
Supporting Cloud Service Operation
Management for Elasticity

Georgiana Copil(B), Hong-Linh Truong, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology, Vienna, Austria
{e.copil,truong,dustdar}@dsg.tuwien.ac.at

Abstract. Complex cloud services rely on various IaaS, PaaS, and SaaS
cloud offerings. Fast (re)deployment and testing cycles, and the rapid-
ity of changes of various dependent infrastructures and services, imply a
need for continuous adaptation. Although software-based elasticity con-
trol solutions can automate various decisions through intelligent decision-
making processes, in many cases, such adaptation requires interactions
among different cloud service provider employees and among different
providers. However, decisions from stakeholders and elasticity software
controllers should be seamlessly integrated.

In this paper, we analyze the needs of service providers and the possi-
ble interactions in elasticity operations management that should be sup-
ported. We focus on interactions between service provider employees and
elasticity controllers, and propose novel interaction protocols consider-
ing various organization roles and their concerns from the elasticity con-
trol point of view. We introduce the elasticity Operations Management
Platform (eOMP) which supports seamless interactions among service
provider employees and software controllers. eOMP provides elasticity
directives to enable notifications for complex elasticity issues to be solved
by service provider employees, and the necessary mechanisms for manag-
ing cloud service elasticity. Our experiments show that service provider
employees can easily interact with elasticity controllers, and, according
to their responsibilities, take part in the elasticity control to address
issues which may arise at runtime for complex software services.

1 Introduction

A service deployed in the cloud can make use of various resources and services
offered by cloud providers, and can be very dynamic at run-time. The cloud is
one of the most dynamic environments: providers can change their cost schemas,
and the offered service characteristics, from one day to another. Although in this
environment automated controllers are necessary, given this high dynamism, it
might be necessary for service stakeholders to re-examine the desired behavior
of a cloud service, and their interactions with other stakeholders (e.g., cloud
providers, or data providers). For instance, whenever the load of the cloud ser-
vice dramatically changes, the normal “safety requirements” (e.g., do not exceed

This work was supported by the European Commission in terms of the CELAR FP7 project
(FP7-ICT-2011-8 #317790).

c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 123–138, 2015.
DOI: 10.1007/978-3-662-48616-0 8

124 G. Copil et al.

a specific cost value) might not hold. For these situations, service providers have
employed analysts to oversee the control process, and detect when such a case
is encountered by a controller. A much better solution would be that the con-
troller itself notifies the responsible person with the encountered situation (e.g.,
unexpected behavior or service health issues). In such situations, the employ-
ees responsible for the detected cases, once notified, should be able to easily
interact with the controller to solve the detected issues. This type of “human-in-
the-loop” based control not only improves the runtime elasticity customization
capabilities, but also empowers service providers with more control over their
services and automated elasticity controllers. Thus, for obtaining service elastic-
ity at runtime, the service provider needs this kind of support in its operation
phase (i.e., from service management lifecycle), in order to carry out the ser-
vice operation processes in the cloud environment. Although currently several
solutions provide elasticity control of cloud services (e.g., [1,2]), service provider
employees are not included in the elasticity control process.

For addressing the challenges above, in this paper we propose adding roles
(i.e., service provider employees) as first class entities in cloud service elasticity
control loops. Based on the roles, we define necessary interaction protocols for
managing service elasticity operation phase. We focus on interactions between
roles and elasticity controllers, but we also support simple interaction among
employees, for notifying each other of updates or for delegating responsibility for
incidents. We extend SYBL [3], a language for expressing elasticity requirements,
to support roles and role-based communication between stakeholders. Based on
this, we develop an elasticity Operations Management Platform (eOMP) for
cloud services, and we validate its usefulness showing various events encoun-
tered for a complex service. eOMP can adapt to various organization structures,
and enables service provider employees to interact easily with the elasticity con-
troller, for obtaining a more complex elasticity control. These interactions are
real-time, reason for which great care needs to be given to the controller, which
should be able to perform normally without human intervention. eOMPs sup-
ports managing unexpected situations, by facilitating the collaboration between
elasticity controllers and service employees, identifying various types of events
occurring during operation phase, and providing mechanisms for solving them.

The paper is organized as follows: Sect. 2 presents the motivation of our
work. Section 3 discusses the interactions and roles necessary for elasticity oper-
ations. Section 4 describes the design of our platform and the interactions sur-
rounding which the platform is designed. Section 5 presents eOMP case studies,
Sect. 6 describes related work, and Sect. 7 concludes the paper and outlines our
future work.

