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Abstract—The cloud computing paradigm enables the devel-
opment of applications that can elastically react to changes in
their environment by autonomously provisioning and releasing
infrastructure resources. However, current applications need to
be specifically tailored to a concrete cloud provider infrastructure,
leading to vendor lock-in. Migrating applications to the cloud
or between cloud providers is challenging due to differences
in deployment directives, available services, and programming
interfaces. Existing infrastructure as code approaches closely
tie application artifacts to their deployment directives and do
not allow for a clear separation of application artifacts from
deployment infrastructure. In this paper, we present Smart Fab-
ric, a methodology and accompanying toolset for infrastructure-
agnostic deployment of application artifact topologies based
on a constraint-based, declarative specification of the required
deployment infrastructure. Our framework allows for seamless
migration of application topologies between deployment targets
and enables independent, parallel evolution of both, applications
and underlying infrastructure. We discuss the feasibility of
the proposed methodology and prototype implementation using
representative applications from the Internet of Things and smart
city domains.

I. INTRODUCTION

The recent emergence of the cloud computing paradigm [1]
allows stakeholders to leverage a utility-oriented, on-demand
approach to create applications that elastically respond to
changes in request load, do not depend on dedicated operations
teams on site, and can be managed and evolved without
upfront infrastructure investments. Despite the apparent bene-
fits, companies and government agencies are still hesitant to
migrate business-critical applications to the cloud [2], mainly
due to concerns related to vendor lock-in [3], [4] and service
availability. While cloud services are designed to provide ab-
stractions that shield stakeholders from the underlying physical
infrastructure, applications must nevertheless be specifically
tailored to concrete cloud providers to make use of the offered
services.

This strong dependence on specific cloud providers is
problematic for several reasons. While cloud providers now
usually offer service level agreements1 (SLAs) that provide
certain guarantees for service availability to customers, the
terms governing customers’ use of the offered services can still
be unilaterally changed by providers. Changes in offered ser-
vices or pricing can occur at any time (e.g., retiring offerings,
changing pricing structures, introducing new offerings that
better suit customers’ requirements) and customers may need
to migrate their applications to different services or providers

1e.g., https://cloud.google.com/compute/sla, http://aws.amazon.com/ec2/
sla/, http://azure.microsoft.com/en-us/support/legal/sla/

as a result. Current approaches for software engineering and
lifecycle management do not sufficiently support the indepen-
dent evolution of infrastructure alongside an application. While
approaches like DevOps [5] and Infrastructure as Code [6]
simplify application provisioning by integrating deployment
directives into the development process, infrastructure evolu-
tion is not currently considered.

We argue that deployment infrastructure and application
development must be clearly separated to allow for seamless,
independent evolution of application components as well as
the underlying infrastructure. In this paper, we present Smart
Fabric, a methodology and toolset for infrastructure-agnostic
deployment of artifact topologies based on a declarative,
constraint-based specification of the required deployment in-
frastructure. Smart Fabric extends the previously introduced
MADCAT [7] methodology with an abstraction layer that
cleanly separates application artifacts from the concrete de-
ployment infrastructure, along with mechanisms to seamlessly
migrate application topologies between deployment targets.
We illustrate the feasibility of the proposed framework and
prototype using representative applications from the Smart City
and Internet of Things (IoT) domain.

The remainder of this paper is structured as follows. In
Section II we discuss the foundational system model under-
lying our approach. Section III presents the Smart Fabric
framework for infrastructure-agnostic deployment of artifact
topologies, followed by a detailed discussion and validation
of the framework properties in Section IV. Related research
is discussed in Section V and we conclude the paper in
Section VI along with an outlook for ongoing and future
research.

