
Data & Knowledge Engineering 62 (2007) 138–155

www.elsevier.com/locate/datak
Interaction pattern detection in process oriented
information systems

Schahram Dustdar a,b,*, Thomas Hoffmann a

a Distributed Systems Group, Vienna University of Technology, Institute of Information Systems,

Argentinierstrasse 8/1841, A-1040 Wien, Austria
b University of Groningen, Department of Mathematics and Computing Science, The Netherlands

Received 20 January 2006; accepted 27 July 2006
Available online 28 August 2006
Abstract

Finding interaction patterns is a challenging problem, but this kind of information about processes or social networks
might be useful for an organization’s management to understand the role of specific persons in processes. Ad-hoc processes
are of special interest, because they result from runtime-collaboration between the participants, not using predefined mod-
els specifying the persons responsibilities and the order of activities. Because social network analysis (SNA) is closely
related to interaction pattern detection, we introduce it as a method to determine properties of social networks like project
teams. In order to support the detection of these patterns, we discuss the necessity of additional semantic activity infor-
mation, and we propose rules and an algorithm that allow detecting such patterns automatically. We apply our algorithm
in a case study, using Caramba to perform an example ad-hoc process.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Interaction patterns; Pattern finding process; Social network analysis; Caramba; Process mining
1. Introduction

The competitive pressure in today’s economy increases continuously. To stay competitive, there is a need
for organizations to optimize their business processes and their intra-organizational communication. Actual
work within an organization can deviate from process definitions due to many reasons. One method to
improve organizational processes is process mining (e.g., [5,6]). It allows both, identification of processes from
transaction logs, and deviation detection between a given process model and real world process executions.
The management can use this kind of information to optimize an organization’s performance. Additionally
to the knowledge about how a process works it is important to understand the communication within an orga-
nization, because insufficient communication decreases efficiency. An organization is a social network, and
0169-023X/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.datak.2006.07.010

* Corresponding author. Address: Distributed Systems Group, Vienna University of Technology, Institute of Information Systems,
Argentinierstrasse 8/1841, A-1040 Wien, Austria. Tel.: +43 1 58801 18 414; fax: +43 1 58801 18 491.

E-mail addresses: dustdar@infosys.tuwien.ac.at (S. Dustdar), thomas.hoffmann@onemail.at (T. Hoffmann).

mailto:dustdar@infosys.tuwien.ac.at
mailto:thomas.hoffmann@onemail.at

S. Dustdar, T. Hoffmann / Data & Knowledge Engineering 62 (2007) 138–155 139
social network analysis (SNA) [8] can be used for this kind of analysis. It offers the opportunity to determine
properties of actors (an organization’s employees), groups, or the whole organization. With SNA, for exam-
ple, it is possible to find out how much a person communicates with others, or if he or she has a central role
within the organization. SNA also allows various kinds of analysis, and this information supports the man-
agement to initiate improvements. Discovering complex interaction patterns offers additional knowledge
about the role of actors within an organization. This information is important, because the more the manage-
ment knows, the better they can prepare the organization for the future. In particular, interaction pattern
detection is important in case of highly dynamic (ad-hoc) processes, because they result from runtime-collab-
oration between process participants, thus preventing the derivation of the actors’ roles solely based on pre-
defined process models. Our main contribution to this area is an algorithm that detects an initial set of
interaction patterns within a social network.

This paper is organized as follows. Section 2 lists some related work. Additionally, this section introduces
some interaction patterns from the software architecture domain into the domain of business processes. Sec-
tion 3 contains basic information about SNA. We present some SNA-metrics, systems and applications. We
propose an algorithm that enables us to detect interaction patterns by using additional semantic information,
some rules, and SNA metrics. The next section deals with different metrics for process mining that are used
during construction of social networks. The case study in Section 5 uses a real world business process to show
how the pattern finding algorithm works. Furthermore, we analyze properties of the actors with some SNA-
metrics. Section 6 concludes the paper and outlines some future work.

2. Related work – towards understanding interaction patterns

The main contribution of this paper is the pattern finding algorithm we introduce in Section 3. It is based
on knowledge from the process mining and the social network analysis (SNA) domains. Recently, the topic of
process mining has been gaining more attention both in practice and research [1,5]. Gartner identifies Business
Process Analysis (BPA) as an important aspect of the next generation of BPM products [2]. Note that BPA
covers aspects neglected by many traditional workflow products (e.g., diagnosis, simulation, etc.). Business
Activity Monitoring (BAM), which can be considered as a synonym to process mining, is named by Gartner
as one of the emerging areas in BPA [2]. The goal of BAM tools is to use data logged by the information sys-
tem to diagnose the operational processes. An example is the ARIS Process Performance Manager (PPM) of
IDS Scheer [3]. ARIS PPM extracts information from audit trails (i.e., information logged during the execu-
tion of cases) and displays this information in a graphical way (e.g., flow times, bottlenecks, utilization, etc.).
Many other vendors offer similar products, e.g., Cognos (NoticeCast), FileNet (Process Analyzer), Hyperion
(Business Performance Management Suite), Tibco (BusinessFactor), HP (Business Process Insight), ILOG
(Jviews), and webMethods (Optimize/Dashboard). These tools show the practical relevance of process mining.
Unfortunately, these tools only focus on measuring performance indicators such as flow time and utilization
and do not at all focus on discovering the process and its organizational context. For example, none of the
tools mentioned actually discovers causal relations between various events or the underlying social network.
Moreover, the focus of these systems is on well-defined processes and they are unable to handle ad-hoc busi-
ness processes. Note that for ad-hoc business processes it is not sufficient to look into performance indicators
such as flow time and utilization, i.e., it is vital to have insight in the actual processes as they unfold, emerge,
and/or change. The basis for process mining are workflow logs. Ref. [4] discusses a general workflow log for-
mat (XML) that should simplify process mining because mining tools should not have to deal with lots of
proprietary log formats. For example, TeamLog [12] is a tool that allows to create XML logs on basis of Cara-
mba’s [11] process information. Caramba is one of the few process-aware collaboration systems with good ad-
hoc process support. TeamLog accesses Caramba’s database and converts its process information to the gen-
eral workflow log format, thus enabling mining tools to analyze processes performed with Caramba. Unfor-
tunately, this workflow log format does not consider all information required to find the patterns that we will
discuss in the remainder of this paper. Therefore, there is a need for proper modifications and enhancements
on this workflow log format. In addition to process mining, the idea behind this paper is tightly connected to
social network analysis. Wasserman and Faust [8] explain that social network analysis (SNA) focuses on the
analysis of relationships among social entities, and on the patterns and implications of these relationships. Our

