
ADVISE – A Framework for Evaluating Cloud

Service Elasticity Behavior�

Georgiana Copil1, Demetris Trihinas2, Hong-Linh Truong1, Daniel Moldovan1,
George Pallis2, Schahram Dustdar1, and Marios Dikaiakos2

1 Distributed Systems Group, Vienna University of Technology
{e.copil,d.moldovan,truong,dustdar}@dsg.tuwien.ac.at

2 Computer Science Department, University of Cyprus
{trihinas,gpallis,mdd}@cs.ucy.ac.cy

Abstract. Complex cloud services rely on different elasticity control
processes to deal with dynamic requirement changes and workloads.
However, enforcing an elasticity control process to a cloud service does
not always lead to an optimal gain in terms of quality or cost, due to
the complexity of service structures, deployment strategies, and underly-
ing infrastructure dynamics. Therefore, being able, a priori, to estimate
and evaluate the relation between cloud service elasticity behavior and
elasticity control processes is crucial for runtime choices of appropriate
elasticity control processes. In this paper we present ADVISE, a frame-
work for estimating and evaluating cloud service elasticity behavior.
ADVISE gathers service structure, deployment, service runtime, control
processes, and cloud infrastructure information. Based on this informa-
tion, ADVISE utilizes clustering techniques to identify cloud elastic-
ity behavior produced by elasticity control. Our experiments show that
ADVISE can estimate the expected elasticity behavior, in time, for dif-
ferent cloud services thus being a useful tool to elasticity controllers for
improving the quality of runtime elasticity control decisions.

1 Introduction

One of the key features driving the popularity of cloud computing is elasticity,
that is, the ability of cloud services to acquire and release resources on-demand, in
response to runtime fluctuating workloads. From customer perspective, resource
auto-scaling could minimize task execution time, without exceeding a given bud-
get. From cloud provider perspective, elasticity provisioning contributes to max-
imizing their financial gain while keeping their customers satisfied and reducing
administrative costs. However, automatic elasticity provisioning is not a trivial
task.

A common approach, employed by many elasticity controllers [1, 2] is to
monitor the cloud service and (de-)provision virtual instances when a metric
threshold is violated. This approach may be sufficient for simple service models

� This work was supported by the European Commission in terms of the CELAR FP7
project (FP7-ICT-2011-8 #317790).

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 275–290, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



276 G. Copil et al.

but, when considering large-scale distributed cloud services with various inter-
dependencies, a much deeper understanding of its elasticity behavior is required.
For this reason, existing work [2, 3] has identified a number of elasticity control
processes to improve the performance and quality of cloud services, while addi-
tionally attempting to minimize cost. However, a crucial question still remains
unanswered: which elasticity control processes are the most appropriate for a
cloud service in a particular situation at runtime? Both cloud customers and
providers can benefit from insightful information such as how the addition of a
new instance to a cloud service will affect the throughput of the overall deploy-
ment and individually of each part of the cloud service. Thus, cloud service elas-
ticity behavior knowledge under various controls and workloads is of paramount
importance to elasticity controllers for improving runtime decision making.

To this end, a wide range of approaches relying on service profiling or learning
from historic information [3–5] have been proposed. However, these approaches
limit their decisions to evaluating only low-level VM metrics (e.g., CPU and
memory usage) and do not support elasticity decisions based on cloud service
behavior at multiple levels (e.g., per node, tier, entire service). Additionally, cur-
rent approaches only evaluate resource utilization, without considering elasticity
as a multi-dimensional property composed of three dimensions (cost, quality, and
resource elasticity). Finally, existing approaches do not consider the outcome of
a control process on the overall service, where often enforcing a control process
to the wrong part of the cloud service, can lead to side effects, such as increas-
ing the cost or decreasing performance of the overall service. In our previous
work, we focused on modeling current and previous behavior with the concepts
of elasticity space and pathway [6], or using different algorithms to determine
enforcement times in observed behavior (e.g., with change-point detection), but
without modeling expected behavior of different service parts, in time.