2 Motivation

For managing cloud services, a service provider needs to prepare its employees
for issues (e.g., errors appearing at system, application or infrastructure level, or
change in cloud provider offerings) that could appear in cloud environments, and
to adapt their internal processes. Moreover, given cloud environment’s dynamism,

Supporting Cloud Service Operation Management for Elasticity 125

Fig. 1. Motivating scenario

it might be necessary to constantly analyze the service at runtime, to ensure that
the service customers receive the expected quality of service. For this, it would
be necessary to use an automated elasticity controller (e.g., rSYBL [4]), rapidly
reacting to environment changes. The elasticity controller can release from the
employees responsibilities, but might cause change in other responsibilities, by
including the elasticity controller in the service operation management. Figure 1
shows a complex environment ranging from IoT-specific resources (i.e., sensors,
actuators) up to the cloud environment, where information gathered by sensors
is stored and processed. In cloud infrastructures, we consider a complex cloud
service using various types of software (e.g., NoSQL databases, RabbitMQ),
processing data coming from sensors and exposing it to various service customers
(e.g., fire department, or building management application). In this paper, we
consider cloud service elasticity as being controlled at multiple levels of abstrac-
tion, following the cloud service model presented in [4], where the cloud service
is composed of units (i.e., elementary parts of the service), which can be grouped
into topologies (i.e., semantically connected units).

Focusing on the service provider, we can see that it needs to fulfil various types
of requirements (e.g., data placement for IoT device users, or providing expected
quality for service customers). While it is obvious that nowadays decision-making
solutions should be as much software-based as possible, given the complexity of
the setting, there are situations in which it is necessary for the decisions to be taken
by real persons playing various roles in the organization. Depending on the type
of change which has appeared in the service (i.e., following elasticity dimensions:
resources, cost, quality [5]), various roles can have different interests or respon-
sibilities in the cloud service control. For instance, whenever the cost of running
the platform in the cloud gets high, a financial administrator might analyze the
overall evolution, and decide whether as a strategic decision it makes sense to
use more virtual resources than initially estimated. For this, s/he could either

126 G. Copil et al.

(a) From elasticity changes to responsible roles

(b) From roles to elasticity operation actions

Fig. 2. Role interaction flow

invest more in the platform, or negotiate with cloud providers for better prices.
Although most times service elasticity is achieved simply by allocating more/-
less virtual resources, similar effects might be achieved by changing configurations
(e.g., changing the load balancing mechanism). In this case, employees in charge
with configuration management should know which configuration is being used.
The service provider’s goals can also evolve in time, due to varying number or
types of users. In our scenario, when adding further data providers for the ser-
vice, the control requirements need to be modified by the responsible employees,
e.g., ensure better data transfer, even though the cost would go over what before
was specified as the maximum admissible cost.

Therefore, although an automated solution is necessary for this case, the
Level of Automation (LOA) [6] of the elasticity controller should not be of Full
Automation, but the human (service provider employee) should be included in
the control loop, for supporting the cases discussed above, in a Supervisory Con-
trol mode. Moreover, for achieving this kind of interaction between the elasticity
controller and the different types of service provider employees, clear interac-
tion protocols are needed. Since existing solutions mainly focus on full automa-
tion [1,2], we propose using supervisory control for cloud services elasticity, and
define interaction protocols for elasticity control. Thus, we introduce a platform
easing service provider’s interaction with the elasticity controller, at multiple
levels of authority and for multiple elasticity concerns.

3 Analyzing Interactions in Elasticity Operations
Management

3.1 Role Interactions

As described in our motivation, the main focus of our work is supporting ser-
vice providers to achieve better supervised elasticity control. Different service