140 S. Dustdar, T. Hoffmann / Data & Knowledge Engineering 62 (2007) 138–155
overall goal is to find interaction patterns in networks. As our first contribution to this domain, we will look
for three specific patterns originating from the Software Engineering domain, trying to develop rules (partly
based on SNA) and procedures for pattern detection.

In the Software Engineering domain there are some architectural patterns that allow the description of soft-
ware systems (e.g., [10,13]). We take three of them (proxy, broker and master–slave pattern, Fig. 1) use them
as metaphors and introduce them in the domain of business interaction between different parties.

A proxy is used as placeholder for another component (the original), i.e., instead of contacting the original
directly the client sends its request to this placeholder-component. Additionally to forwarding the client’s
request to the original and sending back the response, the proxy does some pre- or post-processing depending
on its type (remote proxy, protection proxy, cache proxy, synchronization proxy, firewall proxy, etc. [10]). For
example, a protection proxy, which is used to protect the original from unauthorized access, checks the client’s
access authorization before it forwards the request to the original. In most proxy types there is a 1:1 relation
between proxy and original (Fig. 1a), i.e., a proxy is a placeholder for exactly one component. But there are
two exceptions, remote proxies and firewall proxies, where a proxy is responsible for multiple originals
(Fig. 1b, details can be found in [10]). As an example in business practice, we might interpret a secretary as
a kind of protection proxy when we focus on incoming requests about meeting schedules. After the secretary
has received requests from other business actors who would like to have a meeting with the boss, he/she con-
tacts the boss (if the requestor ‘‘is allowed’’ to get a meeting date), fixes a date, and informs the requesting
business actor. Another pattern originating from the domain of software architecture is the broker

(Fig. 1c). Although it looks similar to the proxy pattern in Fig. 1b, the idea differs. In contrast to a proxy,
a broker does not perform any pre- or post-processing. Its major goal is to achieve location transparency
of servers/services. A client sends a request to a broker-component which is responsible to locate a server/ser-
vice that can handle the request. Then the broker forwards the request to the appropriate component, receives
its response and delivers the response to the client. To give an example, we can think of a software project,
where one person from the customer’s project team is responsible for answering questions. When this person
receives a request, he has to find and contact the appropriate specialist and sends the answer back to the
requesting person (e.g., a software developer working on the requirements analysis). In the literature further
subcategories of the broker pattern are discussed (e.g., [10]). Another pattern which can be introduced into the
domain of business interaction is the master–slave pattern (Fig. 1d). To answer the request, the master distrib-
utes the tasks to multiple identical components (slaves) and calculates the response for the client using the
slaves’ results. Master–slave patterns are used to achieve fault tolerance, parallel processing or to increase
accuracy. To enable fault tolerance, the master sends the request to multiple identical slaves and waits for
an answer. As long as at least one slave is still working, the client gets an answer for its request. Parallel pro-
cessing is possible when the master splits the task into multiple identical subtasks, each of them processed by
one slave. The master uses all subtasks-results to calculate the response for the client. One example in business
practice to increase accuracy is the creation of a cost analysis for a software project. The boss will contact
C

C

C

C

P O

C

C

C

C

P O

O

O

C

C

C

C

B S

S

S

C

C

C

C

M SL

SL

SL

C
P
O
B
S
M
SL

....

....

....

....

....

....

....

client
proxy
original
broker
server
master
slave

Fig. 1. Proxy (a, b), broker (c) and master–slave patterns (d).

S. Dustdar, T. Hoffmann / Data & Knowledge Engineering 62 (2007) 138–155 141
different experienced software developers to collect different opinions. When he receives the results, he com-
pares them and checks if the difference between the estimated costs is high or low. If it is low, i.e., nearly all
experienced software developers think about the same costs, it is an indicator for the chief that it is not risky to
use this as the basis for an offer.

3. Using additional semantic information and SNA metrics to find interaction patterns

Proxy, master–slave, and broker are three interesting patterns in business interactions. Detecting these pat-
terns in real-world business processes would provide an additional level of understanding about the business
actors’ communication. To allow automatic detection of these patterns, we propose to use combinations of
SNA metrics together with some additional rules. It must be clear that these combinations are indicators
for the patterns, but it might be possible to construct counterexamples, where the proposed combination is
not sufficient to identify the patterns exactly.

