, parameterisable
building block that can be used to specify the corresponding
patterns.

Figure 6 Stereotypes for process flow refinements

«stereotype»
MacroflowSteps

«stereotype»
MicroflowSteps

«metaclass»
Activity

+ refinedNodes : ActivityNode [0..*]

«stereotype»
ProcessFlowRefinement

«stereotype»
ProcessFlowSteps

«stereotype»
Macroflow

«stereotype»
Microflow

116 U. Zdun and S. Dustdar

5.3 Modelling patterns using the pattern primitives
for process-driven service integration

The pattern primitives are not yet linked to the patterns.
The patterns cannot be themselves precisely specified, but
we can identify the pattern primitives that occur in individual
patterns. For instance, some of the primitives are mandatory
in a pattern, others are optional, still others are only used
in specific variants, etc. This mapping of patterns to pattern
primitives hence provides us with modelling constructs that
can be differently combined for different pattern instances,
but must conform to the pattern-to-primitive mapping. If a
primitive is used in a pattern instance, all constraints of the
primitive must be fulfilled. Hence, the primitives precisely
specify the proven practices documented in the patterns.
In the rest of this section, we illustrate our approach using
the example of modelling the MACRO-MICROFLOW pattern.
The other patterns are modelled following the same
approach.

The MACRO-MICROFLOW pattern strictly separates the
macroflow from the microflow and uses the microflow
only for refinements of the macroflow activities. Both in
macroflows and microflows we can observe refinements.
The different kinds of refinement can be modelled using
the Process Flow Refinement primitive. Process Flow
Refinement is a generic primitive that can be used for
modelling all kinds of process refinements.

Figure 7 shows an example for Macro-Microflow
refinement. We describe all models in Figure 7 essentially
in the same way. The model integration of the short-running
message flow models and the long-running business models is
done by extending the models with the respective stereotypes
and tag values. After these stereotypes have been defined,
the OCL constraints of the primitives enforce that those four
models can only be composed in a way that is valid according
to the Macro-Microflow Refinement primitive. Figure 7,
hence, shows a model conforming to the constraints. Again,
the models can be mapped to a textual DSL expressing models
defined on top of the DSLs for meta-models, primitives and
constraints introduced earlier.

Numerous other variants of the MACRO-MICROFLOW

pattern are possible and can be modelled with the primitives
introduced. Please note that the flexibility of model assembly
through primitives is a very important characteristic of our
approach, because it enables us to represent the inherent
variability of software pattern solutions.

6 Integrating architectural models

The MACRO-MICROFLOW pattern has implications for
short-running message flow models and the long-running
business models and we were able to integrate the two
model types (and even add macroflow/microflow steps as
another kind of modelling abstraction). In our approach,
these two kinds of models are modelled with the same
model type: activity diagrams. The patterns, however,
also have implications for other model types, such as the
architectural components in the system or business object
models. To model those abstractions, we additionally need
to consider architectural abstractions and object-oriented
design abstractions. It is typical for patterns that they
have implications for different kinds of models; hence the
conceptual integration approach, demonstrated in this section
for one pattern/primitive example, is also used to model the
other patterns and primitives, as well as other modelling
domain combinations.

In UML, business objects can be modelled using
class diagrams. Architectural abstractions can be modelled
via component diagrams. Component diagrams are a
specialisation of class diagrams. Therefore, our approach for
integrating these models with flow models is very similar for
both class diagrams and component diagrams. Hence, we
demonstrate our approach only for one of those abstractions
in depth: architectural components.

Our approach is to first find suitable pattern primitives
for modelling the architectural abstraction corresponding to
the patterns. Where further integration between modelling
domains is needed, we model the flow model and
architectural model with overlapping constraints and
primitives that cut across model boundaries.

6.1 Modelling architectural abstractions with
pattern primitives

Architectural modelling with pattern primitives follows the
same approach as introduced for the flow abstractions.
In the context of architectural abstraction, we have introduced
similar primitives for architectural patterns (see Zdun and
Avgeriou, 2005). Let us consider the Callback primitive
as an example: in a process-based integration architecture,
different kinds of components are connected. Figure 5
shows an exemplary larger configuration, in which multiple
macro-/microflow engines and a dispatcher are used. The

Figure 7 Macro-Microflow modelling example

«Macroflow»
Model1

A

[true]

[false]

C

«MacroflowSteps»
Model2B
{refinedNodes=B}

Y

O
B

X

«Microflow»
Model3X
{refinedNodes=X}

[false]

[true]