II. SYSTEM MODEL

In order to enable an infrastructure independent artifact
deployment framework we introduce an abstraction to model
and describe the relevant entities in our domain. As foundation
for the abstraction we use the MADCAT [7] methodology, as
it introduces several abstract concepts suitable for describing
application topologies independent of their deployment targets.
Specifically, these are Technical Units (TU) to describe applica-
tions and their components, as well as Deployment Units (DU)
to describe how to deploy them on cloud infrastructure. This
however is not sufficient for complex, large-scale applications,
such as in the Smart City domain, since we need to cover a
wider array of different infrastructures (e.g., legacy systems
on premises, edge devices, etc.) and deployment types (e.g.,
scaling across infrastructure boundaries).
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Fig. 1: Relations between TU, DU, IS and DI

To address this limitation we extend the existing concepts
with Infrastructure Specifications (IS) to capture infrastructure
heterogeneity and Deployment Instances (DI) to represent the
current state of an application deployment topology during
runtime. Additionally, we provide an implementation of the
abstract concepts along with the proposed extensions of the
MADCAT methodology for the Smart Fabric framework. We
choose JSON-LD2 as data format for our concept description
as a simple, both human and machine readable, pragmatic, and
extensible representation that also allows us to interlink the
relevant concepts with each other. Fig. 1 outlines the relations
of the newly introduced IS and DI to MADCAT concepts TU
and DU. In the following, we discuss the introduced concepts
in more detail.

A. Technical Unit

TUs describe applications as well as application compo-
nents and focus on the technical aspects of these artifacts.
Listing 1 shows an example of such a TU for a citizen
information system based on the Ruby on Rails framework.
As JSON-LD document, a TU can start with a context to
set up common namespaces. This is followed by a type and
name to identify the unit. The artifact-uri points to the
necessary resource to build and execute the artifact, which in
turn is described in the build and execution sections.
Both sections are composed of step descriptions as a flexible
and extensible way of describing build and execution processes
that do not depend on any specific technology. Each step is
numbered to provide ordering, specifies a tool mandatory to
perform the step (later used in dependency resolution), as well
as a command (cmd) to be executed. The verification
section follows the same step format and serves to verify a
successful build, deployment and execution of an artifact. By
default, verification steps follow the UNIX philosophy, con-
sidering commands that exit with a result code of 0 to be suc-
cessful, whereas other result codes are interpreted as errors. It
further augments the previously introduced step elements with
an expected-results element that allows each step to
specify an expected result in order to verify the successful exe-
cution. This allows the verification to be as flexible as possible,
covering traditional integration tests, custom scripts, or service
invocations. Additionally, TUs provide a configuration

2http://json-ld.org/

element with an extensible key-value format that allows to
provide additional configuration information. Furthermore, a
TU contains a dependency section to specify dependent
artifacts (such as other application components or required
data stores), as well as a metainformation section to
describe additional relevant aspects like used framework,
required runtime, as well as basic system requirements, such
as minimum amount of memory or desired cpu capacity.
Additionally, TUs as well as all other elements of the system
model allow the use of variables that are evaluated by the
Smart Fabric framework. These variables are designated with
the ‘@’ prefix.

Listing 1: Technical Unit - Structure

{
"@context": "http://smartfabric.dsg.tuwien.ac.at",
"@type": "TechnicalUnit",
"name": "CitizenInformationSystem",
"artifact-uri": "...",
"language": "ruby",
"build": {
"assembly": "/citizeninformationsystem",
"steps":[{"step":1,"tool":"bundler","cmd":"

bundle install"},{"step":2,"tool":"rake","
cmd":"rake db:migrate"}, {"step":3,"tool":"
rake","cmd":"rake db:seed"}]

},
"execute":[{"step":1,"tool":"rails",
"cmd":"rails s"}],

"verification": {
"steps":[{"step":1,"tool":"curl","cmd":
"curl -i @destination_url/status",
"expected-result":"HTTP 200 OK"}]

}
"metainformation": {
"type": "standalone",
"framework": "Rails 4.0",
"runtime":"ruby 2.0, rails 4.0"

},
"dependencies": {
"datastore": {
"type":"relational",
"interface": "sql"

