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Abstract—Applications in the Internet of Things (IoT) domain
need to manage and integrate huge amounts of heterogenous
devices. Usually these devices are treated as external dependencies
residing at the edge of the infrastructure mainly transmitting
sensed data or reacting to their environment. Recently however,
a fundamental shift in the basic nature of these devices is
taking place. More and more IoT devices emerge that are not
simple sensors or transmitters, but provide limited execution
environments. This opens up a huge opportunity to utilize these
previously untapped processing power in order to offload custom
application logic directly to these edge devices. To effectively
exploit this new type of device the design of IoT applications needs
to change to also consider devices that are deployed on the edge of
the infrastructure. The deployment of parts of the application’s
business logic on the device will not only increase the overall
robustness of the application, but can also reduce communication
overhead. To allow for flexible provisioning of applications whose
deployment topology evolves over time, a clear separation of
independently executable application components is needed. In
this paper, we present DIANE, a framework for the dynamic
generation of optimized deployment topologies for IoT cloud
applications that are tailored to the currently available physical
infrastructure. Based on a declarative, constraint-based model of
the desired application deployment, our approach enables flexible
provisioning of application components on edge devices deployed
in the field. DIANE supports different IoT application topologies
and we show that our solution elastically provisions application
deployment topologies using a cloud-based testbed.

I. INTRODUCTION

Current Internet of Things (IoT) applications need to
manage and integrate an ever-increasing number of hetero-
geneous devices to sense and manipulate their environment.
Increasingly, such devices do not only act as simple sensors
or actors, but also provide constrained execution environments
with limited processing, memory, and storage capabilities. In
the context of our work, we refer to such devices as loT gate-
ways. By exploiting the functionality offered by IoT gateways,
applications can offload parts of their business logic to the edge
of the infrastructure to reduce communication overhead and
increase application robustness [1]. Explicitly considering edge
devices in IoT application design is especially important for
applications deployed on cloud computing [2] infrastructure.
The cloud provides access to virtually unlimited resources that
can be programmatically provisioned with a pay-as-you-go
pricing model, enabling applications to elastically adjust their
deployment topology to match their current resource usage and
according cost to the current request load.

IoT cloud applications therefore must be designed to
cope with issues arising from geographic distribution of edge
devices, network latency and outages, as well as regulatory
requirements, in addition to the traditional design consid-
erations for cloud applications. Hence, edge devices must
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be treated as first-class citizens when designing IoT cloud
applications and the traditional notion of resource elasticity [3]
in cloud computing needs to be extended to include such
heterogeneous IoT gateways deployed at the infrastructure
edge, enabling interaction with the physical world. To allow
for the flexible provisioning of applications whose deployment
topology changes over time due to components being offloaded
to IoT gateways, applications need to be composed of clearly
separated components that can be independently deployed. The
microservices architecture [4] recently emerged as a pragmatic
implementation of the service-oriented architecture paradigm
and provides a natural fit for creating such IoT cloud applica-
tions. We argue that future large-scale [oT systems will use this
architectural style to cope with their inherent complexities and
allow for seamless adaptation of their deployment topologies.
Uptake of the microservice architecture will furthermore allow
for the creation of IoT application markets (e.g., [5]) for
practitioners to purchase and sell domain-specific application
components.

IoT gateways can be considered an extension of the
available cloud infrastructure, but their constrained execution
environment and the fact that they are deployed at customer
premises to integrate and connect to local sensors and actors
requires special consideration when provisioning application
components on loT gateways. By carefully deciding when to
deploy certain application components on gateways or cloud
infrastructure, IoT cloud applications can effectively manage
the inherent cost-benefit trade-off of using edge infrastructure,
leveraging cheap communication within edge infrastructure
while minimizing expensive (and possibly slow or unreli-
able) communication to the cloud, while also considering
processing, memory, and storage capabilities of available IoT
gateways. It is important to note that changes in application
deployment topologies will not only be triggered whenever a
new application needs to be deployed, but can also be caused
by environmental changes, such as changing customer request
patterns, changes in the physical infrastructure at the edge (e.g.,
adding/removing sensors or gateways), or evolutionary changes
in application business logic throughout its lifecycle.