In this paper, we focus on addressing the limitations above by introducing the
ADVISE (evAluating clouD serVIce elaSticity bEhavior) framework, which esti-
mates cloud service elasticity behavior by utilizing different types of information,
such as service structure, deployment strategies, and underlying infrastructure
dynamics, when applying different external stimuli (e.g., elasticity control pro-
cesses). At the core of ADVISE is a clustering-based evaluation process which
uses these types of information for computing expected elasticity behavior, in
time, for various service parts. To evaluate ADVISE effectiveness, experiments
were conducted on a public cloud platform with a testbed comprised of two dif-
ferent cloud services. Results show that ADVISE outputs the expected elasticity
behavior, in time, for different services with a low estimation error rate. ADVISE
can be integrated by cloud providers alongside their elasticity controllers to im-
prove their decision quality, or used by cloud service providers to evaluate and
understand how different elasticity control processes impact their services.

The rest of this paper is structured as follows: in section 2 we model rele-
vant information regarding cloud services. In section 3, we present the elasticity
behavior evaluation process. In section 4, we evaluate ADVISE framework effec-
tiveness. In section 5 we discuss related work. Section 6 concludes this paper.



ADVISE – A Framework for Evaluating Cloud Service Elasticity Behavior 277

Fig. 1. Elasticity capabilities exposed by different elastic objects

2 Cloud Service Structural and Runtime Information

2.1 Cloud Service Information

To follow existing common service descriptions [7], we refer to a cloud application
in our study as a cloud service. A cloud service can be decomposed into service
topologies (e.g., a business tier, or a part of a workflow) which represent a group
of semantically connected service units. A service unit (e.g., a web service) rep-
resents a module offering computation or data capabilities. In order to refer to
these cloud service structures globally, we use the term Service Parts (SP ).

We extend the conceptual cloud service representation model proposed in [8]
with a rich set of information types for determining cloud elasticity behavior.
Fig. 1 depicts the extensions we made (white background) to include elasticity
control processes, service part behaviors and service parts. Overall, this represen-
tation contains: (i) Structural Information, describing the architectural struc-
ture of the application to be deployed on the cloud, (ii) Infrastructure System
Information, describing runtime information regarding resources allocated by
the cloud service from the underlying cloud platform, and (iii) Elasticity In-
formation, which is associated with both structural and infrastructure system
information for describing elasticity metrics, requirements, and capabilities.

Elasticity information is composed of elasticity metrics, elasticity require-
ments, and elasticity capabilities, each of them being associated to different SPs
or infrastructure resources. Elasticity Capabilities are grouped together as Elas-
ticity Control Processes (ECPs), as described in the next subsection, and inflict
specific elasticity behaviors upon enforcement on different SPs, which we model
as Service Part Behaviors. We model SP behaviors, since controllers must de-
termine the effect of enforcing an ECP at different levels (e.g., before allocating
a new database node, the effect at the database service topology and at the en-
tire cloud service level should also be determined). Conceptually, a Service Part



278 G. Copil et al.

Fig. 2. Elasticity capabilities exposed by different elastic objects

Behavior, denoted as BehaviorSPi , for a specific SPi in a defined period of time
[start, end], contains all the metrics, MSPi

a , being monitored for SPi. Therefore,
the behavior of a cloud service, denoted as BehaviorCloudService, over a period
of time is defined as the set of all cloud service SP behaviors:

MSPi
a [start, end] = {Ma(tj)|SPi ∈ ServiceParts, j = start, end} (1)

BehaviorSPi [start, end] = {MSPi
a [start, end]|Ma ∈ Metrics(SPi)} (2)

BehaviorCloudService[start, end] = {BehaviorSPi [start, end]|SPi ∈
ServiceParts(CloudService)} (3)

The above information is captured and managed at runtime through an Elas-
ticity Dependency Graph, which has as nodes instances of concepts from the
model presented in Fig. 1 (e.g., Virtual Machine), and relationships (e.g.,
Elasticity Relationship) as edges. The elasticity dependency graph is
populated and continuously updated with (i) pre-deployment information, such
as service topology descriptions (e.g., TOSCA [7]) or profiling information; and
(ii) runtime information such as metric values from monitoring tools or allocated
resources information from cloud provider APIs.