}
}

}

B. Infrastructure Specification

ISs are used to describe the capabilities of different infras-
tructure resources. This ranges from legacy systems that are
running on premises on cloud infrastructures including Infras-
tructure as a Service (IaaS) and Platform as a Service (PaaS)
providers. The IS contains a name and version identifying
specific infrastructures with the support for different versions
of infrastructure stacks as well as a kind to discriminate
between infrastructure concepts like bare metal systems, IaaS,
and PaaS. This is followed by a server entry, which is used
to describe the computing capabilities of an infrastructure.
For instance, in the case of a classical server system this
section contains the bare metal specifications of the machine
itself, in the case of Amazon the available compute instances
and their respective properties. Processing capabilities are
specified using the compute_units array, where each entry
specifies a name to identify the entity as well as a capacity
element. Similarly, other available services, such as storage,
network, or databases can be specified with each of them
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including name, type, version, interface, as well as
the previously introduced step notation to describe how to use
or access them. Listing 2 shows an example IS for an excerpt
of the Amazon AWS stack.

Listing 2: Infrastructure Specification - Structure

{
"@context": "http://smartfabric.dsg.tuwien.ac.at",
"@type": "InfrastructureSpecification",
"name": "Amazon AWS",
"version": "1.0",
"kind":"cloudprovider",
"server": {

"metainformation":{
"cpu":"Intel Xeon E5"

},
"compute_units":[{"name":"t2.micro","capacity"

:{"cpu":"1","memory":"1 GB","storage":"
@EBS"}, ..., {"name":"m3.2xlarge","
capacity":{"cpu":"8","memory":"15 GB","
storage":"80 GB"}}]

},
"storage": {...},
"network": {...},
"databases":[{"name": "RDS db.m3.medium","type": "

relational","interface": "sql/mysql"},...],
"services":[...]

}

C. Deployment Unit

DUs provide a mean to describe how to deploy a TU on a
specific IS. They link one or more TUs to exactly one specific
IS by referencing their names. Additionally they allow to define
constraints that need to be met in terms of hardware and
software. Hardware constraints, for example, cover minimal
machine requirements in terms of CPU and Memory, or, in
the case of IaaS or PaaS providers, the minimal provided
compute units. Software constraints allow to specify a priori
requirements on the IS in order to be able to actually deploy
the TU on it. This includes programming languages, as well
as runtime environments or framework requirements. The last
element of the DU is the previously introduced flexible step
definition that outlines the steps that are necessary to deploy
the set of TUs to the specified IS.

Listing 4 shows an example of such a DU for the de-
ployment of the TU Citizen Information System on the IS
dedicatedserver.

Listing 3: Deployment Unit - Structure

{
"@context": "http://smartfabric.dsg.tuwien.ac.at",
"@type": "DeploymentUnit",
"name": "CitizenInformationSystem/DedicatedServer"

,

"technicalUnits":[{
"name":"citizeninformationsystem",
"id":"citizeninformationsystem.tu.json"}],

"infrastructureSpecification":{
"name":"dedicatedServer"

},

"constraints": [{"hardware":[{"memory": "4GB"}]}],
"steps": [{"step": 1,"tool": "git","cmd": "git

clone @destination/@citizeninformationsystem.
artifcat-uri"},{"step": 2, "tool": "bash",
"cmd": "cd @destination"},{"step": 3,"cmd": "

@citizeninformationsystem.@build"},{"step": 4,
"cmd":"@citizeninformationsystem.@execute"},]

}

D. Deployment Instance

A DI represents a specific deployment of a TU to an
IS based on a DU taking into account all defined hardware
and software constraints. There can be multiple DIs for a
DU representing different specific deployments for example
covering development, staging, or production deployments
of an application on specific infrastructure. A DI specifies
context, type, and name, as well as a deploymentUnit
to reference the corresponding DU. This is followed by a
machine element that stores data about the specific machine
or machines that are currently used to execute the deploy-
ment. The application element that contains runtime
information about the TU stores name and version of the
application component, as well as an environment element
that contains relevant environment information resolved by
the framework. Finally, the global element allows to store
additional information about the specific deployment in an
open key value format that can later be used by the framework
components to support deployment decisions.