Supporting Cloud Service Operation Management for Elasticity 127

provider employees are normally in charge with different operations, thus being
associated with various roles as part of the organization. We use the term roles
instead of stakeholders or employee types, to indicate attributions associated
to employees/stakeholders, an employee or stakeholder possibly having multi-
ple roles at a time. Moreover, while the roles present in a company are rarely
dynamic, the stakeholders/employee types and persons in a company are both
volatile and dynamic. Following our motivation scenario, the roles and elastic-
ity controller need to collaborate in order to manage service operation during
runtime. As shown in Fig. 2a, roles should be notified by other roles or by the
elasticity controller concerning the operation events which occur in relation to
the current service. From the operation events, we focus on elasticity changes.
We characterize elasticity changes according to the elasticity dimensions (i.e.,
resources, cost, and quality), and focus on: (i) request for change (RFC), (ii) inci-
dent, and (iii) elasticity notification event. The request for change event can
be initiated by either an elasticity controller or a role, requesting for changes
in properties of the service. The elasticity capabilities (i.e., changes which can
be enforced at runtime for modifying service behavior) can incur unexpected
behavior in quality, cost or resources, which can indicate an issue in the service
configuration or the deployed artifacts. Moreover, service providers are inter-
ested in failure events, in order to be able to learn from service behavior and
environment changes which produce failures. As shown in Fig. 2b, a role can
receive a multitude of messages from other roles or from elasticity controllers.
Analyzing them, the role decides whether it can perform needed actions, or if
it should delegate to other roles. After analyzing the interaction flow, the next
section is focused on analyzing the roles and their responsibilities and interests
in elasticity operations management.

3.2 Elasticity Operations and Roles

In the case of elastic cloud services the elasticity controllers play a big role in
management, as opposed to ordinary service management roles [7]. Lower level
authority roles (i.e., system administrator) have limited responsibilities, super-
vising and delegating work to the elasticity controller. We focus on designing
interaction between elasticity controllers and several roles1, excluding the roles
whose functionalities are replaced by the elasticity controller (e.g., Performance/-
Capacity Analyst, Systems Operator, or Capacity Manager).

Table 1 shows the possible elasticity-driven behavior modifications which can
be triggered by the elasticity controller, and the roles which might be interested
in these types of modifications. Depending on the frequency of modifications, the
roles are interested of receiving events more or less often, events being aggregated
from a number of modifications, or containing a single modification. For instance,
cost-related modifications need to be viewed by finance-related roles, like IT
Financial Manager, Procurement Analysis, or Service Manager. Quality-related
events (e.g., service part is not healthy, requirements not fulfilled) are of interest
for Operations Manager and Service Manager.
1 http://www.itsmcommunity.org/downloads/ITIL Role Descriptions.pdf.

http://www.itsmcommunity.org/downloads/ITIL_Role_Descriptions.pdf

128 G. Copil et al.

4 Elasticity Operations Management Platform

We design our platform (Fig. 3) following the flow described in the previous
section, for supporting interactions between roles and elasticity controllers, and
even third party roles. The controller sends messages through an Embedded
Queue, for message locality reasons. From our elasitcity Operations Manage-
ment Platform (eOMP), the Control Communication component processes the
received notifications. Here we provide a plugin-based mechanism for ensuring
that eOMP can be adapted to different elasticity controllers, the only constraint
being to map controller notifications to the eOMP model with operation events.
The Control Communication component processes the operation events, and
depending on their types, and depending on the responsibilities of the roles
in the Role Management Component, maps the controller messages to correct
interactions with current roles, and adds them to the queue. For this, we use a
Queue as a Service, since depending on the number of roles, and possibly in the
future, organizations, that we want to support, the scale of the queue and rout-
ing complexity can increase. Queue interactions are consumed from the roles’
side by the Interaction processing component, which directly interacts with the
role (e.g., user interface, command line, API-driven communication). For com-
munication between roles, we use a component for collaborative interactions in
human-based computing systems (e.g., SmartCOM2).

We designed the platform in such a way that the elasticity controller is agnos-
tic to IT service management processes, or role types. This is beneficial since it
enables service providers to choose other controllers, or, for the case of very small
company (i.e., one employee), to use the controller without the rest of our plat-
form. The roles and responsibilities can be modified by the eOMP administrator,
e.g., by using roles from a different standard.

4.1 Entities of the Interaction

For defining the interactions which may occur for the cloud service elasticity con-
trol, we focus on the participants in interactions. We use organization to describe
an association with a functional structure (e.g., service provider organization).
We focus firstly on modeling interactions between the service provider organiza-
tion and the elasticity controller, and secondly on modeling limited interactions
among organizations.

Roles (Eq. 2) are entities which are associated with responsibilities R and
authority levels Aut, and which can be assigned to different employees at various
points in the organization lifetime. Each organization is defined by a set of role
types, which change rarely throughout organization lifetime (e.g., when adopting
CMMI3, roles change). Third party roles are roles from partner organizations,
which are known to the current organization, and are accessible only through an
internal role for various actions (e.g., notifications, or contract re-negotiations).