K

M

L

«MicroflowSteps»
Model4L
{refinedNodes=L}

F

E

Model-driven and pattern-based integration of process-driven SOA models 117

Figure 8 UML2 model for the example configuration

:Macroflow
Engine

:PI_Adapter

:Dispatcher

:Microflow
Engine

:Microflow
Engine

:BA_Adapter

:BA_Adapter

:BA_Adapter

«Callback»

«CallbackPort»

«EventPort»

:Macroflow
Engine :PI_Adapter

«Callback»

«Callback
Port»

«Event
Port»

:Macroflow
Engine

:PI_Adapter

«Callback»

«CallbackPort»

«EventPort»

«CallbackPort»

«Callback
Port»

«Event
Port»

«CallbackPort»

«Callback»

«Callback
Port»

«Callback»

«EventPort»

«EventPort»

«EventPort»

«Event
Port»

«EventPort»

«Callback
Port»

«Callback
Port»

«Callback»

«Callback»

«Callback»

«Callback»

components are typically connected via asynchronous
messaging. The modelling support for a process-based
integration architecture should allow for flexibly assembling
different kinds of architectural models.

The callback primitive (cf. Zdun and Avgeriou, 2005) can
be used to model the reactive behaviour in this architecture:
a callback denotes an invocation to a component B that is
stored as an invocation reference in a component A. The
callback invocation is executed later, upon a specified set
of runtime events. Between two components A and B, a
set of callbacks can be defined. To capture the semantics
of a callback architecture properly in UML, we propose five
stereotypes: IEvent, ICallback, EventPort, CallbackPort and
Callback. Again, we have precisely specified the constraints
using OCL (see Zdun and Avgeriou, 2005, for details), and
defined the meta-model and constraints in Frag, so that we
can use the constraints on components that represent the
process-based integration architecture components.

All components in a PROCESS-BASED INTEGRATION

ARCHITECTURE are interconnected following the callback
style because they use asynchronous communication. The
event ports of each layer are listening to events from the
higher-level layer, and when an event arrives, they call
into the lower-level layer. Once a result is received, it is
propagated back into the higher-level layer using a callback.
Figure 8 shows an example UML2 model for a callback
configuration modelling the situation from Figure 5 in a
more precise way. For the architectural primitives we have
introduced textual DSLs, just like the ones for the flow
abstraction primitives introduced before.

6.2 Integrating architectural and flow
abstraction models

In addition to the architectural flexibility of the
PROCESS-BASED INTEGRATION ARCHITECTURE pattern, we
need to model the pattern’s constraints. If the pattern

implementation follows the MACRO-MICROFLOW pattern,
analogous constraints to the macro-microflow refinement in
the flow models must be introduced, such as: components
that represent the microflow should not invoke macroflow
functionality, macroflow adapters should not be used at the
microflow level and vice versa, the dispatcher should only
invoke short running microflows, etc.

In this situation, we can use another architectural
primitive from Zdun andAvgeriou (2005): layering. Layering
describes groups of components and further constrains them.
Specifically, it entails that group members from layer X may
call into layer X − 1 and components outside the layers, but
not into layer X − 2 and below. To model layering in UML2,
we introduce the Layer stereotype, which specialises the
Group stereotype (which itself is an extension of the package
metaclass). We also impose the following constraints: a
component can only be member of one layer and not multiple
layers; components who are members of layer X may call
their fellow components in layer X, as well as components in
layer X−1 but not in other layers (e.g. X−2 and below). Also,
we introduce the tag definition layer number for layers which
represents the number of the layer in the ordered structure of
layers. Figure 9 shows a UML2 model that extends the model
from Figure 8 using the layering primitive.

In this example, we have modelled the integration of
the macroflow–microflow refinements at the flow model
level with the architectural components by introducing OCL
constraints for the refinements between the flow models and
by adding similar constraints to the architectural model. That
is, the primitive Macro–Microflow Refinement was used at
the flow model level and callback/layering were used at the
architectural level.

Sometimes this is not enough and it is necessary to extend
this strategy and add a direct relationship between the flow
models and the architectural models. In such cases, primitives
and OCL constraints that contain elements from both model
types need to be specified. That is, the OCL constraints cut

Figure 9 Extending the example configuration with layering

«Layer»
Business

application
services

{layerNumber=1}

BA_Adapter

«Layer»
Microflow
execution

{layerNumber=2}

Microflow
Engine

«Layer»
Activity

dispatching
layer

{layerNumber=3}

Dispatcher

«Layer»
Macroflow

integration layer
{layerNumber=4}

PI_Adapter

«Layer»
Macroflow

Engine
{layerNumber=5}

Macroflow
Engine

118 U. Zdun and S. Dustdar

across the model types and hence allow for validating that
the models do not violate integration concerns between the
model types.