Listing 4: Deployment Instance - Structure

{
"@context": "http://smartfabric.dsg.tuwien.ac.at",
"@type": "DeploymentInstance",
"name": "....",
"deploymentUnit":"CitizenInformationSystem/

DedicatedServer",
"machine": {"id":, ....},
"application":{"name":"...","environment":[{"key":

"..."}]},
"global":{...}

}

For further information regarding the elements of a TU,
DU, DI and IS, we provide detailed example representation of
all of them online3.

III. THE SMART FABRIC FRAMEWORK

In this section we introduce the Smart Fabric framework
for infrastructure-agnostic artifact topology deployment that
implements the system model presented above. We start with
a framework overview, followed by fundamental framework
rationales, and conclude with a detailed description of all
framework elements.

A. Framework Rationales

The Smart Fabric framework follows the microservice [8]
architecture paradigm. An overview of the main components
is shown in Fig. 2. The framework is logically organized into
three main facets which group areas of responsibility. Each of
these facets is composed of multiple components where each
of these components is a microservice. The components in the
Analyzer and Handler Facet are managed as self-assembling
components4 following a functional approach based on the

3http://www.github.com/jomis/smartfabric
4http://techblog.netflix.com/2014/06/building-netflix-playback-with-self.

html
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Fig. 2: Smart Fabric Framework Overview

Command Pattern [9]. In this approach each component con-
sists of multiple processors, where each processor is able
to accept multiple inputs and produces exactly one output,
resembling a classic functional approach, as illustrated in
Fig. 3. This allows for a clean separation of concerns into
distinct functional steps that can be as specific as necessary in
order to decompose complex problems into manageable units.
Each of these processors in turn announces which inputs it
requires, as well as which output it produces. This enables
a straightforward auto assembly approach, where connecting
previous outputs to desired inputs leads to an automatically
assembled complex system consisting of simple manageable
processors. It also eliminates the necessity of complex com-
position and organization mechanisms enabling dynamic and
elastic composition of desired functionality, where processors
can be added on demand and at runtime.

The second foundational framework rationale is that the
components follow the principle of Confidence Elasticity,
which means that each component follows a confidence-
based adaptation model. If a component or processor pro-
duces a result, it augments this result with confidence value
(c ∈ R, 0 ≤ c ≤ 1), with 0 representing no certainty and
1 representing absolute certainty about the produced result.
This convention allows the framework to configure certain
confidence intervals to augment the auto assembly mechanism.
These confidence intervals are provided as configuration ele-
ments for the framework. If these confidence thresholds are
not met, the framework follows an escalation model to find
the next component or processor that is able to provide results
with higher confidence until it reaches the point where human
interaction is necessary to produce a satisfactory result. This
mechanism is outlined in Fig. 4 illustrating the process by
trying to determine if an artifact is a Ruby on Rails application
or not. If it is not possible to determine this within the specified
confidence interval by utilizing fully automated configuration
analyses, the framework escalates until a result is produced,
ultimately consulting human experts to determine the nature

A -> B

B -> D B,Y -> F 

D,F -> Z 

L,M -> Y

U -> V

A L

Z

M

Inactive ProcessorActive Processor

Fig. 3: Example of auto assembling processors within a
component. A,L and M are initial inputs for the component,
Z the final output. Each processor is active and produces an
output if the expected inputs are available (e.g. L,M produces
Y)

of the artifact.

B. Smart Fabric Manager

In order to initiate a concrete deployment of an artifact
on an infrastructure a user invokes the Smart Fabric API
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with the following parameters: (i) names of TUs to be
deployed, (ii) name of IS they should be deployed to, and
(iii) any additional artifacts necessary that cannot be accessed
by the framework itself (e.g., private repositories or external
executables). The Smart Fabric Manager first tries to find the
specified TU and IS by querying the Repository Manager. If
both are found it hands the TUs and IS over to the Dependency
Manager, which in turn resolves all dependencies between
TUs and provides the corresponding DUs. All elements of
the system model are then forwarded to the Infrastructure
Manager that verifies if all constraints can be satisfied in order
to deploy the TUs on the IS according to a DU via a DI. If this
is the case the Infrastructure Manager produces an augmented
DI. The DU and DI are then forwarded to the Deployment
Handler, which actually deploys the TU on the IS using the
contained deployment directives. After successful deployment
it updates the DI and returns it to the Smart Fabric Manager
that in turn persists it using the Repository Manager.