In this paper, we present DIANE, a framework for dy-
namically generating optimized deployment topologies for IoT
cloud applications tailored to the available physical infras-
tructure. Using a declarative, constraint-based model of the
desired application deployment, our approach enables flexible
provisioning of application components on both, cloud infras-
tructure, as well as IoT gateways deployed in the field.

The remainder of this paper is structured as follows: In
Section II we introduce the DIANE framework to address
the identified problems in dynamically creating application
deployment topologies for large-scale IoT cloud systems. We
provide a detailed evaluation in Section III, discuss relevant

IEEE
computer
® psouety



related research in Section IV, followed by a conclusion and
an outlook on future research in Section V.

II. APPROACH

To address the previously defined requirements, we present
DIANE, a framework for the dynamic generation of deploy-
ment topologies for IoT applications and application compo-
nents, and the respective provisioning of these deployment
topologies on edge devices in large-scale IoT deployments.
The overall architecture of our approach is depicted in Fig-
ure 1 and consists of the following top-level components:
(i) DIANE, and (ii) LEONORE. In the following, we describe
these components in more detail and discuss the design and
implementation of [oT applications.

A. IoT Application

In order to allow dynamic generation of deployment
topologies for IoT applications in our framework, the design
and implementation of such applications have to follow the
micro services architecture approach [4]. This design approach
enables developers to build flexible and scalable applications,
whose components can be independently evolved and man-
aged. Each component of an application is self-contained, can
be run separately and uses loosely coupled communication for
interacting with other components. Following this application
design approach we are using the MADCAT [6] methodology
to describe the overall application and it’s components. In
essence, MADCAT enables the structured creation of ap-
plications by addressing the complete application lifecycle,
from architectural design to concrete deployment topologies
provisioned and executed on actual infrastructure. For our
approach we focus on Technical Units (TUs) and Deployment
Units (DUs) to describe applications and their components.

1) Technical Unit (TU): Technical Units are used to de-
scribe application components by using both the abstract
architectural concerns and concrete deployment artifacts to
capture technology decisions, which depend on the actual
implementation. Since there are usually multiple possible
TUs available to realize a specific application component,
MADCAT employs decision trees to assist developers of such
applications in realizing TUs. An example of a TU can be seen
in Listing 1. We are using the JSON-LD' format to store and
transfer MADCAT units.

Listing 1: Technical Unit

"@context": "http://madcat.dsg.tuwien.ac.at/",
"@type": "TechnicalUnit",
"name": "BMS/Unit",
"artifact-uri": "...",
"language": "java",
"build": {
"assembly": {"file": "unit.jar"},
"steps": [{"step": 1, "tool": "maven", "cmd": "
mvn clean install"}]
I
"execute": [{"step": 1, "tool": "java", "cmd": "
java —-jar @build.assembly.file"}],
"configuration": [{"key": "broker.url", "value": "

@MGT.broker.url"}],

Uhttp://json-1d.org
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"dependencies": j{"name": "MGT", "technicalUnit":
{"name": "BMS/Management"}}],

"constraints": {"type": "...","framework": "Spring
Boot", "runtime": "JRE 1.7", "memory": "..."}

Each TU starts with a context that specifies the struc-
ture of the information and a specific type. The name
uniquely identifies the TU and should refer to the application
name and the specific component the TU describes. The
artifact—-uri defines the repository that stores the appli-
cation sources and artifacts. The 1anguage field describes
the used programming language and an optional version. For
creating a runnable executable build specifies an assembly
that defines the location within the repository and the name of
the executable. Furthermore build describes a list of steps
that need to be executed to create the executable. Execute
defines the necessary steps to run the executable. In addition
to the execution steps, configuration stores a possible
runtime configuration (e.g., environment variables) that is
needed for execution. Since some of the configuration items
might map to other application components, dependencies
reference TUs of other application components. Finally, the TU
includes relevant constraints provided by the developer to
help users of the application to decide on a suitable deployment
infrastructure.