7 Related work and evaluation

Our approach supports models for business processes,
message flows, OO design and software architecture – and
programming language code/snippets provided as individual
code in the MDSD tool chain. Our approach is extensible with
new model types, especially domain-specific models. We
plan to extend our approach in additional relevant modelling
domains, such as organisational models or human-interaction
models. None of the related approaches offers sufficient
support for all these model types. Most related work focuses
only on one type of modelling domain.

There are only a few exceptions: Zimmermann et al.
(2004) present a generic modelling approach for SOA
projects. As in our approach, the approach by Zimmermann
et al. is based on project experiences and distills proven
practices. The approach also integrates multiple kinds of
models for a SOA: object-oriented analysis and design,
enterprise architecture and business processes.

Business process management tools, such as Adonis
(cf. BOC Europe, 2006) or Aris (cf. Scheer, 2006), describe
a holistic model of business process management, ranging
from strategic decisions to the design of business processes.
They are integrated with standard model types and extensible
with new model types. Such tools represent important prior
art in the field of model integration. But they do not
specifically focus on the field of process-driven SOAs; they
are more focused on the business processes. However, an
extensible tool suite like Adonis can be used for providing
input models for our approach or be extended to model
the DSLs.

There are many modelling approaches for business
processes, such as Event-Driven Process Chains (EPC)
(cf. Keller et al., 1992) and the BPMN (cf. Object
Management Group, 2006). Our approach has in
common with these approaches that we use the flow
abstraction as the central modelling abstraction. Unlike
the BPMN, our approach is based on a precisely specified
meta-model. Among others, Kindler (2006) has proposed
formal semantics for EPCs. In contrast to modelling
approaches for business processes, our approach allows to
integrate other model types of a process-driven SOA. That
is, we take a more ‘integrative’ view than those more specific
approaches.

Our approach extends the MDSD concept proposed for
instance in Greenland and Short (2004), Stahl and Voelter
(2006) with the idea to use one common meta-meta-model
for model integration, primitives as modelling constructs
based on proven practices and model validation tools for these
concepts. In Greenfield and Short (2004, Chapter 13), it is
briefly discussed how typical MDSD concepts can be used
to support SOA modelling, but only with a focus on web
services technology. Essentially, the process description, for
example, in BPEL, is seen as a platform for implementing
abstractions in a product line and the services are seen as
product line assets for systematic reuse. This view does

not contradict our approach, but our approach goes beyond
this vision. Through the common meta-meta-model we
can integrate any kind of model types; hence, process
descriptions are not only a platform, but a first-class model
type. In this sense, our approach is also related to the
OMG’s MDA proposal, which is a specific MDSD approach
focusing on interoperability and platform independence
through the distinction of Platform-Independent Models
(PIM) and Platform-Specific Models (PSM). Again, our
general approach can be used as an extension of MDA,
even though our concrete realisation follows more closely the
DSL-based MDSD approach (cf. Stahl and Voelter, 2006).

Our approach is not the only approach that is based
on proven practices, but only our approach and the
workflow patterns approach by van der Aalst et al.
(2003) combine proven practices and precisely specified
models. The workflow patterns are formalisable constructs
(e.g. formalised in the Petri-net-based language YAWL).
In YAWL, the workflow patterns are provided as language
constructs; hence in the workflow patterns approach the
flexibility of assembly of pattern primitives is not (yet)
supported, because the variation points offered by the
primitives are not offered by the workflow patterns. To
support a similar approach as ours, it would be necessary
to mine higher-level patterns in workflows that provide
guidance on how to assemble the workflow patterns to larger
structures.

Some other approaches define particular aspects of service
or business process composition using formal specifications,
such as the activity-based finite automata-based approach
by Gerede et al. (2004) or the interval temporal logic
approach by Solanki et al. (2004). Desai et al. (2005) propose
to abstract business processes using interaction protocol
components which represent an abstract, modular and
publishable specification of an interaction among different
partner roles in a business process. These approaches aim at
model-based verification. Our approach is not designed for
this goal. Of course, it is possible to define verifiable models
through meta-models and extend our approach, but this has
not yet been the focus of our work.