First of all, it is important to know that in most cases it would not be possible to detect proxies, brokers,
etc. by taking the whole communication into consideration, because in most cases actors are responsible for
multiple tasks. We need additional semantic information to detect these patterns automatically. This can be
seen in the example communication pattern in Fig. 2. By looking at all communication ties, it is not possible to
determine if actor D is a proxy, a broker, a master or none of them. Or it also might be possible that actor D
(Fig. 2) serves as proxy for F and as master for E and C at the same time. Therefore, we have to use additional
semantic information in the pattern finding process. We need causal information, i.e., knowledge about which
tasks belong to a specific request. As an example, we do not want to use the communication between F and G
for the pattern finding process if it has no causal relation to the request from E to F (Fig. 2). Additionally, we
propose the use of activity categories. For example, if we know that an actor performs an activity which
belongs to the category ‘‘security tasks’’ and we assume that there is a proxy pattern, it would be possible
to check if it is a protection proxy or not. Another helpful information is knowledge about the task–subtask

relation. This information is especially important to identify master–slave patterns for parallel processing,
where a master splits a task into different subtasks, sends them to slaves and uses their results to calculate
the response for a client. Our last proposal for helpful additional semantic information is to store the kind
of request. Fig. 2 shows that it is difficult to determine the roles (broker, etc.) of each actor. Information about
the kind of request (e.g., ‘‘request for meeting date’’) would help to identify these patterns/roles. For example,
if A and B (Fig. 2) send requests of different kinds to actor D, it is unlikely that D is a proxy, but it is possible
that it is a broker.

Assuming that this additional semantic information is available during the process of pattern finding, we
propose rules that would help to find these patterns (proxy, master–slave, broker). We have to distinguish
between a common rule valid for proxy, master–slave and broker-patterns, and specific rules for each of them.
We assume that only those communication ties are considered, which have a causal relation to the requests
(this filtering must be part of the pattern finding process). When the pattern for a group of actors is checked,
other ties (with no causal relation to the requests) are skipped. We use Java syntax/code to illustrate these rules
and the pattern finding algorithm.

Each rule is defined in a separate class (Fig. 3), inheriting from a the base class PatternRule which imple-
ments common behavior and the method signature. The check-method is overloaded in the classes Common-

Rule, ProxyRule, MasterRule and BrokerRule, and it is used to validate the rule against a given social network
A

B
C

D F

E

G

Fig. 2. Communication between multiple actors.

+PatternRule (SN : SocialNetwork, candidate : Actor)
+check() : bool

PatternRule

CommonRule ProxyRule MasterRule BrokerRule

Fig. 3. Classes used to formulate the pattern rules.

142 S. Dustdar, T. Hoffmann / Data & Knowledge Engineering 62 (2007) 138–155
and a proxy/master/broker-candidate. Before we explain the pattern finding algorithm, we give more detailed
information about each rule.

3.1. Listing 1. Common rule

This rule (Listing 1) determines that proxies as well as masters or brokers must have a minimum outdegree
of 2, because there is at least one partner (original, server, or slave) who gets a request from actor x, and there
is at least one client receiving a response. The lower limit of actor x 0 indegree is 2, because he receives at least
one request from a client and one response from a partner. The distance between clients and the candidate
(actor x) has to be 1, as well as the distance between actor x and all partners. If we assume that partners

S. Dustdar, T. Hoffmann / Data & Knowledge Engineering 62 (2007) 138–155 143
perform the task of interest independently, i.e., they do not need to contact other parties for task execution,
each partner’s in- and out-degree is equal to the number of ties from the candidate to the partner, because the
partner’s communication is limited to receiving and answering the candidate’s request. Although it is not
reflected in the common rule, we claim that actor x has a high degree centrality and high prestige when there
is a large number of clients, because each additional client adds a new inbound and a new outbound tie to
actor x. Next, we formulate the rule that must hold for proxies.
3.2. Listing 2. Proxy-specific rule

Listing 2 contains the ProxyRule’s check method that implements the proxy-specific rule validation. For a
proxy, all client requests must be of the same kind. Additionally, it is allowed that a proxy does some prepro-
cessing before he contacts a partner. But if so, the preprocessing task must not be a splitting task (divides a
request into multiple tasks that are forwarded to the partners). Analogous to that, an optional postprocessing
task is not allowed to combine different subresults to a final response. The subconditions in the proxy-specific
rule concerning pre- and post-processing tasks are used to distinguish between proxies and masters.
3.3. Listing 3. Master-specific rule

As well as for proxies, masters (Listing 3) require that all requests are of the same kind. Preprocessing of a
client request is only allowed if the preprocessing task is a splitting task. Analogous to that, the category of an
optional postprocessing task has to be ‘‘calculating_response_from_subresults’’. In case of master–slave pat-
terns for fault tolerance or increased accuracy, the client request is equal to the request sent by the master to all
of its slaves. Otherwise, in case of master–slave patterns for parallel processing, there is a task–subtask relation
between the client request and the master’s requests directed to its slaves. Another subcondition in the master-
specific rule states that there are at least two slaves, because a single slave would not be able to implement fault
tolerance, increased accuracy, or parallel processing, which are the main applications of a master–slave pat-
tern. Finally, if we assume that slaves perform the task of interest independently, i.e., they do not need to con-
tact other parties for task execution, the slaves are structurally equivalent. This is a logical consequence
because in this case all slaves only have ties from and to the master.

144 S. Dustdar, T. Hoffmann / Data & Knowledge Engineering 62 (2007) 138–155

S. Dustdar, T. Hoffmann / Data & Knowledge Engineering 62 (2007) 138–155 145
3.4. Listing 4. Broker-specific rule

If a candidate acts as a broker (Listing 4), we assume that client requests of the same kind are forwarded to
the same server. That implies that a broker can receive requests of different types. In contrast to proxies or
masters, the broker pattern allows neither pre- nor post-processing.

As well as for the rules, we use Java code to describe the pattern finding algorithm. Fig. 4 shows the classes
used for the implementation: SocialNetwork, ActivityGroup, Actor, Activity and Relation. Table 1 contains
more detailed information about these classes and their methods.