2) Deployment Unit (DU): For each TU one or more de-
ployment units (DUs) are created by an infrastructure provider
or operations manager. A DU describes how the TU can
be deployed on concrete infrastructure. In order to create a
specific DU the provider uses the information contained in
the TU and the knowledge about the owned infrastructure.
Listing 2 shows an example DU created for the TU above.

Listing 2: Deployment Unit

{
"@context": "http://madcat.dsg.tuwien.ac.at/",
"Qtype": "DeploymentUnit",
"name": "BMS/Unit",
"technicalUnits": [{"name": "BMS/Unit"}],
"constraints": [{
"hardware": [{"type": "...", "os": ", . ", "
capabilities": [{"name": "JRE", "version":
ul.3u}], "memory" : u'_.u}]'
"software": [{"replication": [{"min": "all"}]}
1
11,
"steps": [...]
}
A DU has a context, type and name. Next,

technicalUnits reference the TUs that are deployed us-
ing this specific DU. Based on the information provided in
the TU (e.g., constraints) the infrastructure provider defines
constraints for hardware and software that are used
to decide on suitable infrastructure resources for executing
an application component. Finally, steps list the necessary
deployment steps.

3) Deployment Instance (DI): Based on the TUs and
corresponding DUs it is possible to completely describe an
IoT application. Now, to finally provision an application de-
ployment, the framework uses TUs, DUs and concrete infras-
tructure knowledge to generate deployment instances (DIs).
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Fig. 1: Framework — Overview

DIs represent concrete deployments on actual machines of the
infrastructure, taking into consideration the defined software
and hardware constraints. An example of a DI using the DU
and TU from above can be seen in Listing 3.

Listing 3: Deployment Instance

"@Qcontext": "http://madcat.dsg.tuwien.ac.at/",

"Qtype": "DeploymentInstance",

"name": "...",

"machine": {"id": u.._u, "ip": u.__u},

"application": {"name": "BMS/Unit", "version": "1.
0.0", "environment": [{"key": "broker.url", "
value": "failover:tcp://10.99.0.40:61616"}]

h

A DI has a context, type and name. The machine
field stores data about the concrete machine that is provisioned
with an application component. Runtime information, needed
for executing the application component, is represented in
application. It contains the name and the version of
the application component. Runtime configurations required by
the component are resolved by the framework and represented
in environment.

B. DIANE Framework

The enabling framework for generating IoT application de-
ployment topologies and the provisioning of these deployments
on edge devices in large-scale IoT deployments is depicted on
the left hand side of Figure 1. DIANE is a scalable and flexible
cloud-based framework and is developed following the micro
services architecture design. In the following, we introduce
the main components of DIANE, discuss the integration with
LEONORE [1] for provisioning edge devices and discuss the
concrete process of generating and provisioning application
deployment topologies.

1) Deployment Registry: To keep track of deployments
and their relation to TUs and DUs, the framework uses a
Deployment Registry. The registry stores the units and
deployments using a tree structure to represent the relations
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among them. By keeping track of TUs and DUs the framework
can provide application deployment provisioning at a finer
granularity. This means that it is possible with DIANE to
provision an application deployment topology in one batch,
but also provision each deployment separately.

2) Deployment Handler: To provision an IoT application
deployment topology with DIANE the user of the framework
has to invoke the User API and provide the following
required information: (i) TUs, (ii) corresponding DUs, and
(iii) optional artifacts that are needed by the deployment
(e.g., executables) that can not be resolved automatically by
the framework like private repositories that are not publicly
accessible. Since the focus of our work is on generating and
provisioning DlIs, a user of the framework is responsible for
creating the required MADCAT units and necessary applica-
tion artifacts. The Deployment Handler is responsible for
handling user interaction and finally triggers the provisioning
of application deployments.

