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Abstract—The changes in software development and operation
for Internet of Things (IoT) and the increasing integration be-
tween IoT and cloud systems have fostered on-demand sensing re-
sources deployment for advanced applications. Such a deployment
relies on various software sensors and dependent components that
can be pulled from repositories and marketplaces to establish
on-demand resources for sensing. To enable the utilization of
such resources in a pay-per-use fashion and to reduce operational
costs, in this paper, we provide dynamic up-to-date information
about sensing resources at runtime to support applications to
deal with dynamic changes of requirements, such as changing
communication protocols between IoT devices and cloud systems,
launching and activating sensors, or changing cloud services to
support sensing data. Our approach is to collect and correlate
both static and runtime information from different software
stacks of sensing resources in the existence of the diversity,
dynamism and large-scale associated with IoT cloud systems.
To this end, we develop a framework for collecting, managing
and provisioning information of on-demand sensing resources.
We design and implement a rich set of data collectors and a
middleware to gather information through different phases in the
lifecycle of sensing resources. We demonstrate the extensibility,
flexibility and usefulness of our framework with several examples.

I. INTRODUCTION

Internet of Things (IoT) cloud systems are an emerging
model in which IoT elements blend with cloud services to
create a unified system running on distributed infrastructures of
IoT devices and cloud data centers [1]—[3]. The IoT elements
(e.g. sensors, lightweight analyzers, gateways, and actuators),
and cloud services (e.g. storage and data processing) in a
single IoT cloud system need to be managed in a coordinated
manner to ensure that applications atop such a system can
seamlessly access capabilities of IoT elements and cloud
services. Due to changes in virtualization and software-defined
capabilities in IoT infrastructures [4], [5] and business models
in provisioning IoT resources [6], [7], for sensing and analysis
purposes, sensing resources — like software sensors, actuators
and lightweight analyzer — are pulled from different cloud-
based repositories and marketplaces, deployed into IoT devices
at the edge of the network, and then controlled to collect and
analyze information about “Things” (sensors and actuators can
be also the “Things” themselves). This creates very dynamic
virtualized resource instances for sensing purposes, while helps
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saving energy and management cost. However, this way also
brings great challenges for managing information about these
resources for sensing and analysis.

When developing applications utilizing such on-demand
sensing resources, the developer needs frameworks and APIs
to support her/him to access comprehensive and up-to-date in-
formation about [oT elements and the underlying systems [1].
This is because the developer has to provide features within
applications to deal with the complexity and dynamism of such
IoT sensing resources and their cloud counterparts. However,
these types of information do exist at different phases of
the IoT sensing resources life-cycle: (i) at the development
phase, sensing resources are created, published, and offered by
resource providers, (ii) at the deployment phase, the applica-
tion developer tailors these resources, designs the applications
and deploys the application and sensing resources on suitable
infrastructures, and (iii) at the operation phase, the applications
and infrastructures are monitored and managed by many man-
agement services, such as for deployment, elasticity control
and performance monitoring. All these types of information
can be used for dynamically configuring the application and
their sensing resources on-the-fly.

However, capturing and managing these types of infor-
mation are cumbersome. First, on-demand sensing resources
are dependent on, e.g., IoT infrastructures and cloud services,
so we need to consider their relationships to capture enough
information. Second, the information from different sources
must be correlated to ensure the consistency and to provide a
unified comprehensive system view. Finally, due to the large-
scale of the systems (e.g. contains thousands IoT devices and
services), we also need a flexible and extensible management
mechanism to sustain the changes of the systems. In this
paper, we contribute a novel framework — called ELISE
(Elastic Configuration Information as A Service) — to address
the above-mentioned challenges by collecting and providing
different types of sensing resources information. This frame-
work provides, at runtime, comprehensive information of on-
demand sensing resources in IoT cloud systems for developers,
applications and other management services to decide and
optimize their operations. Moreover, APIs and components
of the framework can be used during the development of
applications in IoT cloud systems. We setup a testbed of large-
scale deployments of IoT cloud systems to show the flexibility
and extensibility of our framework.

The rest of this paper is organized as follows: Section
IT presents motivation and related work. Section III presents
our methods for collecting sensing resources information.
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Section IV describes the framework components. Examples
are presented in Section V. We conclude the paper and outline
our future work in Section VI.