If in this process TUs, DUs or ISs cannot be found the
Smart Fabric Manager utilizes the components in the Analyzer
Facet to derive or generate them.

C. Artifact Analyzer

The task of the Artifact Analyzer is to generate a TU
based on a provided artifact. It is invoked by the Smart Fabric
Manager if no TU can be found for a given artifact. To
accomplish this it relies on an open and extendable set of
processors which follow the previously discussed framework
rationales to analyze provided artifacts. Possible processors
in this component are: (i) Configuration Processors that try
to select a TU based on certain configuration files of the
artifacts, (ii) Similarity Processors that try to select a TU
based on similarities in the TUs values by performing actions
like collaborative filtering, (iii) Convention Processors that
try to derive a TU based on certain conventions an artifact

follows (e.g., folder or file naming conventions), (iv) Behavior
Processors that try to select a TU based on the behavior of an
artifact (e.g., deriving a TU by sending specific requests and
analyzing the responses), and (v) Human Provided Processors,
which are human experts that manually create a TU.

D. Deployment Analyzer

The Deployment Analyzer generates a DU based on pro-
vided TU and IS if no suitable DU could be found by the Smart
Fabric Manager. This component, like the Artifact Analyzer
and the Infrastructure Analyzer, relies on an open and exten-
sible set of processors. Possible processors are: (i) Similarity
Processors that try to select a DU based on similar DUs
that have been used for similar TU and IS configurations,
(ii) Convention Processors that try to derive a TU based on
certain conventions an infrastructure follows (e.g., to deploy
to a PaaS like Heroku DUs for specific TUs follow the same
conventions), and (iii) Human Provided Processors, which are
human experts that manually create a DU.

E. Infrastructure Analyzer

The role of the Infrastructure Analyzer is to generate a
IS if no suitable specification can be found in the repository.
Possible processors are: (i) Documentation Processors that try
to generate an IS based on the accessible documentation of the
infrastructure. This can range from querying machine readable
linked data (e.g., service registries) about the infrastructure, to
analysis of electronic documentation using machine learning
techniques, (ii) Behavior Processors that try to derive an IS
based on externally observable aspects of an infrastructure
(e.g., log analytics, system statistics etc.), and (iii) Human
Provided Processors, which are human experts that manually
create an IS.

F. Dependency Manager

The Dependency Manager is responsible for resolving unit
dependencies between the modeled entities, as described in the
system model above. To achieve this the dependencies between
entities in the system model are represented as a tree structure.
Based on this tree structure the Dependency Manager creates
a root node for each TU. It then creates a corresponding leaf
node for each TU that is referenced in the dependency section
of the TU. After this it checks the related DUs and adds them
as leaves. The final step is to add the referenced DIs to the
respective DUs as a leaf nodes. The final result is a complete
tree structure that is sufficient for the Deployment Handler to
effectively deploy a TU to an IS.

G. Infrastructure Manager

The role of the Infrastructure Manager is to handle all
concerns regarding the infrastructure, where a specific deploy-
ment represented as a DI takes place. Its main responsibility is
to ensure that all necessary resources described by the IS are
accessible and available to successfully deploy the TU. This
also includes all issues of authentication and authorization by
ensuring the relevant credentials are provided. Additionally,
it ensures that all constraints defined in TUs and DUs are
satisfied. The system model distinguishes between hardware
constraints and software constraints. Hardware constraints
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cover all constraints related to machine-specific aspects, in-
cluding processors, memory, and disk space, as well as specific
machine types in the context of IaaS and PaaS providers.
Software constraints cover programming languages, runtime
environments, or framework related aspects that need to be
satisfied in order to ensure that an artifact can be successfully
deployed on a specific IS. The Infrastructure Manager aug-
ments the DI accordingly and when finished hands it over to
the Deployment Handler.