We propose a sequence of actions for the pattern finding process, that enables the detection of proxy,
master–slave, and broker patterns (Listing 5). The input for this algorithm is a workflow log. Based on this
+indegree(p_actor : Actor) : int
+outdegree(p_actor : Actor) : int
+distance(actor1 : Actor, actor2 : Actor) : int
+weight(actor1 : Actor, actor2 : Actor) : int
+get_clients(candidate : Actor) : Actor[]
+get_partners(candidate : Actor) : Actor[]
+detect_pbm_candidates() : Actor[]
+get_activity_group() : ActivityGroup
+get_actortask(p_actor : Actor) : Activity
+get_actortask(p_actor : Actor, p_instructor : Actor) : Activity
+get_actor_preprocessingtask(p_actor : Actor) : Activity
+get_actor_postprocessingtask(p_actor : Actor) : Activity
+is_structural_equivalent(actor1 : Actor, actor2 : Actor) : bool
+get_contacted_partner(client : Actor) : Actor

-c_list_of_actors : Actor[]
-c_relations_between_actors : Relation[]

SocialNetwork

+skip_ties_rq_group(rqgroup : Activity[]) : SocialNetwork
+skip_ties(candidate : Actor) : SocialNetwork
+get_rq_groups() : Vector of Activity[]
+calc_SN_based_on_handoverofwork_directsuccession() : SocialNetwork
+is_task_subtaskrelation(activity1 : Activity, activity2 : Activity) : bool

ActivityGroup

+does_preprocessing() : bool
+does_postprocessing() : bool

+name : string
Actor

+is_performed_independently() : bool
+is_request() : bool
+is_identical(p_activity : Activity) : bool

+kind : string
+category : string

Activity
+source_actor : Actor
+target_actor : Actor
+relation_typ : string

Relation1

n

1

n

1

1

1n

Fig. 4. Classes used to implement the pattern finding algorithm, apart from the pattern rule classes.

Table 1
Class/method description

Class/method Description

Actor Process participant
does_preprocessing Checks if the actor does some kind of preprocessing before he performs his activities
does_postprocessing Checks if the actor does some kind of postprocessing before he performs his activities

Activity Activity (one step in the process)
Kind Stores the kind of request (e.g., ‘‘request for meeting date’’)
Category Stores the activity’s category (e.g., ‘‘security task’’)
is_performed_independently Checks if the activity is performed independently, i.e., the performer does not need results

from others to finish activity execution
is_request Checks if the activity is a request. A request is an activity that causes other process

participants to do something, e.g., ‘‘instruct to create cost analysis’’
is_identical Checks if two activities are ‘‘identical’’. In the algorithm this is used to compare the client’s

request with the activities ‘‘sent’’ from the candidate to the partners

Relation Represents the relation between actors in the social network
source_actor, target_actor Actors
relation_typ Type of relation, e.g., ‘‘handover of work – only direct succession’’

ActivityGroup Group of activities (process or part of a process). This datastructure is generated by
interpreting the contents of workflow logs.

get_rq_groups Returns groups of requests in the network. All requests within a group are of the same kind.
skip_ties Removes all ties from the network of activities that are not causally related to any of the

clients’ requests. Returns the resulting subnet
skip_ties_rq_group Removes all ties from the network that are not causally related to the requests within the

given request group. Returns the resulting subnet
calc_SN_based_on_ handoverofwork_
directsuccession

Creates a social network based on the ‘‘handover-of-work’’ metric (considering only direct
succession).

is_task_subtaskrelation Checks if there is a task–subtask relation between two activities

SocialNetwork Social network focusing on the relation between actors
indegree Indegree of a given actor in the network
outdegree Outdegree of a given actor in the network
distance Distance between two actors in the network
weight Number of communication ties between two actors
get_clients Actors serving as clients that send requests to a given candidate
get_partners Actors that are contacted by the candidate (to generate an answer for the client requests)
detect_pbm_candidates Returns all actors that have inbound and outbound communication to the same actors

(clients). These persons are potential candidates for a proxy, master or broker
get_activity_group Activity group that was used to create this social network
get_actortask signature 1 (one actor as parameter): returns the task of the given actor. If the actor performs

more than one task in the social network, the ‘‘earliest’’ task is return. This method should
be used only if the situation assures that the actor performs only one task in this social
network
signature 2 (two actors as parameter): returns the task of an actor assigned by another actor

get_actor_preprocessingtask Returns the preprocessing-activity an actor performs before he starts execution of his
activities

get_actor_postprocessingtask Returns the postprocessing-activity an actor performs after he has executed his activities
is_structural_equivalent Determines if two actors are structurally equivalent in this social network
get_contacted_partner Returns the partner that is contacted by the candidate, caused by a request of the given client

actor

146 S. Dustdar, T. Hoffmann / Data & Knowledge Engineering 62 (2007) 138–155
log a process flow must be generated, where nodes are actors and the ties between them represent handover-
of-works, i.e., its structure is similar to a social network based on handover-of-work, but there is still infor-
mation for each single communication tie available. First, the process must detect all nodes that have
inbound and outbound communication to the same node (step number 1 in Listing 5). These nodes are can-
didates for proxies, masters, or brokers. After this identification task each candidate has to be processed
separately (step 2). Before we can do further checks, it is necessary to find all ties that are caused by the