3) Artifact Management: In addition to the MADCAT
units, the framework also needs corresponding application
artifacts. The Artifact Management component receives
the artifacts, resolves all references and creates an artifact
package that gets transferred to LEONORE. Each package
contains an executable, a version, and the commands to start
and stop the artifact.

4) Deployment ~ Generator:  To generate DIs, the
Deployment Generator resolves the dependencies
among the provided TUs and DUs by using the Dependency
Management component. The management component
returns a tree structure to represent the dependencies among
the units. Next, the generator deals with possible deployment
constraints that are specified in the DUs by invoking the
Constraint Handler. The handler returns a list of
infrastructure resources that comply with the specified
constraints. Before the actual generation of DIs, the generator
needs to handle application runtime configurations (e.g.,
application properties) in the TUs. Therefore, the generator
delegates the configuration resolving to the Constraint Handler
and receives a temporary configuration. Finally, the generator



creates the actual DIs by mapping the DUs to concrete
machines and updating possible links in the temporary
configuration that correspond to infrastructure properties (e.g.,
IP address of a machine).

5) Dependency Management: Since MADCAT units ref-
erence each other, the Dependency Management is re-
sponsible for resolving unit dependencies. For representing
the dependencies among the units the management component
creates a tree structure. The process of dependency resolution
first creates for each TU a new root node. After creating the
root nodes it checks if a TU has a reference to another TU
and if so creates a new leaf node linking to the respective
root node. Next, it checks the provided DUs and adds them
to the respective TU node as a leaf. In case a reference
cannot be resolved based on the provided units, it queries the
Deployment Registry. The final product of this process
is a tree topology, where each root node represents a TU and
the leaves are the corresponding DUs or a reference to another
TU.

6) Constraint Handler: In order to provide a suitable
deployment of application components on machines, DUs pro-
vide deployment constraints. In our approach we distinguish
hardware and software constraints. Hardware constraints deal
with actual infrastructure constraints e.g., operating system or
the installed capabilities of a machine. Software constraints de-
fine requirements that correspond to the application component
and its deployment e.g., should this component be replicated
and if so on how many machines. To provide a list of suitable
machines the handler retrieves a list of all known machines and
their corresponding metadata from LEONORE. Then, based on
the defined constraints in the DU, it filters out the ones that do
not fit or not needed in case software constraints only demand
for a certain amount of machines.

7) Provisioner: For actually provisioning the final DIs the
Provisioner component is used. The component receives
the generated DIs and the topology of TUs, DUs and their
dependencies. The provisioner then traverses the topology and
for each TU and DU combination, it deploys the corresponding
DIs by invoking LEONORE, adds the DlIs to the respective DU
as leaf and updates the deployment registry.

C. LEONORE

LEONORE [1] is a service oriented infrastructure and
toolset for provisioning application packages on edge devices
in large-scale IoT deployments. LEONORE creates installable
application packages, which are fully prepared on the provi-
sioning server and specifically catered to the device platform
to be provisioned. It allows for both, push- and pull-based
provisioning of devices. For our approach we will facilitate
and extend LEONORE to provision IoT application deploy-
ment topologies on edge devices managed and provisioned
by LEONORE. A simplified architecture of LEONORE and
connected IoT deployments is depicted on the right hand
side of Figure 1. In the following we describe the most
important components that are involved when provisioning an
IoT application.

1) IoT Gateway: The IoT Gateway is a general and
generic representation of an IoT device, which considers the
resource constrained nature and limitations of these devices.
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The IoT gateway uses a container for executing application
packages, a profiler to monitor the status of the system, an
agent to communicate with LEONORE, and a connectivity
layer that supports different communication protocols and
provisioning strategies.