H. Repository Manager

The Repository Manager provides repositories for all units
described in the system model and acts as a distributed registry
keeping track of deployments and participating entities. It is
responsible for system model storage and retrieval. It manages
four distinct system model repositories utilizing distributed key
value stores, which store the JSON-LD files that represent TU,
DU, IS and DIs in a structured way. The Repository Manager
provides a service interface to store and retrieve these files as
well as a search interface to query TUs, DUs, ISs, and DIs
based on specific elements.

I. Deployment Handler

The Deployment Handler is responsible for effectively
executing a deployment. It follows the same processor-based
principle as the previously introduced Analyzers. The Deploy-
ment Handler receives the resolved dependency structure as
a tree model from the Dependency Manager. Each processor
in the component is responsible for executing the deployment
for specific infrastructure types. Processors can utilize differ-
ent deployment mechanisms, including (i) Script Processors
that utilize simple script-oriented approaches to execute the
deployment (e.g., a processor using Bash scripts), (ii) Tool
Processors that use more sophisticated tool-based approaches
(e.g., Chef5, LEONORE [10], or Capistrano6), and (iii) Human
Interaction Processors to allow for deployments that need
human interaction (e.g., command line input or user interface
based approaches).

In order to ensure all credentials are available and all
constraints are met the Deployment Handler interacts with the
Infrastructure Manager. After the Deployment Handler has
executed the deployment it invokes the Deployment Checker
to verify that the deployment was successful. In case of a suc-
cessful deployment the Deployment Handler augments the DI
with all values that have been gathered during the deployment,
such as specific service endpoints and IP addresses. In case of
an unsuccessful deployment the Deployment Handler escalates
to the Infrastructure Manager.

J. Deployment Checker

The Deployment Checker is responsible for verifying if a
completed deployment was successful or not. To verify this the
Deployment Checker retrieves the TU and DI from the Deploy-
ment Handler and executes the steps in the verification
section of the TU. As mentioned above, verification steps de-
fault to following UNIX conventions, considering commands
that exit with a result code of 0 to be successful, whereas

5https://www.chef.io/chef/
6http://capistranorb.com/

other result codes are interpreted as errors. Additionally,
Deployment Checker implementations can choose to use the
expected-result element of the given TU to perform
custom validation steps, e.g., based on pattern matching.

IV. VALIDATION

A. Implementation

We implemented a preliminary prototype of the Smart
Fabric framework in Ruby. To establish the frameworks mi-
croservice architecture we rely on REST as message exchange
and interface technology. To serve the RESTful interfaces
we use Sinatra7 as web server for each of the implemented
components.

The Repository Manager utilizes Redis8 as the key value
store for the repositories in order to provide fast and efficient
storage for all elements of the system model. To enable
the auto assembly mechanism for each processor within the
framework we use RabbitMQ9 as a message exchange mid-
dleware. Each implemented processor of every auto assembled
component publishes its output and listens for its desired inputs
on dedicated topics. This gives us the opportunity to receive
messages based on patterns and allows for finer grained control
over processor input values.

To implement the Dependency Manager we rely on the
RubyTree library10 to create the described tree structure. To en-
able system model entity augmentation and generation for the
Analyzer Processors as well as for all Deployment Handlers
we use a simple generator mechanism. This mechanism relies
on predefined templates that are augmented with ruby code
in order to easily build and modify system model entities. To
achieve this we rely on the eRuby templating system provided
by the Ruby standard library. The source code of our prototype
implementation is available online11.

B. Validation Scenario

For validation purposes we use the Smart Fabric framework
to deploy and redeploy different sample applications. We
demonstrate this based on two typical Smart City and IoT
applications. The first one is an exemplary Ruby on Rails
based Web Application with a RESTful service interface that
represents a Citizen Information System (CIS). The CIS is a
common application type in the Smart City domain, which
provides open data access for various city aspects such as
traffic information and municipal energy usage. We chose this
application type because on the one hand it is not fragmented
into several artifacts and on the other hand because this type
of application undergoes a natural infrastructure evolution due
to increasing data and demand.