2 https://github.com/tuwiendsg/SmartCom/wiki.
3 http://cmmiinstitute.com/.

https://github.com/tuwiendsg/SmartCom/wiki
http://cmmiinstitute.com/

Supporting Cloud Service Operation Management for Elasticity 129

Table 1. Examples of elasticity modifications and roles interested

Modification type Roles interested

Changes in cost due to scaling/changing the
infrastructure/software services which
are being used

IT Financial Manager, Service
Manager

Changes in cost due to providers change in
cost, without change in performance

Procurement Analysis, Service
Manager, Operations Manager

Changes in quality due to providers change
in quality, without change in cost

Service Manager, Operations Manager

Requirement on cost inflicts degradation of
performance

Operations Manager

Configuration change due to change of the
workload

Configuration Librarian, System
Administrator, Operations
Manager

Service part which is not healthy
(erroneous, not behaving as expected)

Test Manager, Operations Manager,
System Administrator, Incident
Analyst

Changes in quality w/o change in workload Operations Manager, Service Manager

Requirements which are not fulfilled/ are on
danger of not being fulfilled by the cloud
service elasticity controller

Operations Manager

Data compliance requirements changed by
the data provider

Service Manager, Operations Manager

Fig. 3. eOMP Design

As we are interested in elasticity control operations management, we focus on
Elasticity Responsibilities (Eq. 2) related to elasticity dimensions [5].

Roles = {(R,Aut)|R ∈ Responsabilities,Aut ∈ [min,max]} (1)
Responsabilities = {x ∨ Relations(x, y)

|x, y ∈ {Cost,Quality,Resources,Error,Analytics}} (2)

We define a Message as being composed of a header, and a body, the header
containing initiator and receiver related information, while the body con-
tains the message type, its priority and the content of the message. The
message content (Eq. 3) can contain suggested interactions, which are nested

130 G. Copil et al.

interactions suggested by the initiator for the receiver (e.g., an elasticity con-
troller can suggest the Procurement Analyst to re-negotiate the contract with
the cloud provider due to cost increase). Using these entities, an interaction can
be defined as a tuple of Initiator-Receiver-Message (Eq. 4), where each of the
Initiator and Receiver can be a set of Roles.

Content = {[Cause, SuggestedMeasure]|
Cause ∈ Requirements ∪ ExpectedBehavior

SuggestedMeasure ∈ Interactions ∪ Actions} (3)
Interaction = {[InteractionID, Initiator,Receiver,Message]|

Initiator,Receiver ∈ Roles,Message ∈ Messages}. (4)

4.2 Interaction Protocols for Supervisory Control of Elasticity

As discussed previously, elasticity depends on a large set of variables, both from
the IoT, cloud and business world. Elasticity behavior of a service is subject to
the business strategy of the service provider, and this can vary with the economic
perspectives, and with the market evolution (e.g., the financial manager should
decide the strategy in case of financial crisis, and not the elasticity controller).
We propose using a supervisory control mechanism [6,8], in which any decision
of the human overrides any decision of the elasticity controller (i.e., the roles are
the outer control loop). For this, we define a set of interaction protocols, based
on the entities defined above, for facilitating the communication between roles
and elasticity controllers.

Role as Initiator - Bootstrapping Dialogs: The goal of this interaction is to
enable roles to initiate dialogs with the elasticity controllers for bootstrapping the
elasticity controller (Fig. 4a and b). For starting elasticity control, the elasticity
controller is sent a prepare message, followed by information describing the
cloud service is sent one at a time (e.g., service description, custom metrics
description), and if each step is successfully achieved, a Start Control message
is sent. Each call from the role to the dialog starts a complex process on the
controller side (e.g., possible elasticity requirement conflicts are solved). For
testing an elasticity capability, a Start Test message is sent for starting the test
mode. For instance, the System Administrator is able through this dialog to
set all needed information for elasticity control (e.g., structure, resources used),
and then wait and ensure that each step is successfully completed.

Role as Initiator - Request for Change: The goal of this interaction is to
enable the roles to modify expected service behavior during runtime (Table 2).
Whenever a role decides that an update is necessary, e.g., due to events signaled
by the elasticity controller, the role can modify elasticity requirements, or deploy-
ment description (e.g., after a manual re-deployment). For instance, the Service
Manager can decide to undeploy the service from the cloud environment, and,
e.g., keep only an on-premise deployment.