2) Service API: To allow for the seamless integration of
DIANE with LEONORE we extended the provided APIs and
created a general Service API. This interface allows: (i) to
query LEONORE for currently managed devices and their cor-
responding metadata, (ii) to add additional application artifacts
that are needed for building application packages, and (iii) to
provision application deployment topologies represented as
DlIs.

3) Package Management: To provision application com-
ponents along with the corresponding artifacts, DIANE adds
these artifacts and additional metadata (e.g., name, version, ex-
ecutables) via the service API. The Package Management
component stores the provided information along with the
artifacts in a repository.

4) IoT Gateway Management: In order to keep track
of connected IoT gateways, LEONORE uses the following
approach: During gateway startup, the gateway’s local pro-
visioning agent registers the gateway with LEONORE by
providing its device-specific information (e.g., id). The IoT
Gateway Management handles this information by adding
it to a repository and assigning a handler that is responsible
for handling and provisioning the respective gateway.

5) Provisioning  Handler: The Provisioning
Handler is responsible for the actual provisioning of
application packages. The handler decides on an appropriate
provisioning strategy, triggers the building of gateway-specific
packages and executes the provisioning strategy. Depending
on the strategy the IoT gateway either queries the framework
for packages or updates get automatically pushed to the
gateway.

6) Balancer: Since LEONORE deals with large-scale IoT
deployments that potentially create significant load, the frame-
work scales by using so-called LEONORE nodes. These nodes
comprise all components that are required for managing loT
gateways. To distribute the gateways evenly on available nodes
aBalancer is used to assign gateways to available nodes that
are then responsible for handling any further interaction with
the respective IoT gateways. In case all available nodes are
fully loaded, the balancer spins up a new node and queues
incoming requests. Similarly, the balancer will decommission
nodes when load decreases.

D. Provisioning of loT Application Deployment Topologies

The overall process of provisioning IoT application deploy-
ment topologies is started when DIANE receives a request to
deploy a specific IoT application or application package. The
process comprises the following steps: (i) in order to generate
the deployment topology of an application or application
component with DIANE the user provides an optional list of
artifacts and a mandatory list of MADCAT units (i.e., TUs
and DUs). The deployment manager is then responsible for
handling deployment requests and forwards the request to the
artifact manager; (ii) the artifact manager resolves artifacts



according to the provided information in the TUs by either
loading them from a specified repository or using the provided
artifacts; (iii) after resolving the artifacts, the artifact manager
transfers the artifacts to LEONORE by invoking the Service
API; (iv) LEONORE receives the artifacts, packs and stores
them in an internal repository; (v) for each TU and DU the
deployment handler does the following: (vi) forward the list of
TUs and DUs to the dependency management component to re-
solve dependencies and relations among the units; (vii) resolve
possible infrastructure constraints defined in the DUs with the
help of the constraint handler; (viii) the constraint handler
gathers all managed machines and their corresponding context
(e.g. IP, name, runtime) from LEONORE; (ix) according to the
specified constraints the handler returns a list of machines that
are applicable for deployment of a specific DU; (x) invoke the
constraint handler again to generate runtime configurations that
are specified in the TU; (xi) generate DIs using the gathered
suitable machines and runtime configurations; (xii) for each
DI the handler invokes the provisioner that stores the DI and
corresponding DUs and TU in the deployment registry, deploys
the DI by invoking the service API of LEONORE, which then
takes care of provisioning the application deployment on the
actual infrastructure.

III. EVALUATION

To evaluate our approach we implemented a sample IoT
application based on a case study conducted in our lab in
cooperation with a business partner in the building manage-
ment domain. In this case study we identified the requirements
and basic components of commonly applied applications in
this domain. Based on this knowledge we developed an IoT
application for managing and controlling air handling units in
buildings, where the design and implementation follows the
micro services architecture approach. Next, we created a test
setup in the cloud using CoreOS? to virtualize edge devices
as Docker® containers. We use LEONORE’s notion of IoT
gateways as representation of edge device in our experiments.