The second application is a sample IoT application based
on a case study conducted in our lab in cooperation with a
business partner and represents a Building Management System
(BMS). The BMS is a Java application based on the Spring
Boot framework and is built as a microservice architecture

7http://www.sinatrarb.com/
8http://redis.io/
9https://www.rabbitmq.com/
10https://github.com/evolve75/RubyTree
11http://www.github.com/jomis/smartfabric
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with multiple artifact dependencies. We choose the BMS since
it provides a good contrast to the CIS due to its distributed
nature with high artifact fragmentation, as well as its inherently
large scale. For both applications we created appropriate TUs.

We then select four different infrastructures to deploy them
to. These infrastructure types are a Dedicated Server hosted at
our group, Amazon AWS12 as an IaaS, Heroku13 as a PaaS and
an OpenStack14 based private cloud hosted at our group. We
chose this kind of infrastructure fragmentation because it repre-
sents a good coverage of different heterogenous infrastructures
that are used to host todays application landscape. They also
reflect the trend towards cloud based platforms and provide a
good baseline for application evolution challenges [11]. The
selected infrastructure types offer different services and capa-
bilities, which leads to several challenges in redeploying them.
The Dedicated Server, for example, imposes no restriction on
the choice of databases (since deployed application packages
must be managed by operators), whereas Heroku or Amazon
AWS offer a restricted set of database services that are managed
by the provider. This is the case for multiple aspects of these
infrastructures and makes them an optimal testing scenario to
show the effects of infrastructure evolution and the challenges
this brings to infrastructure-agnostic application deployment.

For each of these infrastructures we create corresponding
ISs as well as DUs. We then also provide exemplary DIs
representing different specific deployments of our two TUs
to the ISs based on the defined DUs. After this we test the
following scenario. We initialize the Smart Fabric framework
and load all previously defined system model entities. In the
first step of our test we deploy the CIS and the BMS to the
Dedicated Server by initiating two deployment requests to the
Smart Fabric framework with the according TUs and IS. After
the successful deployment notification by the framework we
test the deployments with the information in the augmented
DIs. In the case of the CIS we query the REST interface of
the Traffic Resource and log the results. In the case of the
BMS we query the REST interface of the Controller and log
the results.

We then initiate two service requests to the Smart Fabric
framework to transfer the CIS as well as the BMS to Heroku.
We wait for the successful framework deployment notification
and perform the previously described test again with the aug-
mented information in the DIs and log the results accordingly.

In the final step we execute two additional transfer requests
to the Smart Fabric framework, deploying the CIS to AWS and
the BMS to our OpenStack cloud. After the successful frame-
work deployment notification, we again test both application
as previously described and log the results. We then compare
the logged results with each other and ensure that deployment
was successful on all infrastructures and produced the expected
results.

In both sample applications we showed that Smart Fabric
was able to successfully redeploy artifacts on heterogenous
infrastructures without modifying application artifacts. For
instance, Smart Fabric deployed the CIS on Amazon AWS

12http://aws.amazon.com/
13http://www.heroku.com
14https://www.openstack.org/

with RDS as database backend whereas it deployed on Heroku
using Heroku Postgres.

V. RELATED WORK

The migration of application topologies between different
deployment targets has been studied at various levels in the lit-
erature. With the adoption of the cloud paradigm, for instance,
the problem of developing applications for and migrating
existing applications to the cloud emerged [4]. To address this
problems, Leymann et al. [12] present a meta model and tool
that supports splitting an existing application in several parts,
such that these parts can be moved to the cloud. In order to
develop cloud infrastructure agnostic applications, Ardagna et
al. [13] propose MODAClouds that provides a model-driven
solution. Kwon et al. [14] present refactoring techniques and
automated program transformations that help transitioning an
application to use cloud-based services. In contrast to our
work, these approaches solely focus on the internal design and
execution of singular components of cloud-based applications,
rather than providing a solution for overall architecture of a
such applications.