8 Conclusion

In this paper, we have introduced a concept for
model-driven development of process-driven SOAs that is
based on proven practices. We have especially focused on
the aspect of model integration by introducing an approach
that is based on a common meta-meta-model from which
concrete meta-models for DSLs are derived. In the different
DSLs and their respective meta-models, proven practices
(described as software patterns) are precisely specified as
modelling primitives and their constraints can be validated for
all instances of all different meta-models. We have shown in
the examples how to integrate message flow models, business
process models and architectural models. The approach is,
however, applicable for all other kinds of process-driven SOA
models for which a precise meta-model is or can be specified.
Our tools and DSLs can be flexibly used in model-driven
development for precisely specifying process-driven SOAs,
validating the models and code generation for executable
languages.

Model-driven and pattern-based integration of process-driven SOA models 119

References

BOC Europe (2006) ‘Adonis’, Available at: http://www.
boc-eu.com/.

Desai, N., Mallya, A.U., Chopra, A.K. and Singh, M.P.
(2005) ‘Interaction protocols as design abstractions for business
processes’, IEEE Transactions on Software Engineering, Vol. 31,
No. 12, pp.1015–1027.

Gerede, C.E., Hull, R., Ibarra, O. and Su, J. (2004) ‘Automated
composition of e-services: Lookaheads’, Proceedings of the
International Conference on Service Oriented Computing
(ICSOC 2004), New York, NY pp.252–262.

Greenfield, J. and Short, K. (2004) Software Factories: Assembling
Applications with Patterns, Frameworks, Models and Tools,
J. Wiley and Sons Ltd.

Hentrich, C. and Zdun, U. (2006) ‘Patterns for process-oriented
integration in service-oriented architectures’, Proceedings of
11th European Conference on Pattern Languages of Programs
(EuroPlop 2006), Irsee, Germany.

IDS Scheer (2006) ‘Aris platform’, Available at: http://
www.idsscheer.de/germany/products/53956.

Keller, G., Nuettgens, M. and Scheer, A-W. (1992)
‘Prozessmodellierung auf der grundlage ereignisgesteuerter
prozessketten (EPK)’, Technical Report Veroeffentlichungen des
Instituts fuer Wirtschaftsinformatik (IWi), Heft 89, Universitaet
des Saarlandes.

Kindler, E. (2006) ‘On the semantics of EPCs: Resolving the vicious
circle’, Data and Knowledge Engineering, Elsevier, Vol. 56,
No. 1, pp.23–40.

Object Management Group (2006) ‘Business process modelling
notation (BPMN)’, Available at: http://www.bpmn.org/.

Schmidt, D. and Buschmann, F. (2003) ‘Patterns, frameworks, and
middleware: their synergistic relationships’, 25th International
Conference on Software Engineering, pp.694–704.

Solanki, M., Cau, A. and Zedan, H. (2004) ‘Augmenting semantic
web service descriptions with compositional specification’,
‘WWW ’04: Proceedings of the 13th International Conference
on World Wide Web, pp.544–552.

Stahl, T. and Voelter, M. (2006) Model-Driven Software
Development, J. Wiley and Sons Ltd.

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B. and
Barros, A. (2003) ‘Workflow patterns’, Distributed and Parallel
Databases, Vol. 14, pp.5–51.

Vinoski, S. (2003) ‘Integration with web services’, IEEE Internet
Computing.

Zdun, U. (2005) ‘Frag’, Available at: http://frag.sourceforge.net/.

Zdun, U. (2006), ‘Tailorable language for behavioral composition
and configuration of software components’, Computer
Languages, Systems and Structures: An International Journal,
Vol. 32, No. 1, pp.56–82.

Zdun, U. and Avgeriou, P. (2005) ‘Modelling architectural
patterns using architectural primitives’, Proceedings of the 20th
ACM Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA 2005), ACM Press,
San Diego, CA, pp.133–146.

Zdun, U., Hentrich, C. and van der Aalst, W. (2006) ‘A survey
of patterns for service-oriented architectures’, International
Journal of Internet Protocol Technology, Vol. 1, No. 3,
pp.132–143.

Zimmermann, O., Krogdahl, P. and Gee, C. (2004), ‘Elements
of service-oriented analysis and design: an interdisciplinary
modelling approach for SOA projects’, Available at: http://
www-128.ibm.com/developerworks/webservices/library/
ws-soad1/.

Notes

1Please note that the OMG’s MDA proposal is one specific MDSD
approach that has some notable differences to our MDSD
approach – especially in its focus on interoperability and platform
independence.

2Please note that in both cases, long running business processes
and short running technical processes, the UML2 activity
diagrams must be extended to depict relevant additional
information.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