In the remainder of this section we give an overview of
the developed IoT application, the concrete evaluation setup,
present different evaluation scenarios and analyze the gathered
results.

A. BMS - IoT Application

BMS

BMS

Buiding Controler

Building Controller

Temperature Management

Gateway 1 Gateway 2 Gateway 1 Gateway 2

IoT Infrastructure

(b) Evolved Application
Topology

(a) Traditional Application
Topology

Fig. 2: IoT Application Topology

Zhttps://coreos.com
3https://www.docker.com
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Currently, applications in IoT are designed and imple-
mented as layered architectures [7], where the bottom layer
consists of deployed IoT devices, a middleware that provides
a unified view of the deployed IoT infrastructure, and an ap-
plication layer that executes the business logic [8]. According
to this layering, business logic only runs in the application
layer and the IoT infrastructure is provisioned with appro-
priate software, transmits data and reacts to received control
information [9]. However, in practice most of the IoT devices
provide constrained execution environments that can be used
to offload parts of the business logic onto these devices. To
compare these two deployment approaches we developed an
application for a building management system that consists of
the following components: (i) Air Handling Unit (unit)
is deployed on an IoT device, reads data (e.g., temperature)
from a sensor, transmits the data to and reacts on control
commands received from the upper layer; (ii) Temperature
Management (management) is the processing component of
the application and gathers the status information of the units.
It receives high level directives from the upper layer and based
on the processed unit data and the received directives, forwards
appropriate control commands to the unit; and (iii) Building
Controller (control) is the top level component and decides
for each handled management component the directive it has
to execute. The basic deployment topology that follows the
traditional IoT application deployment model is depicted in
Figure 2a. In the figure we see that the unit component is
deployed on devices in the IoT infrastructure and that both the
processing (management) and control components are executed
on a platform in the cloud. We refer to this deployment
as traditional application topology. In contrast, Figure 2b
depicts a deployment that offloads some of the processing
(management) onto devices, which we refer to as evolved
application topology.

BMS Platform
Controller
Management
Ubuntu-Host

loT Testbed

CoreOS-Host CoreOS-Host

CoreOS-Host CoreOS-Host CoreOS-Host

‘ [l Vriuaized gateway (Docker container)

Fig. 3: Evaluation - Setup

For the evaluation of our framework we created an IoT
testbed in our private OpenStack* cloud. We reuse a Docker

“http://www.openstack.org
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image that was created for LEONORE to virtualize and mimic
a physical gateway in our cloud. To run several of these
virtualized gateways, we use CoreOS clusters and fleet’, a
distributed init system, for handling these clusters. Based on
fleet’s service unit files, we dynamically generate according
fleet unit files and use them to automatically create, run and
stop virtualized gateways. Figure 3 depicts the overall setup
that we use for our experiments. At the bottom, the IoT Testbed
consists of a CoreOS cluster of 5 virtual machines, where each
VM is based on CoreOS 607.0.0 and uses the ml.medium
flavor (3750MB RAM, 2 VCPUs and 40GB Disk space). The
gateway-specific framework components of LEONORE are
pre-installed in the containers. In the middle, the LEONORE
framework is distributed over 2 VMs using Ubuntu 14.04.
The first VM hosts the balancer and uses the ml.medium
flavor. The second VM hosts a LEONORE node and uses the
m2.medium flavor (5760MB Ram, 3 VCPUs and 40GB Disk
space). On top, DIANE is hosted in one VM using Ubuntu
14.04 with the m1.medium flavor.