Next to the migration of applications to, and designing
applications for the cloud, another important area is the mi-
gration of an existing cloud application to a different cloud
offering [15], [16], [17]. Binz et al. [18] present the Topol-
ogy and Orchestration Specification for Cloud Applications
(TOSCA), which aims for portable and standardized manage-
ment of cloud services. TOSCA provides means for describing
portable application deployment topologies consisting of nodes
and their relationships. By specifying possible plans, TOSCA
allows for governing the complex workflow of provisioning
and deploying an application on cloud infrastructure. Based
on TOSCA, Andrikopoulos et al. [19] propose the General-
ized Topology Language (GENTL), an application topology
modeling language, which provides the foundation for possible
optimizations of the distributed deployment of the application.

Additionally, recent work was done to address the problem
of vendor lock-in in the cloud [3], [20]. Satzger et al. [21], for
instance, propose the meta cloud concept that proposes both
design and run-time components to mitigate vendor lock-in
by abstracting away technical incompatibilities from existing
offerings. This approach helps in finding the right amount of
cloud services that are needed for a specific use case, to support
the initial deployment and runtime migration of an application.
Sellami et al. [22] present a unified description model that
represents an application and its requirements independently
of the targeted PaaS. In addition, a generic application pro-
visioning and management API is proposed to abstract away
PaaS-dependent functionality. These two concepts combined,
represent a PaaS-independent solution for the provisioning and
management of applications in the cloud to avoid vendor lock-
in. The aforementioned approaches have in common that they
focus on deployment topologies of cloud applications, and
therefore are complementary to the methodology presented
in this paper. However, they do not provide a constraint-
based, declarative specification of the required deployment
infrastructure in order to allow for an infrastructure-agnostic
deployment. Furthermore, all approaches have in common that
they do not provide a mechanism and toolset that also deals
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with the seamless migration between deployment targets, i.e.,
across infrastructure boundaries.

VI. CONCLUSION

The emergence of the cloud computing paradigm enables
applications to autonomously provision and also release in-
frastructure resources in order to elastically respond to en-
vironmental changes (e.g., increased request load). To fully
leverage the potential of the cloud however, applications need
to be specifically designed and developed for a concrete cloud
provider infrastructure, which leads to a strong dependence on
specific offerings provided by the cloud provider. As a result,
moving applications to the cloud or migrating an application
between cloud providers is a tedious task due to variations
of provided services, interfaces and deployment tools among
providers. To address these problems, in this paper we pre-
sented Smart Fabric, a methodology and toolset to enable
infrastructure-agnostic deployment of artifact topologies based
on a declarative, constraint-based specification of the required
deployment infrastructure. Current approaches do not suffi-
ciently consider the specific, practical problems of dealing with
evolving deployment infrastructure and closely tie application
artifacts to their deployment targets. By extending the MAD-
CAT methodology with a dedicated abstraction layer to clearly
separate deployment infrastructure and application deploy-
ment, Smart Fabric allows for seamless, independent evolution
of both, application components, as well as the underlying
infrastructure. Moreover, our approach enables transparent
application deployment and evolution between deployment
targets, i.e., across traditional infrastructure boundaries (e.g.,
migrating applications between on-premise and PaaS offerings,
or between PaaS and IaaS), without changes to application
code. Smart Fabric implements a confidence-based decision
model that aims to automate application deployment when
possible, and will escalate to human operators when necessary.
We discussed the feasibility of the introduced methodology
and developed a prototype by using representative applications
from the Smart City and IoT domains.

As part of our ongoing and future work, we will extend the
presented framework with mechanisms to automatically gather
infrastructure specifications from available cloud services, as
well as deployment units and deployment instances from exist-
ing deployment directives to simplify adoption. Furthermore,
we aim to extend and integrate Smart Fabric with our work
on IoT cloud applications [10], [23], as well as our research
on Smart City applications [24].
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