Supporting Cloud Service Operation Management for Elasticity 131

(a) Interactions for Starting Elasticity
Control

(b) Interactions for Testing Elasticity
Capability

Fig. 4. Interaction dialogs

Table 2. Interactions for requesting modification in control

Interaction type Interaction details

Undeploy the service [ID, Role, EC, [RFC, Priority, [Cause,

UndeployService (ServiceID)]]]

Replace metric composition rules [ID, Role, EC, [RFC, Priority, [Cause,

ReplaceRules (ServiceID,

CompositionRules)]]

Replace deployment [ID, Role, EC, [RFC, Priority, [Cause,

ReplaceDeployment (ServiceID,

DeplDescription)]]

Replace elasticity requirements [ID, Role, EC, [RFC, Priority, [Cause,

ReplaceRequirements (ServiceID,

Requirements)]]

Pause/Resume control [ID, Role, EC, [RFC, Priority, [Cause,

PauseControl (ServiceID)]]

Elasticity Controller as Initiator: The goal of this interaction is to enable the
elasticity controller to notify appropriate roles on changes in elasticity behavior
(Fig. 5). Whenever abnormal changes are observed in the cloud service behav-
ior, the elasticity controller notifies roles, depending on the Responsibilities, and
the Authority which they have associated. For instance, in the case of conflict-
ing requirements which cannot be automatically solved (e.g., response time is
expected to be low, while the cloud provider is running in degraded mode), the
controller notifies the roles causing the conflict (i.e., Rolei . . . Rolej), as well as a
higher authority role having the responsibilities ∪x=i..j Responsabilities(Rolex).

132 G. Copil et al.

Fig. 5. Elasticity controller bringing the roles into the control loop

4.3 Elasticity Directives-Driven Interactions

For creating custom interactions, we have extended the SYBL [3] elasticity
requirements definition language with the new NOTIFY directive, with BNF form
described in the Listing 1.1, to be triggered when certain conditions hold. A call
of the notify() method of the NOTIFY directive maps to the initiation of a new
interaction between the elasticity controller and the role mentioned in the direc-
tive. An example of such a directive can be No1: NOTIFY OperationsManager WHEN
responseTime > 1.2 s : notify(WARNING, "Response time exceeds 1.2 s").
Whenever a condition for a notification directive is true, the Controller Commu-
nication starts an interaction (i.e., translating the aforementioned directive into
interaction [No1, EC, Operations Manager, Notification, "Response time
exceeds 1.2 s"]. However, the frequency of interactions initiated by the Con-
troller Communication is adjusted with the interaction aggregation presented in
Sect. 4.4.

Listing 1.1. SYBL Notification in Backus Naur Form (BNF)

Notification := notificationID:NOTIFY Role WHEN ComplexCondition
: notify(NotificationType , message)

Role := ROLE(Responsability1 , Responsability2), Role |
ROLE (Responsability1 , Responsability2)|
RoleX , Role | RoleX

NotificationType := NOTIFICATION | ERROR | WARNING

4.4 Interaction Aggregation

For mapping messages, we provide a generic processing mechanism which
searches metric patterns associated with responsibilities in the message from the

Supporting Cloud Service Operation Management for Elasticity 133

controller, and creates a new message with the structure described in Sect. 4.1,
initiating interactions for the appropriate roles, considering roles’ responsibili-
ties. Depending on roles authorities (Eq. 2), interactions are either aggregated
or immediately sent to the Interaction Management component.

Each role, depending on its responsibilities, receives a different number of
messages, or only emergency messages, the amount of messages being inversely
proportional with the authority and directly proportional with the responsi-
bilities (e.g., for a maximum Authority of 10, a Service Manager role with an
authority of 10 should receive less often messages than the System Adminis-
trator with authority 5). Moreover, the nature of the messages should reflect
the responsibilities and interests. For this, the Controller Communication Mod-
ule examines messages and identifies metrics of interest for the responsibilities
associated with each role. For filtering the interactions initiated, an aggregation
function can be defined, selecting the amount of messages to be sent to the roles.
The more complex the filtering of the messages, the easier it would be for roles
to interact with the elasticity controller. We define in 5 a simple logarithmic
filtering function, deciding if the aggregation of messages so far should be sent.

f(Role,QInteractions)
= (logauth max(Role.Authority) ∗
THRESHOLD NOTIFICATION <= QInteractions.size())
∨(logauth max(Role.Authority) ∗ THRESHOLD ERROR

<= MaxPriority(QInteractions)). (5)

5 Prototype and Experiments

5.1 Prototype

The elasticity Operations Management Platform (eOMP) is implemented as a
Java enterprise application, which can be deployed either in the cloud or under
service provider’s premises. eOMP is open-source and available together with fur-
ther experiments, details and user guides4. The current version integrates with
the rSYBL elasticity controller, making use of the notification queue (i.e., embed-
ded queue in the eOMP design, implemented using ActiveMQ5) exposing events
during runtime. This can be easily extended to other elasticity controllers, by
implementing an adapter for receiving and processing events. The service queue
is using CloudAMQP6, which is managed RabbitMQ7 offered as a cloud service.
Our Primefaces8-based frontend includes dynamically generating diagrams and
charts for the cloud service provider employees.