II. MOTIVATION AND RELATED WORK

A. Motivation
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Fig. 1: Applications, sensing resources, and management ser-
vices in [oT cloud systems

Let us consider a use-case of predictive maintenance of
chillers in smart cities, which combines large-scale distributed
IoT sensing resources and cloud-based services [3]. Shown in
Fig.1, the IoT cloud infrastructures characterize basic elements
in physical IoT devices and data centers, such as hardware
sensors, gateways, and virtual machines. They are available for
different applications and sensing resources. The loT sensing
resources include, e.g., software sensors, actuators, lightweight
analyzer, and gateways on top of IoT infrastructures'. We also
have cloud services, such as load-balancer and near-realtime
data processing, running on the cloud data center, that handle
heavy workload such as analyzing sensory data and processing
events. Sensing resources and cloud services are application
resources that can be instantiated on-demand. Several Manage-
ment Services support deployment, control and monitoring of
these resources in IoT cloud systems. For examples, at runtime,
IoT sensing resources can be reconfigured to increase the
updating frequency and to change the communication protocol,
or we can deploy more sensors for more fine-grained data
during emergency situations. Furthermore, cloud services can
be reconfigured to handle the increasing amount of incoming
data from the IoT elements.

The application in this use case is to perform predictive
maintenance by deploying sensing resources, in particular sen-
sors and lightweight analyzers, and controlling these resources
to collect required information. The important aspect is that
neither sensors are statically deployed and executed nor sensor
capabilities are unchanged during the application lifetime, due
to the need to have different sensing information at runtime;
and this aspect is supported by recent advanced virtualiza-
tion and software-defined techniques. Applications face great
challenges in capturing and collecting the information about
sensing resources due to the distributed, heterogeneous and
dynamic environments. For example, if an application wants
to reconfigure sensing resources, then the application needs

'In this paper, we refer to sensors, actuators and gateways as software ones
which may interface to their hardware counterparts
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to know, e.g., the capability to change the communication
protocol between a sensor and a gateway, or the capability
to scale out cloud services upon high workload of the near-
realtime analysis. Sometimes sensing resources do not provide
a specific capability by default, but existing management
services can provide the capability, e.g. on-the-fly deployment
or deactivation of sensors.

Therefore, applications and their developers need support
from extensible and scalable frameworks for providing infor-
mation of complex IoT sensing resources and their depen-
dent resources. Nevertheless, developing such frameworks face
several challenges: (i) identifying and correlating resources
instances managed by different management services, (ii) cap-
turing diverse types of information of about sensing resources
and their relationships in a unified data model, and (iii) dealing
with both horizontal and vertical complexity and dynamism
of the system due to the large-scale and inherent multiple
software stacks.

B. Related work

There is a large number of research publications in wireless
sensor network (WSN) deployment and information manage-
ment [8]. Although sensing resources in WSN are dynamic,
the execution model and infrastructures are very different
from our work, where we focus on sensing resources in
IoT infrastructures supported by cloud data centers. The key
difference is due to the recent development of software engi-
neering, virtualization and software-defined techniques as well
as business models of utilizing sensing resources as a service.
In the following, we examine our main related research:

IoT Sensing Resource Deployment: Several papers sup-
port static sensor deployments. Therefore, sensing resources
information is mainly about resource status (for accessing
resources) from pre-deployed management services which
do not support information for configuration and control of
sensing resources. There are several papers discussed about
IoT deployment. In [9], the authors present a comprehensive
framework for deploying IoT resources. In ThingStore [10]
deploying things from marketplaces is also discussed. Obvi-
ously collecting information about sensing data is also related
IoT deployment. However, our work differs from these papers
as we focus on managing dynamic information about sensing
resources, not on deploying the resources.

Information management: Endo et al. [11] introduce con-
cepts and frameworks of information system that supports
capturing life-cycle of cloud-based services. Johannes et
al. [12] address the information collection problem and build a
knowledge-base to support the development phase. Nakamura
et al. [13] present method to manage laaS resource for the
adaptive configuration by using ontology. However, these
studies focus on a narrow view to support single software stack
for cloud services, either application level or infrastructure
level, and only for development phase. In this work, we aim to
provide information of multiple system stacks at runtime with
a focus on the lifecycle of IoT resources. In [14] a federated
model of IoT discovery using ontology is proposed. However,
it does not focus on different phases in the IoT lifecycle as well
as the information collectors for on-demand sensing resources.