The platform components of the BMS IoT application
are deployed on a separate VM using Ubuntu 14.04 and the
ml.small flavor (1920MB Ram, 1 VCPUs and 40GB Disk
space). In order to evaluate and compare both deployment
topologies of the application, the BMS platform initially
comprises controller and management (traditional application
topology), and is then reduced to only host the controller,

Shttps://github.com/coreos/fleet
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since the management component is deployed on the devices
(evolved application topology). In both scenarios the unit
component is deployed and executed on the devices in the
IoT infrastructure.

C. IoT Application Deployment

In the first experiment we measure the time that is needed
for dynamically creating application deployments for the two
BMS IoT application deployment topologies and provisioning
of these deployments on IoT devices. In the second experiment
we compare the device resource utilization when executing the
provisioned application deployments.

1) Deployment Time: Figure 4a shows the overall time
that is needed for the creation and provisioning of applica-
tion deployments on an increasing number of devices. The
time measurement begins when DIANE is invoked and ends
when DIANE reports the successful deployment. To deal with
possible outliers and provide more accurate information we
executed each measurement 10 times and calculated both the
average and median time. In Figure 4a we see that for the
traditional application topology the framework provides a sta-
ble and acceptable overall deployment time. In comparison the
deployment of the evolved application topology takes in total
almost twice as long, but also provides a stable deployment
time. Taking into account that the evolved application topology
needs to deploy twice as many application components and
corresponding artifacts, this increase is reasonable since the



limiting factor is the actual provisioning of devices as we create
application packages that have more than doubled in size.

2) Gateway Resource Utilization: Figure 4b depicts the
cpu and memory utilization of one device when provisioning
and executing the two IoT application deployment topologies.
The Figure shows that initially there is no application com-
ponent running on the device. After 15 seconds we initiate
the provisioning via our framework, which provisions the
application deployments and starts the execution. Then the
deployment runs for 30 seconds. Afterwards the framework
stops the execution. When provisioning the traditional appli-
cation topology, we clearly see that the cpu utilization has a
short high peak due to the startup of the deployment. However,
after this high peak the overall utilization of the device is low
and would allow to use this untapped processing power to
offload business logic components on the device. To illustrate
the feasibility of this claim we also provision and execute the
evolved application topology on the device. We see that in
comparison to traditional application topology, the load on
the device is almost twice as high, but except for the high
initial cpu load peak, the overall utilization of the device is
still acceptable and reasonable.

D. IoT Application Execution

In the second experiment we have an in-depth look at the
BMS application and compare both deployment topologies.
In order to do that, we deploy both topologies with our
tool on an increasing number on devices. However, now we
measure bandwidth consumption and execution time when
invoking the application’s business logic. The measurement
begins by invoking the control component of the application
to specify a virtual set-point temperature on each device,
where each unit component on the device has the same initial
temperature reading. To provide reliable results, we execute
each measurement 10 times and freshly provision the devices
after each measurement with our tool. Depending on the BMS
application deployment topology the management component
is either executed in the platform (i.e., the cloud) or on each
device.

1) Bandwidth Consumption: Figure 4c shows the average
bandwidth consumption that results from invoking the business
logic of the two application deployment topologies. We see that
the traditional application topology causes a significant amount
of data transmission between platform and IoT infrastructure.
As a result the transmitted data produces a high load on the
network and consumes a lot of bandwidth. This behavior is
obvious, since the complete business logic is executed on
the platform and devices are only sending and reacting on
control messages. In contrast, the evolved application topology
produces less traffic and therefore consumes on average only
13% of the bandwidth. This is due to the offloading of the
processing (management) component to each device, which
therefore drastically reduces the transmitted data between
platform and IoT infrastructure.

2) Execution Time: Figure 4d shows the time that is needed
for executing the previously described business operation of
the BMS application for the two application deployment
topologies. We see that for both topologies the application
scales well and provides reasonably fast results. However, we
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notice that the offloading of the processing components on
devices reduces the execution time by 7%, since component
interaction within a device is faster than the interaction be-
tween device and platform.