4 http://tuwiendsg.github.io/rSYBL/eOMP.
5 http://activemq.apache.org.
6 http://cloudamqp.com.
7 http://rabbitmq.com.
8 http://www.primefaces.org/.

http://tuwiendsg.github.io/rSYBL/eOMP
http://activemq.apache.org
http://cloudamqp.com
http://rabbitmq.com
http://www.primefaces.org/

134 G. Copil et al.

Fig. 6. eOMP snapshot: implicit initial dialog requesting services information

(a) eOMP snapshot: replace requirements

(b) eOMP snapshot: dialog for clarifying requirements

Fig. 7. Conflicting requirements resolution

5.2 Elasticity Operations Management Features

To illustrate eOMP features, we used our pilot application9 which consists of:
(1) an event processing topology composed of an event processing unit and a
load balancer, and (2) a data end topology composed of a data node unit and
a data controller unit. We used recordings from a previous run, to which we
injected events (i.e., by modifying monitored data for a limited amount of time).
We chose this approach instead of real-time injecting faults, since it is more
reliable, and our focus is showcasing the eOMP platform, and not the service
versatility.

9 https://github.com/tuwiendsg/DaaSM2M.

https://github.com/tuwiendsg/DaaSM2M

Supporting Cloud Service Operation Management for Elasticity 135

Implicit vs. Explicit Interactions. For understanding current service behav-
ior, roles need elasticity controller interactions executed regularly (e.g., every
10 min, or each time the role logs into the platform). We distinguish between
two types of interactions from the user/employee perspective: (1) implicit inter-
actions, for getting the necessary data to be displayed to the employee (e.g.,
dialogs for getting the service description), and (2) explicit interactions, initi-
ated by the eOMP user. Figure 6 shows a dialog from the first type, with the
system administrator (one role of the current logged in employee) requesting for
initial description information. While without eOMP, the employee would need
to manually call them, with eOMP the implicit interactions are already managed
when the employee logs on in the platform.

Solving Conflicting Requirements. The controller can encounter a case
where no actions are suitable for solving the discovered issues. Figure 7a shows a
situation where constraints Co1(“Co1:CONSTRAINT cost < 10$;”) and Co3(“Co3:

CON STRAINT responseTime < 400 ms;”) are conflicting, because of the high
workload and the limit on the cost. Since the employee receiving this interac-
tion has more roles associated, s/he decides to replace the requirement from the
Procurement Analyst role, for being able to increase the limit for the service
cost. The interaction dialog from the three roles is shown in Fig. 7b, and con-
sists of two steps: (1) the controller notifies the Incident Analyst role that no
action is available due to the requirements conflict, (2) the employee uses the
Procurement Analyst role to modify the cost requirement. Moreover, eOMP
uses knowledge on role types and their authorities, avoiding modification con-
flicts (e.g., with no eOMP, two roles can fix observed issues at the same time). In
our case, the role interaction with the elasticity controller is managed by eOMP,
the employee being able to choose even a different role from which the issue can
be solved better.

Service Health Incidents. Another issue which may occur during service
operation is that a service part might be unhealthy (i.e., monitoring metrics have
error-like values for an amount of time). With eOMP, all the roles which have
incidents as responsibilities receive notifications, but the timing and the amount
of notifications is inversely proportional with their authority. Figure 8 shows
interactions which are due to Event Processing Topology being unhealthy.
When the Operations Manager (high authority) gets the interaction from the
controller, it means that the lower level authority roles have ignored or weren’t
able to address the situation. Therefore, it delegates the interaction to the Inci-
dent Analyst. The Incident Analyst can try to fix the issue, or can report on
the difficulty of the issue. Left side of Fig. 8 shows the actions performed by the
Incident Analyst (i.e., pause-fix-replace service description). All can be followed
by the Operations Manager, to make sure the incident is being solved, since
these interactions are part of the initial dialog.