Information monitoring and collection: Andreolini et
al. [15] introduce an algorithm to monitor large-scale systems,
that adapt the monitoring frequency for resource and cost. Zang
et al. [16] introduce architectures of information services to
collect and query information from heterogeneous infrastruc-
tures. Our approach does not aim to propose a monitoring
solution but to interface to monitoring information and provide
required information and APIs to enable the access to on-
demand sensing resources for applications to control sensing
resources to optimize application functions with changing
application requirements.

III. CAPTURING SENSING RESOURCES INFORMATION

A. Information collection

As mentioned, in our work, we focus on the software layer
in IoT cloud systems. All our sensing resources are software
which can interface to hardware sensors, actuators, gateways,
network and virtual machines. Studying from the use-case in
Section II, we focus on the main types of sensing resources
described in Fig.2. These sensing resources can be instantiated
through the deployment of their artifacts in repositories and
marketplaces (e.g., sensors, lightweight analyzer, and actua-
tors) or through the allocation of infrastructure capabilities
(e.g., network). This is possible today due to change in soft-
ware development, the business model (sensors-as-a-service)
and virtualization techniques (where different sensors can be
deployed into virtual environments).
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Fig. 2: Sensing resources and their dependencies
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Fig. 3: Example of types of sensing resources information

To support application requirements, we need to collect
different types of information that the application can use to
configure and control sensing resources. Shown in Fig.3, we
classify the information collected for sensing resources into: (i)
Properties describing the states and metadata of the systems,
and (ii) capabilities describing actions that can be performed
for configuring particular sensing resources. These types of
information are provided by different management services.
For example, a sensor can have a capability of changing data
rate in its sensing and this capability can be captured by the
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deployment service. In order to increase data rate in sensing,
we can query the deployment service to see if an instance of
the sensor can be reconfigured with different sensing rates.

Collecting the types of information of IoT sensing re-
sources spans different phases of development and operation
and the information from these phases must be correlated in
order to provide sufficient information about IoT resources for
any application. Fig.4 shows related properties and capabilities
of a service along the development and operation. It requires
various collecting methods to interact with different kinds of
information sources.

Certain types of capabilities and properties can be provided
by the resource providers at the development time and usually
published on some repositories (e.g. Chef cookbook?, Docker
hub?), marketplaces (e.g. Amazon Web Services’ Marketplace®
or ThingStore [10]), or custom metadata services (e.g. WSO2
Governance Registry®). This is due to the recent trend in
IoT marketplaces [17]. From our experience, this way is
also used for provisioning sensing resources in industrial
cloud-based M2M (Machine-to-Machine) and building man-
agement, as different types of customers require different sen-
sors and lightweight analyzers for different Things and these
sensors and analyzers are developed by different third par-
ties/providers. Normally, these repositories and marketplaces
provide structured data that can be understood and obtained
automatically via existing adaptors [12].
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Fig. 4: Collect capabilities and properties of sensing resources
— an example with sensors

At runtime, further capabilities and properties can be
collected dynamically from various management services. In
general, the management services can expose the information
that they have, e.g. the states of configuring a sensor (e.g.,
deployed, active, and inactive) and the capabilities to change
these states. Some types of information are provided via do-
main specific models and require tight collaborations with the
management services to extract the needed information, e.g.
deployment states from the deployment service are strongly
dependent on concrete deployment services in specific clouds
and IoT systems. The management services can also capture
relationships between sensing resources, such as the deploy-
ment service knows the number of sensor instances sharing
the same gateway, or the monitoring service usually records
the throughput between a gateway and a cloud service.

Zhttps://supermarket.chef.io/cookbooks
3https://registry.hub.docker.com/
4https://aws.amazon.com/marketplace
Shttp://wso2.com/products/governance-registry/



B. Capturing configuration properties and capabilities

The information collected from different management ser-
vices is usually in different formats, containing inconsistent
property names and providing different types of capabilities.
Tables I, 1II and IIT show examples of diverse capabilities.
In order to provide usable information for the configuration,
we devise a unified model to represent the service properties
and capabilities. This allow us to remove the complexity of
parsing multiple information types and allow the extensibility
to integrate with new management services.