2.2 Elasticity Control Processes

Elasticity capabilities (ECs) are the set of actions associated with a cloud service,
which a cloud service stakeholder (e.g., an elasticity controller) may invoke, and
which affect the behavior of a cloud service. Such capabilities can be exposed
by: (i) different SPs, (ii) cloud providers, or (iii) resources which are supplied by
cloud providers. An EC can be considered as the abstract representation of API
calls, which differ amongst providers and cloud services. Fig. 2 depicts the dif-
ferent subsets of ECs provided for an exemplary web application when deployed
on two different cloud platforms (e.g., Flexiant, and Openstack private cloud),
as well as the ECs exposed by the cloud service and the installed software. In
each of the two aforementioned cloud platforms, the cloud service needs to run
on a specific environment (e.g., Apache Tomcat web server), and all these capa-
bilities, when enforced by an elasticity controller, will have an effect on various
parts of the cloud service. For instance, even if not evident at first sight, elas-
ticity capabilities of a web server topology of the cloud service could also affect
the performance of its database backend.



ADVISE – A Framework for Evaluating Cloud Service Elasticity Behavior 279

Fig. 3. Elastic cloud service evolution

Elasticity Control Processes (ECP ) are sequences of elasticity capabilities
ECPi = [ECi1 → ECi2 → ... → ECin ], which can be abstracted into higher
level capabilities having predictable effects on the cloud service. An ECP causes
a change in the elasticity dependency graph and in the virtual infrastructure
related information (e.g., change in ECP properties or in the properties of the
VM). For example, in the case of a distributed database backend which is com-
posed of multiple nodes, a scale out ECP , with certain parameters, can apply
for both a Cassandra and an HBase database, with the following ECs: (i) add a
new node, (ii) configure node properties and (iii) subscribe node to the cluster.

2.3 Cloud Service Elasticity during Runtime

To be able to estimate the effects of ECPs upon SPs, we rely on the elastic-
ity dependency graph which captures all the variables that contribute to cloud
service elasticity behavior evolution. Fig. 3 depicts on the left-hand side the
cloud service at a pre-deployment time, where automatic elasticity controllers
know about it only from structural information provided by different sources
(e.g., TOSCA service description). After enforcing a Deployment Process (e.g.,
create machine x, and configure software z), the elasticity dependency graph will
additionally contain infrastructure-related information obtained from the cloud
provider, and elasticity information, obtained from monitoring services showing
the metrics evolution for different SPs. This information is continually updated
during runtime (step 3 in Fig. 3), while for estimating the behavior we make the
assumption that we have complete information (i.e., no information missing).

Infrastructure resources, as mentioned previously, have associated elasticity
capabilities (EC in Fig. 3), that describe the change(s) to be enforced and the
mechanisms for triggering them (e.g., API call assigned to the EC). In addition,
a cloud platform exposes ECs in order to create new resources or instantiate
new services (e.g., increase memory is an EC exposed by a VM, while create
new VM is an EC exposed by the cloud platform). In this context, for being able
to discover the effects that an ECP produces in time, for each SP , taking into
account correlations between metrics, we use the elasticity dependency graph.
We analyze this information to determine the effect of an ECP for all SPs,



280 G. Copil et al.

Fig. 4. Modeling cloud service behavior process

Fig. 5. Relevant timeseries sections to points

regardless on whether the ECP is application specific, or it does not have any
apparent link to other SPs. In fact, as we show in Section 4, the impact of various
ECPs over different SPs and over the entire cloud service is quite interesting.

3 Evaluating Cloud Service Elasticity Behavior

Existing behavior learning solutions [4, 5] learn discrete metric models, without
correlating them with the multiple variables which affect cloud service behavior.
As opposed to them, we are learning the behavior of different cloud service
parts, and their relation to different ECPs, not only with directly linked ones,
and estimating the effect of an ECP , in time, considering the correlations among
several metrics and among several service parts. The Learning Process used to
determine cloud service part behavior is depicted in Fig. 4, and is executed
continuously, refining the previously gathered knowledge base.