S. Dustdar, T. Hoffmann / Data & Knowledge Engineering 62 (2007) 138–155 147
client requests to this candidate actor, and all other ties must be skipped (step 3). When this filtering-process
is finished, the pattern finding process has to test the common rule (step 4), which must hold for each of the
patterns. If this check fails, the candidate actor is neither a proxy nor a master or a broker, and therefore,
the process can look for the next candidate actor. Next, if the common rule is fulfilled, the algorithm tries to
find out if the candidate actor is a proxy or a master. Proxy and master patterns require that only requests
of the same kind are considered. Because in networks a candidate can, for example, act as proxy and mas-
ter, the algorithm looks for requests of the same kind and builds appropriate request groups (step 5). Each
request group is considered separately (step 6). Ties caused by requests outside of the request group are
eliminated (step 7). Hence, the proposed algorithm is able to identify proxies (step 8) and masters (step
10) also if they do not act purely as proxy or master. For example, if a person acts as proxy for one person
and, additionally to that, as master in another context, the algorithm identifies both roles. After checking
for proxy and master, the next step is to check whether the candidate acts as broker (step 13). In contrast to
proxies and masters, where groups of similar requests are handled separately (step 6), the algorithm is only
able to identify a broker role if the candidate acts purely as broker. Otherwise (e.g., if the candidate does
some preprocessing of certain requests which is not allowed in a broker pattern), the pattern is not recog-
nized. The algorithm maintains (steps 9, 11, 14) and prints the list pbm_list, which holds the actual roles of
each candidate.
3.5. Listing 5. Pattern finding algorithm

148 S. Dustdar, T. Hoffmann / Data & Knowledge Engineering 62 (2007) 138–155
4. Metrics for process mining

Social network analysis is based on social network data, mostly represented by sociomatrices (matrix) or
sociograms (graph). During process mining, this information is collected from workflow logs. Similar to
the analysis of social networks (a lot of SNA-metrics exist), different metrics can be used to construct such
network data from the underlying workflow log information. The metric that is chosen determines the seman-
tic of the constructed network data. Van der Aalst and Song developed some metrics [9] which can be used to
establish relationships between individuals from workflow logs. The mining results are meaningful sociograms
which can be further analyzed by means of social network analysis. Fig. 5 gives an overview about the mining
metrics developed by Van der Aalst and Song.

In [9] they distinguish between metrics based on (possible) causality, metrics based on joint cases, metrics
based on joint activities, and metrics based on special event types. Each of these metrics results in data struc-
tures (e.g., sociogram) that can be analyzed using existing SNA tools. The metric based on (possible) causality

is based on the idea that performers are related if there is a causal relation through the passing of work from
one performer to another. Subcategories are handover-of-work and subcontracting. Van der Aalst and Song
define that there is a handover of work from individual i to individual j if there are two subsequent activities
where the first is completed by i and the second by j. The idea of subcontracting is that the workflow log is
analyzed with regard to subcontracted work, i.e., mining considers only activities of a person j that are per-
formed between two activities of another person i. For both handover-of-work and subcontracting refine-
ments are possible. First, the degree of causality can be taken into account (the length of the handover), so
that not only direct succession is considered. Another refinement is that multiple transfers within a case
can be ignored or not. The third refinement mentioned by Van der Aalst and Song deals with the possibility
that only real causal dependencies are taken into account (this refinement requires a process model). Because
of these three refinements there are eight variants for both handover-of-work-metrics and subcontracting-met-
rics. If metrics based on joint cases are used, causal dependencies are ignored. Instead, it is counted how fre-
quently two individuals are performing activities for the same case. This may be an indicator of a stronger
relation than only ‘‘working together’’. The last category of metrics proposed by Van der Aalst and Song
are metrics based on special event types. Workflow logs typically contain event-information for an activity

metrics based on
(possible) causality

metrics based on
joint cases

metrics based on
joint activities

metrics based on
special event types

process mining
metrics

handover-of-work subcontracting

refinements:
- differentiate with respect to degree of causality
- ignore multiple transfers within a case or not
- consider arbitrary transfers or not

Fig. 5. Mining metrics developed by Van der Aalst and Song [9].

S. Dustdar, T. Hoffmann / Data & Knowledge Engineering 62 (2007) 138–155 149
(when the activity was started, when it was delegated to another person, when it was completed, etc.). The idea
of this type of metrics is to consider only special event types like ‘‘delegation’’. For example, if a person fre-
quently delegates work to another person but not vice versa, there is probably a hierarchical relation between
these persons. The idea of metrics based on joint activities is to count the number of times a person executes
specific activities. In this case, the result of process mining is a performer-by-activity matrix, which contains
‘‘profiles’’ of individuals (how frequently they perform specific activities). Then these profiles can be analyzed
further by measuring the ‘‘distance’’ between the profiles (to quantify how ‘‘equal’’ the work of different per-
formers is). Van der Aalst and Song propose distance-metrics like the Minkowski-distance or Hamming-dis-
tance to measure the distance between profiles.

5. Case study: mining interaction patterns in Caramba

Our case study’s basis is a real-world example process for installing new branches (two banks). Firstly, we
will look for interaction patterns in the intra-organizational communication. Then some SNA-metrics from
Section 3 are evaluated using Agna.1

The idea for our case-study example (Fig. 6) comes from [12]. We extend the example by adding commu-
nication between our example organization (further called ‘‘J&I’’) to external parties (customer, supplier).
Additionally, the complexity of J&I’s internal communication is increased to enable meaningful SNA and
to present different kinds of patterns. The core idea of the example is that two banks form an alliance, whose
purpose is to build new branches at lower costs. This can be achieved because hardware/software or real estate
are cheaper if a larger amount is ordered. Therefore, the customers instruct J&I together to save money. J&I is
responsible to fulfill all common and customer-specific requirements.