TABLE I: Capabilities of generic sensing resources

Generic types Capabilities

Gateway change protocol, connect to gateway, run lightweight app.
Sensor change frequency, change protocol, connect to gateway
TABLE II: Capabilities of specific cloud services

Specific types
HAProxy

Event Processing
Cassandra cluster
RabbitMQ

Capabilities

change max connection

forward data to queue/database

scale out/in

modify policies, change environment variable

TABLE III: Capabilities of management services

M.

t services
Deployment service
Elasticity control service
IoT Governance service
Monitoring service

Capabilities

deploy, resolve dependency, manage cloud resources
start/stop control, replace control policies

add primitive capabilities, invoke capabilities in batch
change frequency, update monitoring metrics

To develop the unified model, we elaborate the concepts
from previous work [18]. In our model, we consider any
sensing resource as a “service” in an abstract way. This term
“service” also aligns with existing concepts of sensor-as-a-
service, analytics-as-a-service (e.g., for lightweight analyzer)
and sensing-as-a-service [6], [19]. Thus, in the model we use
the Service unit for generalizing different types of sensing
resources and cloud services. Fig.5 depicts our unified model
that aims to support the dynamic configuration and to fill the
gap between cloud models for static description (reflected via
Service Artifact) and data models for dynamic information (re-
flected via Service Instance). The Capability interface provides
a same way to access different operations and can be realized
by multiple execution models, thus enables the configuration
to select alternative implementation depending on particular
situations. For example, a service exposes reconfiguration
functions via scripts, which can also be executed via the API
of the deployment service with some additional qualities, e.g.
increasing the fault tolerance, but reducing the performance.
The domain specific information are captured via service’s
category and domain properties. Fig.6 shows an example of
capabilities collected for a sensor instance. These capabilities
are linked from both static and dynamic information.

A service can evolve through three phases: development,
deployment and operation which different information can be
captured. The offered service, which is not initiated, contains a
set of artifacts that require for the default deploy and undeploy
capability. The offered service is initiated at deployment time
and become a service instance, which contains runtime infor-
mation, e.g. state. The relationships between service instances
are captured via service topologies.
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Fig. 5: Unified model of sensing resources and cloud services

C. Identifying sensing resources instances

Within an IoT cloud system, sensing resources and cloud
services are dynamically changed (e.g., deployed, migrated,
and deactivated). Therefore, we must be able to identify right
instances of service units in order to provide accurate infor-
mation for reconfiguring service instances at runtime. Cloud
providers and management services use different identity (ID)
schemes to identify service instances, which called domain ID,
e.g. IP address or Object identifier (OID) [20]. It is impossible
to have a single ID scheme because service instances are
managed independently. Some identification schemes include
information that we can interpret from, such as the ID of a
system service is the pair of IP address and port (TCP socket),
or the ID of a web resource can be a hierarchical structure
(e.g. URI, URL). However, many service providers use UUID
for identifying services, which cannot be interpreted. For
accessing the information by a unified manner, we need a
single identification for each service instance, so-called global
ID. In our approach, a global ID is mapped to a list domain
IDs, enables to refer to all information about an instance via
multiple sources. Therefore, we need a mechanism to detect
that a set of domain IDs belong to a same instance or not,
afterward we can assign to that instance a global ID.

In our approach, management services share some non-
unique attributes of service instances with other management
services. Based on that, we can correlate the information
collected from management services into service instances, by
applying existing information matching and similarity measure
functions. This mechanism requires the agreements between
management services about the shared attributes, but does not
need the interaction between management services. We use the
collection processes (Section III-A) to extract shared attributes
from sensing resources instances. Fig.7 shows an example of
managing identifications for multiple management services.

Our approach relies on matching functions which may
bring uncertain information about sensing resources. Currently,
we are investigating how to incorporate uncertainty about
sensing resources [21] into our work.