3.1 Learning Process

Processing input data. Our learning process takes as input each metric’s
evolution, in time, MSPi

a [start, current] (see Equation 3) from the beginning of
the service execution on the current cloud platform. To evaluate the expected
evolution of metrics in response to enforcing a specific ECP , we select for each
monitored metric, of each service part, a Relevant Timeseries Section (RTS),
in order to compare it with previously encountered MSPi

a [start, current]. The
RTS size strongly depends on the average time needed to enforce an ECP



ADVISE – A Framework for Evaluating Cloud Service Elasticity Behavior 281

(see Section 4.3). Consequently, a metric RTS is a sub-sequence of the MSPi
a ,

from before enforcing an ECP until after the enforcement is over:

RTSSPi

Ma
= MSPi

a [x− δ + ECPtime

2
, x+

δ + ECPtime

2
], (4)

[ECPstartT ime, ECPendTime] ⊂ [x− δ + ECPtime

2
, x+

δ + ECPtime

2
]

, where x is the ECP index and δ is the length of the period we aim to evaluate.
As part of the input pre-processing phase, we represent δ+ECPtime as multi-

dimensional points, BP in Equation 5, in the n-dimensional Euclidian space (see
Fig. 5), where the value for dimension t(j) is the timestamp j of current RTS.

BPSPi
a [j] = RTSSPi

Ma
[t(j)], j = 0, ..., n, BP : MSP �→ Rn, n = δ + ECPtime (5)

Clustering process. To detect the expected behavior, as a possible result
of enforcing an ECP , we construct clusters of behavioral points ClusterSPi

for all SPs and each ECP based on the distance between behavior points as
defined in Equation 6. We do not limit our approach to only considering ECPs
available for the current SPi since, as previously mentioned, enforcing an ECP
to a specific SP may affect the behavior of another SP or the overall cloud
service. The objective function of this process is finding the multi-dimensional
behavior point C(Θ∗), which minimizes the distance among points belonging
to the same cluster Clusterk (see Equation 7). Since the focus of this paper
is not to evaluate the quality of different clustering algorithms, we choose to
use the K-means algorithm, following the practice where the number of clusters
is K =

√
N/2, N being the number of objects. However, as shown in Section

4, even with a simple K-means algorithm, our approach outputs the expected
elasticity behavior with a low estimation error rate.

dist(BP x
a , BP y

a ) =

√∑

i

(BP x
a [i]−BP y

a [i])2 (6)

Θ∗ = argmin

K∑

k=0

N∑

i=0

θi,kdist(Clusterk, BPi), θi,k =

{
1 BPi ∈ Clusterk

0 BPi /∈ Clusterk
(7)

After obtaining δ + ECPtime-dimensional point clusters, we construct for each
SPi a correlation matrix, CMSPi [Cx, Cy], where Cx is the centroid of Clusterx,
giving the probability, for all metrics, of clusters from different metrics to ap-
pear together (e.g., increase in data reliability is usually correlated with increase
in cost). An item in the CM represents a ratio between the number of times
the behavior points Cx and Cy were encountered together towards the total
number of behavior points. This matrix is continuously updated when behavior
points move from one cluster to another, or when new ECPs are enforced, thus,
increasing the knowledge base.



282 G. Copil et al.

3.2 Determining the Expected Elasticity Behavior

In the Expected Behavior Generation based on Learning Process step in Fig. 4,
we select latest metrics values for each SPi, M

SPi
a [current− δ, current], and the

ECPξ which the controller is considering for enforcement, or for which the user
would like to know the effects. We find the ExpectedBehavior (see Equation
8) which consists of a tuple of cluster centroids from the clusters constructed
during the Learning Process that are the closest to the current metrics behavior
for the part of the cloud service we are focusing on, and which have appeared
together throughout the execution of the cloud service. The result of this step is,
for each metric of SPi, a list of expected values from the enforcement of ECPξ

(e.g., expected values for each metrics for the case the user would like to deploy
one new web service of type x in the same web application container).