5.1. Process description

This example involves different parties (Table 2): a customer alliance, two suppliers (estate agent and hard-
ware/software-supplier) and nine employees of J&I, who have to realize the project.
1 See http://www.geocities.com/imbenta/agna/.

http://www.geocities.com/imbenta/agna/

Table 2
Involved parties

Abbreviation Full name More information

jb Joe Baker Org. department J&I
mr Martin Roth IT (technical engineer) J&I
ks Kurt Schmitt IT (technical engineer) J&I
hk Hans Koller IT (technical engineer) J&I
fb Frank Baumann IT (technical engineer) J&I
ml Monika Lachs Sales department J&I
pf Peter Fogosch Sales department J&I
sf Susan Francis IT (trainee) J&I
lm Lance Manto IT (trainee) J&I

Simpson/Trust alliance Customer
ImmoConsult Estate agent (supplier)
D&O Hardware/software supplier

jb:Person

ImmoConsult (estate
agent): Supplier D&O (HWSW): SupplierSimpson/Trust alliance:Customer

ml:Person pf:Person

mr:Person

ks:Person hk:Person

fb:Person sf:Person

lm:Person

1 2 3

4

5
6

7

8 9

10

11 1213 14

15

16 17

1819

20 21 22

23

24 25

26

27 28

29

30
31

32 33

34

35

36

37

38

39

40

41

43
44 45

46

The numbering determines the chronological order

42

Process description

Fig. 6. Example process.

150 S. Dustdar, T. Hoffmann / Data & Knowledge Engineering 62 (2007) 138–155
The customer alliance sends a request for an offer (1) to jb (project leader). This request contains a short
description of the requirements for branches that must be ‘‘built’’. jb’s requests more detailed information
about the requirements (2) because he is not able to send an offer without that. For example, jb needs infor-
mation about the preferred location, size, amount, and location of workstations in the branches, operating
systems, applications, expectations about the project’s time plan, etc. The customer alliance answers with an

S. Dustdar, T. Hoffmann / Data & Knowledge Engineering 62 (2007) 138–155 151
enhanced requirements document (3), that contains customer-independent (valid for Simpson and Trust) as
well as customer dependent requirements. jb forwards the requirements document to mr (4) who should
check it for consistency/discrepancies/open issues. mr collects questions and also requests comments from
ks (5, 6). mr adds ks’ answers to the list of questions about requirements and sends it back to jb (7),
who forwards the questions to the customer alliance (8). After jb receives the modified requirements docu-
ment (9), he instructs mr to create a cost analysis (10) which will form the basis for a binding offer. mr del-
egates (11, 12) this task to ks (analysis of common and Trust-specific requirements) and hk (Simpson-
specific requirements). They send the requested analysis back (13, 14) to mr who forwards it to the project
leader (jb) (15) after he has created a common cost analysis document. Because jb needs an offer which con-
siders the costs and an extra charge (for profit), he sends the cost analysis to ml (16) and expects a complete
offer. ml does not create the offer by herself. Instead of that, she removes some technical information from
the cost analysis and delegates the task to pf (17). After he finished this task, pf sends the offer back to ml
(18), who adapts the document formatting and delivers the offer to jb (19). jb signs the offer and forwards it
to the customer alliance. This alliance has to check (20) if it accepts the offer or if it will contact another
organization. In our case, both banks of the alliance accept the offer and send an order (21) to the project
leader jb. This order serves as contract between the customer and J&I. Just for information, jb responds
with an order confirmation (22).

One of the next steps required to ‘‘build’’ new branches is to find appropriate real estates. Therefore, jb

instructs pf (23) to contact ImmoConsult (24), J&I’s default estate agent. This results (25) in two different
contracts for the two banks, caused by different requirements: a contract of sale for Simpson Bank and a
hire contract for Trust Bank. The next step is to order the hardware/software that is needed to do the IT-
installations in both new branches. This is also in pf’s responsibility (26–28). Because a technical installation
plan for the branch installations is still missing, jb instructs mr to create such a plan (29). mr delegates this
task to ks (plan for Trust bank) and hk (plan for Simpson bank) who send the requested plan back to mr

(and therefore, indirectly to jb) (30–34). After a few days, D&O delivers the ordered hardware/software to
fb (35). To prepare the workstations for the branches, fb expects the trainees (sf, lm) to do some pre-instal-
lations-tasks (installing the operations system, default applications, etc.) which will save time on the scenes
of action, the branches (36, 37). After the pre-installation is finished, fb informs the project leader jb (38).
And therefore, jb instructs fb to initiate the IT-installation in both new branches (39). fb fulfils the instruc-
tion together with ks and kh (40, 41) and, after completion, informs the project leader (42). The project
leader tells the customer alliance that installation is complete and that they can do their inspection tests
(43). After successful tests the customer alliance accepts the work by sending an acceptance confirmation
back to the jb (44). Finally, the project leader jb creates an invoice and the customer initiates the corre-
sponding payment (45, 46).

5.2. Locating interaction patterns

The first step in our case study is to locate interaction patterns in the intra-organizational interaction, i.e.,
we exclude the ‘‘external actors’’ (customer, suppliers) and consider only the interaction between employees of
J&I. Hence, we do not consider the corresponding communication ties (1–3, 8, 9, 20–22, 24, 25, 27, 28, 43–46)
(Fig. 6). We use the proposed rules and the pattern finding algorithm from Section 3 to find the patterns that
we have introduced into the business interaction domain. First of all, the algorithm looks for persons who
could possibly act as proxy, master, or broker (identifying candidates, Listing 5, step 1). The resulting set
of candidate actors may be quite large, depending on the structure of the social network of interest. In our
example, the candidate list will contain at least the actors ml and mr. Let us assume that the algorithm con-
siders candidate ml first.

Fig. 7a contains the social network area of interest around candidate actor ml. To be able to test the rules
introduced in Section 3, the pattern finding algorithm removes all ties that are not causally related to the
requests (Listing 5, step 3). The next step is to test the common rule, which must hold if ml acts as proxy, mas-
ter, or broker (step 4). This is the case, because of the following facts: ml’s outdegree = 2, ml’s indegree = 2,
actor distance between client (jb) and ml = 1, actor distance between ml and partner (pf) = 1. Because pf per-
forms its task 17 independently (i.e., without contacting other parties), he must have an indegree of 1. Hence,

jb:Person ml:Person

mr:Person

fb:Person

4 7 10 15

16 17

1819

23

26
29 34

38
39 42

candidate for proxy,
master or slave

pf:Person

jb:Person ml:Person

16 17

1819 pf:Person

request of interest

Fig. 7. (a) Network area of interest around candidate actor ml, (b) after all ties have been removed that are not causally related to request
16.