After presenting and evaluating the gathered experiment
results, we can deduce the following: DIANE, the frame-
work for the dynamic creation of IoT application deployment
topologies and actual provisioning of these, is capable of
dealing with different application topologies and changes in the
IoT infrastructure. The framework scales well with increasing
size of application deployment topologies and does not add
additional overhead to the overall time that is needed for
provisioning the IoT infrastructure. Note that for very large de-
ployments the use of multiple coordinated LEONORE nodes is
required. Furthermore, depending on the scenario, it is feasible
to offload application components from a cloud platform on
devices in the IoT infrastructure. Examples of such scenarios
are applications that generate a significant amount of traffic
between the platform and the IoT infrastructure and therefore
justify the additional deployment overhead.

IV. RELATED WORK

The overall terminology of the Internet of Things is well-
defined in the literature [8], [9]. In contrast, the definition
of applications in IoT comprises applications that are solely
deployed in a platform in e.g., the cloud [10] and are executed
on top of an resource abstraction layer [11], [12], [13],
[14], and distributed applications, where basic components
are embedded in devices that are deployed on the edge of
the infrastructure for sensing and reacting on the environment
and a corresponding enterprise application for managing these
devices [15], [16]. The above approaches have in common
that they see devices deployed in the IoT infrastructure as
external dependencies and therefore do not consider them in
the design and development as integral part of the application.
Recently, approaches emerged that also consider IoT devices
as part of the application that need to be managed efficiently
in order to develop and deploy flexible and scalable IoT
applications [17], [18], [19], [20], [21]. However, none of
the approaches discussed so far, considers deploying and
provisioning parts of the application on edge devices that
provide constrained execution environments [22] in order to
facilitate this untapped processing power and build more robust
and adaptable applications. Regarding the deployment, there is
only limited amount of prior work on location-aware placement
of cloud application components [23], [24], [25], [26], [27],
but these approaches are not designed to handle placement
decisions for constrained edge infrastructure to improve appli-
cation deployment topologies.

V. CONCLUSION

To sense and manipulate the environment, applications in
the Internet of Things (IoT) need to manage and integrate
a large number of heterogeneous devices for sensing and
manipulating the environment. Recently, it emerges that such
devices, apart from the most basic sensors and actuators, also
provide limited execution environments that are constrained
in their processing, memory and storage capabilities. In order
to exploit this untapped processing power provided by these
IoT devices, parts of an application’s business logic can be



offloaded to the edge of the infrastructure, which not only
increases the robustness of the application but can also reduce
communication overhead. Especially for IoT applications de-
ployed on cloud computing infrastructures the consideration of
edge devices is important, since the cloud enables applications
to react to the current request load by elastically adjusting their
deployment topology. Therefore, in addition to the traditional
design considerations for cloud applications, specific issues
like the geographical distribution of edge devices and the
resulting network latency need to be considered in the design
of IoT cloud applications. Furthermore, applications need to
be built from clearly separated components, which can be
deployed independently, to allow for flexible provisioning of
applications whose deployment topology evolves by offloading
components to edge devices. This calls for an approach to
dynamically generate optimized deployment topologies for [oT
cloud applications, which are tailored to the currently available
physical infrastructure. DIANE uses a declarative, constraint-
based model of the desired application deployment, to enable
the flexible provisioning of application components on both,
cloud infrastructure, as well as IoT devices deployed in the
IoT infrastructure.

In our ongoing work, we plan to extend DIANE to address
further challenges. We will integrate non functional elasticity
dimensions (e.g., costs) to further optimize deployment topolo-
gies [3] and enable local coordination of topology changes
between edge devices. Additionally, we plan to further adapt
and extend the MADCAT unit methodology to allow for more
detailed descriptions of application topologies. Furthermore,
we will integrate our framework with our overall efforts in
designing, deploying, and managing complex, large-scale [oT
applications to provide a comprehensive tool set for researchers
and practitioners.
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