136 G. Copil et al.

Fig. 8. eOMP snapshot: unhealthy service part dialog

(a) Total role interactions (b) Role interactions in time

Fig. 9. eOMP snapshots: Statistical information regarding interactions

Dealing with Roles Authorities. Figure 9 shows the number of interactions
which occurred over time, undertaken by each role. The amount of interactions
varies with the events which occur, with role’s responsibilities in relation with
these events, and with role’s authority. We can see that higher level authority
roles have less interactions (e.g., Service Manager has no interactions), following
the interaction aggregation function in Sect. 4.4.

Thus, eOMP facilitates interactions between service providers and elasticity
controllers, and among service provider roles, automating operation tasks and pro-
viding support for interaction management based on role’s authority and responsi-
bilities. With eOMP the roles can easily follow the evolution of their elastic service,
and the evolution, in time, of incidents, requests for change, or measures taken by
the elasticity controller in order to control their service behavior.

6 Related Work

Various standards and processes have been proposed over the years for IT service
management. Sallé [9] provides an analysis of the evolution of IT service man-
agement over the years, and its evolution towards IT governance. Starting from
Information Systems Management Architecture [10], IT management method-
ologies have evolved towards well-defined standards/best practices of IT service
management (e.g., ITIL R© [11], BSI ISO 20000 [12], FitSM [13]). Although the
focus of this paper is not the management processes adopted by organizations,
understanding their internal processes is necessary for being able to support them
in their quest for cloud service elasticity. Since the latest reference models used

Supporting Cloud Service Operation Management for Elasticity 137

nowadays in organizations (e.g., [12,14]) are in alignment with ITIL R© service
management practices, we used these processes and organization roles. How-
ever, our design (see Sect. 4) is such that, roles and processes can be modified
for accommodating future service management models.

Operation management in cloud computing has been approached mostly from
the cloud provider’s perspective [15,16], and little from service provider (i.e.,
cloud customer) perspective. Bleizeffer et al. [7] propose a set of user roles in
cloud systems, having as core roles not only the cloud service provider, but
also the cloud service consumer and cloud service creator. The three core roles
are expanded into a taxonomy of interconnected user roles, which communi-
cate with each other for delegating responsibilities or gathering information.
Demont et al. [17] present an initial proposal of integrating the TOSCA cloud
service description standard with ITIL elements. Several commercial solutions
enable cloud infrastructure management support, but do not support service
operations management at cloud customer’s service level (e.g., Oracle Enterprise
Manager10, BMC Cloud Operations Management11). Liu et al. [18] propose an
incident diagnosis approach based on incident relationships, using co-occurring
and re-occurring incidents for performing root cause analysis. Munteanu et al.
[19] propose an architectural approach for cloud incident management, including
incident lifecycle management, event and incident detection, incident classifica-
tion and recovery and root cause analysis.

In contrast with above presented work, we focus on the elasticity aspect of
service operations management in the cloud, characterizing the relevant prop-
erties and interactions. Moreover, we emphasize the importance of supervisory
control for the cloud, and introduce service provider employees as first-class
entities in the control loops.

7 Conclusions and Future Work

Operation management for services elasticity becomes increasingly more com-
plex when the services rely on several other third-party services deployed in
multiple cloud environments. We have proposed a set of interaction protocols
for managing elasticity operations of cloud services, which take into considera-
tion service provider roles as first class entities in the service elasticity control.
We introduced the eOMP platform, which allows service provider employees to
manage the cloud service operations related with elasticity, interacting with the
elasticity controller and other employees of the service provider.

As future work, we are studying multi-organizational interactions for cloud
services. For this case, dialogs are much more complex, since we need to model
the various types of information necessary in the communication, and we need
mechanisms to support and track inter-organization interactions. Moreover, orga-
nizations could follow different standards, and offer different access points (e.g.,
a cloud provider might expose IT Financial Administrator role for re-negotiating
contracts, and Operations Management for handling QoS issues).

10 http://www.oracle.com/technetwork/oem/enterprise-manager.
11 http://www.bmc.com/it-solutions/cloud-operations-management.html.

http://www.oracle.com/technetwork/oem/enterprise-manager
http://www.bmc.com/it-solutions/cloud-operations-management.html

138 G. Copil et al.

References

1. Mao, M., Humphrey, M.: Scaling and scheduling to maximize application perfor-
mance within budget constraints in cloud workflows. In: IEEE 27th International
Symposium on Parallel Distributed Processing (IPDPS), pp. 67–78 (2013)

2. Jiang, J., Lu, J., Zhang, G., Long, G.: Optimal cloud resource auto-scaling for
web applications. In: 2013 13th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, pp. 58–65 (2013)

3. Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: Sybl: an extensible language
for controlling elasticity in cloud applications. In: International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), pp. 112–119. IEEE/ACM (2013)

4. Copil, G., Moldovan, D., Truong, H.-L., Dustdar, S.: Multi-level elasticity control
of cloud services. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013.
LNCS, vol. 8274, pp. 429–436. Springer, Heidelberg (2013)

5. Dustdar, S., Guo, Y., Satzger, B., Truong, H.L.: Principles of elastic processes.
IEEE Internet Comput. 15(5), 66–71 (2011)

6. Endsley, M.R., Kaber, D.B.: Level of automation effects on performance, situation
awareness and workload in a dynamic control task. Ergonomics 42, 462–492 (1999)

7. Bleizeffer, T., Calcaterra, J., Nair, D., Rendahl, R., Schmidt-Wesche, B., Sohn,
P.: Description and application of core cloud user roles. In: Proceedings of the 5th
ACM Symposium on Computer Human Interaction for Management of Information
Technology. CHIMIT 2011, pp. 2:1–2:9. ACM, New York (2011)

8. Sheridan, T.B.: Adaptive automation, level of automation, allocation authority,
supervisory control, and adaptive control: distinctions and modes of adaptation.
IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 41(4), 662–667 (2011)

9. Sallé, M.: It service management and it governance: review, comparative analysis
and their impact on utility computing. Hewlett-Packard Company, pp. 8–17 (2004)

10. Van Schaik, E.A.: A Management System for the Information Business: Organiza-
tional Analysis. Prentice-Hall Inc., Upper Saddle River (1985)

11. Arraj, V.: Itil R©: The Basics. Buckinghampshire, UK (2010)
12. BSI Group: ISO/IEC 20000-Information technology-Service management. http://

www.iso.org/iso/publication item.htm?pid=PUB200013
13. FedSM: FitSM: Standards for IT Service Management. http://www.fedsm.eu
14. HP: The HP IT Service Management (ITSM) Reference Model. ftp://ftp.hp.com/

pub/services/itsm/info/itsm rmwp.pdf
15. Zhan, H.J., Zhang, W.: The operation and maintenance management system of the

cloud computing data center based on ITIL. In: Jeong, H.Y., Obaidat, M.S., Yen,
N.Y., ParK, J.J.J.H. (eds.) Advanced in Computer Science and Its Applications.
LNEE, vol. 279, pp. 1103–1108. Springer, Heidelberg (2014)

16. IBM: Integrated service management and cloud computing: More than just
technology best friends. https://www.ibm.com/ibm/files/E955200R99025N70/
5Integrated service management and cloud computing 644KB.pdf

17. Demont, C., Breitenbücher, U., Kopp, O., Leymann, F., Wettinger, J.: Towards
integrating tosca and itil. In: ZEUS, Citeseer, pp. 28–31 (2013)

18. Liu, R., Lee, J.: IT incident management by analyzing incident relations. In: Liu,
C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp.
631–638. Springer, Heidelberg (2012)

19. Munteanu, V., Edmonds, A., Bohnert, T., Fortis, T.F.: Cloud incident manage-
ment, challenges, research directions, and architectural approach. In: International
Conference on Utility and Cloud Computing, pp. 786–791. IEEE/ACM (2014)

http://www.iso.org/iso/publication_item.htm?pid=PUB200013
http://www.iso.org/iso/publication_item.htm?pid=PUB200013
http://www.fedsm.eu
ftp://ftp.hp.com/pub/services/itsm/info/itsm_rmwp.pdf
ftp://ftp.hp.com/pub/services/itsm/info/itsm_rmwp.pdf
https://www.ibm.com/ibm/files/E955200R99025N70/5Integrated_service_management_and_cloud_computing_644KB.pdf
https://www.ibm.com/ibm/files/E955200R99025N70/5Integrated_service_management_and_cloud_computing_644KB.pdf

	Supporting Cloud Service Operation Management for Elasticity
	1 Introduction
	2 Motivation
	3 Analyzing Interactions in Elasticity Operations Management
	3.1 Role Interactions
	3.2 Elasticity Operations and Roles

	4 Elasticity Operations Management Platform
	4.1 Entities of the Interaction
	4.2 Interaction Protocols for Supervisory Control of Elasticity
	4.3 Elasticity Directives-Driven Interactions
	4.4 Interaction Aggregation

	5 Prototype and Experiments
	5.1 Prototype
	5.2 Elasticity Operations Management Features

	6 Related Work
	7 Conclusions and Future Work
	References