Artifact: IoT_Governance_metadata{

{ artifactRef: http://../deploySensorUnit.sh id: 10.99.0.xx:9080,
artifactType:script },

{ artifactRef: http://../rtGovOps-agents.tar.gz
artifactType:misc }

meta: { location: ghl,
type: FM5300}

name: Gateway-10.99.0.xx:9080

Deployement_metadata{ ICioud metadataf [

id: loTSensors/sensorUnit/0 | "id: bde32733-d7b1-4b43-95¢3-d44c... |
hostOn: gatewayDocker 0, | flavor: m1.small, CPU: 1, RAM: 3GB I
ConnectTo: QueueUnit_0, | Private_IP: 10.99.0.67 |
state: DEPLOYED, | state: Active, 1

|

Capability {
name: deploy,

input: "number",
executor: unknown
type:script-based,

{ name: deploySensorUnit.sh

e (1 Capability {

name: AssociateFloatIP,

|
y . | input: "IP", |
name: Chang;stensorRate 2 | executor: CloudConnector |
input: “sensorRate”,
¥ executor: 10T_Governance, R n——— !
type:REST, e 1
{ endpoint: http://128.130.172.xx:8080/APIManager/mapper Capability { |
» Jinvoke/10.99.0.xx:9080/cChangeSensorRate.sh/{rate} | name: pause,
Capability method: POST | executor: CloudConnector |
{ Q:ani:tgrrygeezllooyer r)napping:(rate:sensorRate} ] I
type:REST, ; 1
! I Capabilit

{endt;r)]oldn_t:DIETE_:I{élza..,/sensorUnlt_O Capability [ r‘;fwot' |
method: { name: "ChangeProto" | executor: CloudConnector |
executor: loT_Governance, | |
e e ———————— e —— -
[ Provided by Developer Capabilty :_Capabwlity{ I

r 'i Provided by Cloud provider { name: "StartStopSensor", name: terminate,

[

I:l Provided by loT Governance or Deployment service

executor: 10T_Governance,

: executor: CloudConnector |

Fig. 6: An example of capabilities information

Collective information and ID management

Identification_mapping{
global_ID: d5e2f2b2-3c3f-46b2-88a7-..
domain_ID{
loT_Governance: 10.99.0.67:9080
Cloud_meta_info: bde32733-d7b1-4b43-...
Deployer_meta_info:loTSensors/sensorUnit/0

}
query and update

Deployer_meta_info{ Collective_information{

id: loTSensors/sensorUnit/0 id: d5e2f2b2-3¢c3f-46b2-88a7-.

hostOn: gatewayDocker_0, unify Deployer_meta_info { ... }

ConnectTo: QueueUnit_0, infprmation loT_Governance_meta_info { ... }

state: DEPLOYED, Cloud_meta_info { ... }

: ]
hosted on ¢

Deployer_meta_info{ Io_TiGovernanceTmetaiinfo{

id: loTSensors/gatewayDocker/0 share port | id:10.99.0.67:9080

hostOn: gatewayDocker 0, name: Gateway-10.99.0.67:9080

state: DEPLOYED, - meta: { location: ghl, unify

exposed_port: 9080 type: FM5300} information
) } |

hosted on i share IP address ishare IP address

Deployer_meta_info{ Cloud_meta_info{

id: loTSensors/gatewayVM/0 id: bde32733-d7b1-4b43-...

state: DEPLOYED, flavor: m1.small, CPU: 1, RAM: 3GH
vm_id: bde32733-d7b1-4b43-.. " Private_IP: 10.99.0.67

gy . share virtual o
privatelP:10.99.0.67 ‘machine 1D )state. Active

Fig. 7: Example of identification management

D. Providing capabilities information

As the information is collected from many places, this
could cause substantial overheads. Thus, an application needs
only meaningful information for a particular configuration. For
example, we need to query for all the sensors whose capability
can change the sensing rate. To obtain correct information,
one needs to be able to query and subscribe for the particular
information it is interested in. We design the query format as
Query = (category, {rules}, {capability}). An example of
a query in JSON is as follows:

{
"category": "SENSOR",
"rules": ["location:EQUAL:bldl", "type:EQUAL:motor"],
"hasCapabilities": ["ChangeSensorRate", "deploy"]