152 S. Dustdar, T. Hoffmann / Data & Knowledge Engineering 62 (2007) 138–155
the common rule holds. The next step is to verify if ml is a proxy or a master. To reach this, the algorithm
summarizes requests of the same kind into groups (step 5) and checks each request group separately (step
6). In case of ml, this is trivial, because there is only on request (Fig. 7a, 16), and therefore, step 7 does not
change the subnet. With these steps, the algorithm has created a subnet (Fig. 7b), which will be used to verify
the proxy-specific rules (step 8) and the master-specific rules (step 10). ml acts as proxy, because all requests are
of the same kind (trivial, because there is only one request), the preprocessing tasks (‘‘removing some technical
information from cost analysis’’) category is not ‘‘splitting task’’, and the postprocessing task (‘‘adapting doc-
ument formatting’’) does not merge different responses from partners to generate the response for jb. The mas-
ter check is negative, because there is only one partner, the pre- and post-processing tasks category does not
match the master requirements, the number of partners is smaller than 2, etc. The last step in the algorithm is
to verify if ml acts as broker (step 13). But pre- and post-processing is not allowed for a broker. Hence, the
algorithm classifies ml as proxy and continues with the next candidate actor (mr, step 2).

Again, all ties that are not causally related to the requests (4, 10, 29) are removed from the social network
(Fig. 8b). Then, the common rule test (step 4) is performed: mr’s indegree = 8, outdegree = 8, distance
between the client (jb) and mr = 1, distance between mr and the partners (ks, hk) = 1, in-/outdegrees of ks

(3) and hk (2) agree with the requirements of the common rule (both ks and hk perform their tasks indepen-
dently). After that, the requests are grouped so that the requests within a group are of the same kind. In our
jb:Person ml:Person

mr:Person

ks:Person hk:Person

fb:Person

4

5 6

7 10

11 1213 14

15

16

19

29

30
31

32 33

34

38

39

40

41

42

candidate for proxy,
master or slave

request
of interest

jb:Person

mr:Person

ks:Person

10

11
1213 14

15

hk:Person

jb:Person

4 7 10 15 29 34

5
6 11 1213 14

30
31

32 33

ks:Person hk:Person

mr:Person

Fig. 8. (a) Network area of interest around candidate actor mr, (b) after all ties have been removed that are not causally related to any
request, (c) considers only one kind of requests.

S. Dustdar, T. Hoffmann / Data & Knowledge Engineering 62 (2007) 138–155 153
case, all request kinds (4, 10, 29) are different and therefore, each request is handled separately in the pattern
finding process (steps 5 and 6). In this case study, we will neglect the requests 4 and 29 and focus on request 10.
The algorithm removes all ties from the subnetwork (Fig. 8b) that are not causally related to request 10 (step
7). The resulting subnet, which is used to verify the proxy- and master-specific rules, is shown in Fig. 8c. mr’s
preprocessing task is of category ‘‘splitting task’’, because it splits the request from jb into 2 subrequests
(‘‘analysis of common and Trust-specific requirements’’, ‘‘analysis of Simpson-specific requirements’’). mr

merges their answers (postprocessing) to generate the response for jb. Because of this pre- and post-processing,
the proxy-check (step 8) fails. There is a task–subtask-relation between the requests from jb to mr and the
subrequests sent from mr to his partners. Furthermore, there is more than one partner (ks and hk). Hence,
the algorithm classifies mr as master. Finally, the pattern finding algorithm tests if mr acts also as broker.
But that’s not the case, because in the rules we propose a broker is not allowed to do any pre- or post-
processing.

5.3. Applying SNA metrics

The second step in our case study is to apply some SNA metrics to our example workcase. For this reason,
we perform the workcase in Caramba and use TeamLog [12] to generate an XML workflow log. Then the
mining tool MiSoN [9] is used to create a social network, based on the handover-of-work metric, which is used
as input for the SNA-tool Agna. Fig. 9 shows the social network that results from performing the example
workcase.

However, the workflow log generated by TeamLog must be modified in some way before it can be used for
further processing (MiSoN). There are two reasons for that. Firstly, TeamLog generates additional start- and
end-loglines for each workcase, which falsify the result of MiSoN. Therefore, these loglines must be removed
manually from the XML workflow log. The second problem is the asynchronous structure of our example
workcase. Because we focus only on intra-organizational interactions, 34 and 36 are neighbors in the XML
workflow log. However, there is no direct causal relation between these activities, because 36 is initiated by
an asynchronous external event (reply from hardware/software supplier). Without proper manual modifica-
tions, the resulting social network based on handover-of-work would assume a tie between mr and fb, because
mining tools still have problems to mine such asynchronous situations.

Each communication tie has a value indicating the intensity of communication between the corresponding
actors. For simplicity, we removed these values from Fig. 9. Agna can be used to analyze different aspects of
this social network: number of nodes and edges, diameter, geodesics between pairs of actors, nodal degrees
(indegree, outdegree), centrality (e.g., Bavelas-Leavitt, closeness, betweenness), etc. In our example, Agna
reports a diameter of 4 and a density of 0.22 (=number of ties/number of possible ties = 16/72), i.e., that
the largest distance between two actors is 4 and that about a fifth of possible communication ties actually
appear in this network. Additionally, we used Agna to check centrality metrics to determine the ‘‘most cen-
tral’’ actors in this network. The result was that Joe Baker is the actor with the highest centrality (Bavelas-Lea-
vitt index = 6.92) followed by Martin Roth and Frank Baumann (both 5.63). The actor with the lowest
Fig. 9. Social network visualized with Agna.