¥

The result of the query is a set of service instances. Fig.6 shows
fragments of information collected from different management
services. Such information can be parsed and utilized within
the application itself or by other tools to manage sensing
resources.
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IV. CONFIGURATION INFORMATION AS A SERVICE
A. Loose-coupling architecture

IoT cloud systems may be extended, shrunken or migrated,
sensing resources and information gathering components are
distributed and dynamically changed. We design our ELISE
(Elastic Configuration Information as a Service) to simplify the
management of information for sensing resources by dealing
such dynamism. Fig.8 overviews the architecture of ELISE.
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Fig. 8: Distributed information management

ELISE contains a set of collectors to interface with various
management services to collect information. Collectors are
callable modules (e.g. in the form of a class or an executable
program) that connect to the source of information, query
the source, and translate data to the ELISE’s model. ELISE
manages collectors and calls appropriate ones only when
needed, allowing us to dynamically add or remove collectors
at runtime.

For deploying in a large scale setting, ELISE fully lever-
ages the message queue and publish/subscribe communication.
This enables ELISE to be agnostic to others and independent
with the network topology, also provides the flexibility in



managing information, e.g. we can add a new ELISE easily
when the system extends or a new cloud provider is used. This
also eliminates the need of managing multiple ELISEs, single-
point-of-failure and bottleneck. ELISE can be deployed closer
to the information sources for faster and more reliable data
collection, e.g. an ELISE instance can run with a management
service on the same VM.

B. Protocols for transferring and querying information

Because ELISE needs to integrate to different collectors,
we need a protocol to send different kinds of commands to help
ELISE to optimize its work, e.g., to manage multiple ELISE
and many message transmissions at the same time. We use the
following message structure for commands:

MSG = (CMD, from,topic, feedback, payload)

where:

CMD: the message type (discover, query, response).
from: the ID of the ELISE service sending message.
topic: the topic to broadcast a message.

feedback: the topic that the response is sent.
payload: the content of a query or a response.

At the beginning, an ELISE instance is configured to
subscribe to a control topic to listen to the messages from the
others. The control topic is used for distinguishing different
groups of ELISEs. The set of (from, topic, feedback) enables
to distinguish between concurrent messages, also to drop the
duplicated messages created by message queue platform. For
the management ELISEs, we can broadcast a discover message
and get back the number and description of all ELISEs. For
querying information, all the ELISEs will receive the query
and update information through the feedback topic.

C. Deploying and connecting data collectors

Because of the on-demand deployment of sensing re-
sources, collectors are also deployed on-demand on IoT cloud
infrastructures, and are connected each other to establish the
system providing sensing resources information. This poses
several challenges. First, we must deploy the collectors on
suitable targets, e.g. to push artifacts to the right gateways.
For this, we undergo two steps: (1) collect and understand the
information of the infrastructure via a management service or
clouds, (2) by means of existing deployment techniques [22],
we can deploy the components depending the target en-
vironment. After the deployment, the collector publishes a
message to register itself to ELISE and open a communication
channel via message queue. Second, the source of information
must be configured for each collector, e.g. the endpoint of
web service where information is exposed. The collector can
be implemented by ad-hoc way to interact with predefined
resources. In other way, the manual configuration is pushed to
the collectors from the client via ID of the collectors.

D. Prototype

ELISE?® exposes a set of RESTful APIs to get the requests
from applications/users and to retrieve data from collectors.

SPrototype and supplement materials: http://tuwiendsg.github.io/SALSA/elise.html
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We use Neodj’ graph database for storing and querying
services based on their relationships. For the communication
among ELISE components, we have implemented adaptors for
MQTT®? and Apache Kafka®, which can be configurable when
running ELISE. Kafka is used to provide higher throughput for
heavy messages transferred within ELISE. We implemented a
set of collectors for clouds, including OpenStack by jClouds'”
and Flexiant by JADE!'. We have developed collectors to
interface to different management services in the iCOMOT
framework'?, including a Deployment Service, an Elasticity
Controller, a Monitoring Service and an IoT Governance Ser-
vice. These management services provide enough information
reflecting various actions of sensing resources at runtime.

V. EXAMPLES

This section will show how ELISE framework can enable
the unified management, the extensibility for different system
scales and the flexibility for the sensing resource dynamicity.

A. Providing configuration information

In this example, we demonstrate our work by emulating an
IoT cloud system for sensing chiller operations in buildings
in smart cities. The system has two parts: sensing resources
deployed in IoT devices and cloud services in data centers.
The cloud services are non-scalable components (ActiveMQ,
HAProxy and Cassandra seed) and horizontal scalable com-
ponents (Local Processing, Event Processing and Cassandra
Node). The sensing resources include sensors and gateways
with different communication protocols to the cloud. The
10T cloud system for sensing chillers contains complex cloud
services, which are managed by several management services
on both cloud infrastructures.

All of software for sensing resources and cloud services
are implemented with realistic functions but we experimented
their operations in an emulated environment — not a production
environment (shown in Fig.9). We deployed cloud services
in Flexiant FCO — a public cloud. Our sensors utilized real
data set from an industrial partner and replayed the data. To
emulate sensing resources, we use another private cloud (DSG
OpenStack) with lightweight virtual machines (denoted by
ml.small — 1CPU/3GB) and dockers as the environment
for running sensors and gateways. Sensors are executed using
docker on Openstack VMs. Several management services
(Mgt.Serv.) are deployed on the two clouds to manage the
IoT cloud system. We deploy one ELISE instance for each
cloud. The two ELISE instances are configured with a set of
collectors to interact with management services and cloud APIs
to retrieve the information. When deploying ELISE instances,
we must manually configure collectors with the endpoints of
the management services or the cloud APIs.

Given a query for sensors monitoring chillers, Listing 1
shows an excerpt of the sensing resources information, which
indicates a list of sensors in JSON. Information of each sensor

"http:/neodj.com

8http://mqtt.org/

%http://kafka.apache.org/

10https://jclouds.apache.org
http://docs.flexiant.com/display/DOCS/Introduction+to+Jade+APIs
2http://tuwiendsg.github.io/ilCOMOT
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Fig. 9: Deployment of resources for sensing chiller operations

contains different IDs from management services, which are
unified with a global ID (the first ID). The global ID, which
is an UUID, enables the application to refer to a specific
sensor via a single reference (e.g. the id in Listing 1). Also,
the domain IDs are available for further interactions with
the sensors via management services. A full view of the
sensor is captured via properties, e.g., the state, IP address,
location, and sensor types. Similarly, the capabilities collect
all possible operations on the sensor, including the reference of
how to execute the operations, such as the endpoint of RESTful
services.

Listing 1: Example of a query result for sensor instances

[{"id": "19866cf7-6d59-4a7c-ac6d-a0lf33cd9ebe™,
"name": "Chiller_motor_status",
"category": "SENSOR",
"properties":
{ "name": "salsa-metadata",
"metrics": [
{ "name":"id", "value":"Chiller/buildingl/motor/0"},
{ "name":"state", "value":"deployed" }, 1},
{ "name": "govops-metadata",
"metrics": [
{ "name":"location",
{ "name": "vm-metadata",
"capabilities": [

{ "name": "deploy",
"executionMethod":
"executionModel":"{

\"endpoint\":\"http://128.130.172.215:8380/salsa-
engine/services/Chiller/topologies/buildingl/
nodes/motor/instance-count/{quantity}\",

\"method\":\"POST\", \"data\":\"\"}" } ],

. omitted

{ "name": "undeploy", ...},

{ "name": "StartStopSensor", ...}

{

e

"value":"buildingl" }, ]},

RS Y

"REST",

"name": "ChangeProto", ...} }
sensors are shown here]

The information of capabilities is up-to-date and reflects
runtime status by including the concrete endpoints of the
capabilities, which is ready-to-use in a configuration. The set
of capabilities is merged from different management services
and cloud providers in order to provide a unified view of all
the configuration operations. Using provided information, the
the application or other tools can apply different strategies for
particular configuration goals.