154 S. Dustdar, T. Hoffmann / Data & Knowledge Engineering 62 (2007) 138–155
centrality is Peter Fogosch (3.6). Joe Baker is the most central actor because he has the most outgoing com-
munication ties.

Finally, we conclude our case study by summarizing its main ideas. Firstly, we explained a relatively com-
plex real world example process. In a next step, we tried to locate the interaction patterns that we have intro-
duced from the software architecture domain in the intra-organizational interaction of our example process by
using the algorithm we proposed in Section 3. At the end, we applied some SNA metrics to our example
workcase.

6. Conclusion

The underlying assumption of this paper is that important knowledge can be extracted from social net-
works. Our intention is to provide an organization’s management with information that helps to improve
the organization’s competitiveness. We introduced interaction patterns (proxy, master–slave, broker) from
the software architecture domain in the domain of business processes, because their appearance in an
organization’s social network provides information about the role of individuals. Our core contribution
includes an algorithm capable of detecting these patterns (proposed in Section 3). We presented the pat-
tern finding algorithm based on rules and we emphasize the need of additional semantic information in a
business process (causal information about requests, activity categories, task–subtask relations, informa-
tion about the kind of request). To show how our algorithm works, we applied it to a real world example
in our case study. We believe that an organization’s management can benefit from social network analysis
as well as from identifying interaction patterns to optimize the organizations effectiveness. Teams can be
structured more efficiently and effectively if the management knows how the persons work and collaborate.
For example, if two persons shall work together but both of them act as proxy, this may cause significant
problems in the process. Our algorithm contributes to that goal, allowing to detect these problems. Addi-
tionally, the information gathered by the pattern finding algorithm can be used as basis for process
optimizations.

Our future work includes applying our algorithm for analyzing the relevance of proxy, master–slave, or
broker patterns in ‘‘networks of Web services’’, i.e., if the patterns occur during Web service communication
[7].

References

[1] W.M.P. van der Aalst, A.J.M.M. Weijters (Eds.), Process Mining, Special Issue of Computers in Industry, 53(3), Elsevier Science
Publishers, Amsterdam, 2004.

[2] Gartner. Gartner’s Application Development and Maintenance Research Note M-16-8153, The BPA Market Catches another Major
Updraft, 2002. Available from: <http://www.gartner.com>.

[3] IDS Scheer. ARIS Process Performance Manager (ARIS PPM), 2002. Available from: <http://www.ids-scheer.com>.
[4] B.F. van Dongen, W.M.P. van der Aalst, EMiT: A Process Mining Tool, in: J. Cortadella, W. Reisig (Eds.), Application and Theory

of Petri Nets 2004, Lecture Notes in Computer Science, vol. 3099, Springer-Verlag, Berlin, 2004, pp. 454–463.
[5] W.M.P. van der Aalst, B.F. von Dongen, J. Herbst, L. Maruster, G. Schimm, A.J.M.M. Weijters, Workflow mining: a survey of

issues and approaches, Data and Knowledge Engineering 47 (2) (2003) 237–267.
[6] W.M.P. van der Aalst, A.J.M.M. Weijters, Process mining: a research agenda, Computers in Industry Journal 53 (3) (2004) 231–

244.
[7] S. Dustdar, R. Gombotz, Discovering web service workflows using web services interaction mining, International Journal of Business

Process Integration and Management (IJBPIM), forthcoming.
[8] S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications, Cambridge University Press, Cambridge, 1994.
[9] W.M.P. van der Aalst, Minseok Song, Mining social networks: uncovering interaction patterns in business processes, in: International

Conference on Business Process Management, 2004.
[10] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, Pattern-Oriented Software Architecture – A system of patterns, John Wiley

& Sons, 1996.
[11] S. Dustdar, Caramba – a process-aware collaboration system supporting ad hoc, Distributed and Parallel Databases 15 (1) (2004) 45–

66.
[12] S. Dustdar, T. Hoffmann, W.M.P. van der Aalst, Mining of ad-hoc business processes with TeamLog, Data and Knowledge

Engineering 55 (2) (2005) 129–158.
[13] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: elements of reusable object-oriented software, Addisson-Wesley,

1995.

http://www.gartner.com
http://www.ids-scheer.com

S. Dustdar, T. Hoffmann / Data & Knowledge Engineering 62 (2007) 138–155 155
Schahram Dustdar is Full Professor at the Distributed Systems Group, Information Systems Institute, Vienna
University of Technology (TU Wien) where he is director of the Vita Lab. He is also an Honorary Professor of
Information Systems at the Department of Computing Science at the University of Groningen (RuG), The
Netherlands. He co-authored more than 120 publications in journals, conferences and book chapters. More
information can be found at: www.infosys.tuwien.ac.at/Staff/sd.

Thomas Hoffmann graduated at the Distributed Systems Group, Vienna University of Technology. His research

interests include process mining and Web services.

http://www.infosys.tuwien.ac.at/Staff/sd

	Interaction pattern detection in process oriented information systems
	Introduction
	Related work - towards understanding interaction patterns
	Using additional semantic information and SNA metrics to find interaction patterns
	Listing 1. Common rule
	Listing 2. Proxy-specific rule
	Listing 3. Master-specific rule
	Listing 4. Broker-specific rule
	Listing 5. Pattern finding algorithm

	Metrics for process mining
	Case study: mining interaction patterns in Caramba
	Process description
	Locating interaction patterns
	Applying SNA metrics

	Conclusion
	References