During runtime of the system, the collected information
can become insufficient due to the expansions and changes
of the IoT cloud system, e.g. components are migrated, new
components join, or new management services involve. The
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information collection must be extensible to adapt with these
changes, e.g., to collect new types of information that become
available at runtime. To show the extensibility of ELISE, we
keep the IoT cloud system running and deploy more ELISE
instances to gather information. The collectors are configured
and added one by one to ELISE instances when the system
is running. As the result, the response of the queries (in
Listing 1) becomes richer after a collector is added: the number
of properties and capabilities increases when we added more
collectors. The loose-coupling architecture enables ELISE to
be extensible on-the-fly.

Given an [oT cloud system, this feature of providing up-to-
date sensing resources information will allow applications to
implement their decision on how to optimize their functions.
In parallel, external utilities can be developed to control
sensing resources, e.g., activating more sensors or changing
communication protocols.

B. Enabling programming sensing resources

An application aims to reconfigure the rate of sensors in
order to obtain fined-grain information or to reconfigure the
communication protocol between a gateway and the cloud.
Because the systems are changed over time, the application
does not know about management services and sensors, e.g.
the endpoints of the management services, the places where
the sensors are deployed, the states of the sensors. ELISE sim-
plifies this problem by providing APIs for accessing runtime
data and APIs for invoking capabilities. As described in the
previous subsection, APIs for querying sensing resources can
return information shown in Listing 2.

Listing 2: Example of sensor and gateway capabilities

{ "name":
"executionMethod":
"executionModel":"{

\"endpoint\":\" http://128.130.172.199:8080/
APIManager/mapper/invoke/10.99.0.102:9080/
cStartStopSensor/startcChangeSensorRate/update?
args={rate}",

\"method\":\"GET\", \"data\":\"\"}" } ],

. omitted

"ChangeSensorRate",
"REST",

"name": "changeProtocolMQTT",

"executedBy": "GovOps",

"executionMethod": "REST",

"executionModel": "{\"endpoint\":\"http:
//128.130.172.199:8080/APIManager/mapper/invoke
/10.99.0.102:9080/cStartStopSensor/cChangeProto/
upd

ate?args={protocol}",\"method\":\"GET\", \"data\":\"\"}" } ]
"parameters":
"effects": []

}

[l

The capabilities to change the sensors’ rate or commu-
nication protocols can be invoked based on the information
about execution methods and models in the description. In this
case, corresponding management services are responsible for
invoking such capabilities. For example, Listing 3 presents an
excerpt of code for changing the rate of sensors.

Listing 3: Example of programming a logic to change protocols

B

String endpoint = ” .../ rest/elise/”;

// the 1st proxy to manage the queries
manageProxy = create (endpoint, Communication.class)



query = new EliseQuery (ServiceCategory .Gateway)
.hasRule(”location”, ”buildingl”, OPERATION.EQUAL);
queryID = manageProxy.querySetOfInstances (query);
manageProxy . getQueryStatus (queryID );
/.
// the 2nd proxy to query and invoke capability
localProxy = create(endpoint, Unitlnstance.class);
instances = localProxy.queryUnitlnstance (query);
for (Unitlnstance instance instances) {
¢ = instance.getCapabilityByName (”changeRate”);
if (¢ != null) {
CapabilityMng . execute (¢, new String []{"5”});
o}

VI. CONCLUSIONS AND FUTURE WORK

Given advanced techniques allowing us to deploy and
control sensing resources on demand in IoT cloud systems,
it is crucial that, in order to simplify the access and control
of sensing resources, we must be able to deal with dynamic
and complex types of information about sensing resources
through different deployment and operation phases. In this
paper, we have identified main types of capabilities and prop-
erties that need to be captured for dynamic sensing resources.
We approach the above-mentioned challenges by designing a
scalable and extensible framework that utilizes various types
of data collectors to interface to APIs of different management
services and sensing resources repositories/marketplaces. This
allows us to avoid tightly integration with various specific
systems by going inside these systems and changing them,
which is not scalable, if not impossible, in the IoT world.
Instead, we have addressed scalable protocols to gathering
information, identification integration, information gathering
through different phases of IoT and cloud services. Our pro-
totype — ELISE — showed that extensibility and flexibility are
key issues in order to enable diverse types of configuration
information.

We are currently working on more types of information
and improve quality of information. Furthermore, we focus on

extending and experimenting our framework for other appli-

cation domains, such as sensing in Geo Sport applications!?,

and uncertainty information about sensing resources.
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