ExpectedBehavior[SPi, BehaviorSPi [current− δ, current], ECPξ] =

{CMa1

ia1
, ..., CMam

iam
|Mam ∈ Metrics(SPi)} (8)

The above process is executed continuously, as shown in Fig. 4, by refining
clusters, re-computing cluster centroids with the time and with the enforcement
of new ECPs. This process is highly flexible and configurable, as we can use
different manners of detecting ECPs (e.g., sent by the elasticity controller), or
other clustering algorithms which lead to different solutions.

4 Experiments

To evaluate the effectiveness of the proposed approach, we have developed the
ADVISE framework1 which incorporates the previously described concepts. Cur-
rent ADVISE version gathers various types of information to populate the elastic-
ity dependency graph, such as: (i) Structural information, from TOSCA service
descriptions; (ii) Infrastructure and application performance information from
JCatascopia [9] and MELA [6] monitoring systems; (iii) Elasticity information
regarding ECPs from the rSYBL [8] elasticity controller where we developed an
enforcement plugin to randomly enforce ECPs on cloud services. To evaluate
the functionality of the ADVISE framework, we established a testbed comprised
of two services deployed on the Flexiant public cloud. On both cloud services,
we enforce random ECPs exposed by different SPs. We do not use a rational
controller, since we are interested in estimating the elasticity behavior for all
SPs as a result of enforcing both good and bad elasticity control decisions.

ADVISE currently receives monitoring information in two formats: (i) as
simple *.csv files, or (ii) automatically pulling monitoring information from
MELA. ADVISE can be used both in service profiling/pre-deployment phase or
during runtime, for various service types, whenever monitoring information and
enforced ECPs are available for generating estimations for various metrics of
service parts.

1 Code & documents: http://tuwiendsg.github.io/ADVISE

http://tuwiendsg.github.io/ADVISE


ADVISE – A Framework for Evaluating Cloud Service Elasticity Behavior 283

Table 1. Elasticity control processes available for the two cloud services

Cloud
Service

ECP
Id

Action Sequence

Video
Service

ECP1 Scale In Application Server Tier: (i) stop the video streaming service, (ii)
remove instance from HAProxy, (iii) restart HAProxy, (iv) stop JCatas-
copia Monitoring Agent, (v) delete instance

ECP2 Scale Out Application Server Tier: (i) create new network interface, (ii)
instantiate new virtual machine, (ii) deploy and configure video streaming
service, (iv) deploy and start JCatascopia Monitoring Agent, (v) add
instance IP to HAProxy, (vi) restart HAProxy

ECP3 Scale In Distributed Video Storage Backend: (i) select instance to remove,
(ii) decommission instance data to other nodes (using Cassandra nodetool
API), (iii) stop JCatascopia Monitoring Agent, (iv) delete instance

ECP4 Scale Out Distributed Video Storage Backend: (i) create new network in-
terface, (ii) instantiate new instance, (iii) deploy and configure Cassandra
(e.g., assign token to node), (iv) deploy and start JCatascopia Monitoring
Agent, (v) start Cassandra

M2M
DaaS

ECP5 Scale In Event Processing Service Unit: (i) remove service from HAProxy,
(ii) restart HAProxy, (iii) remove recursively virtual machine

ECP6 Scale Out Event Processing Service Unit: (i) create new network inter-
face, (ii) create new virtual machine, (iii) add service IP to HAProxy
configuration file

ECP7 Scale In Data Node Service Unit: (i) decommision node (copy data from
virtual machine to be removed), (ii) remove recursively virtual machine

ECP8 Scale Out Data Node Service Unit: (i) create new network interface, (ii)
create virtual machine, (iii) set ports, (iv) assign token to node, (v) set
cluster controller, (vi) start Cassandra

4.1 Experimental Services

The first cloud service is a three-tier web application providing video streaming
services to online users, comprised of: (i) an HAProxy Load Balancer which dis-
tributes client requests (i.e., download, or upload video) across application servers;
(ii) An Application Server Tier, where each application server is an Apache Tom-
cat server containing the video streaming web service; (iii) A Cassandra NoSQL
Distributed Data Storage Backend from where the necessary video content is re-
trieved. We have evaluated the ADVISE framework by generating client requests
under a stable rate, where the load depends on the type of the requests and the
size of the requested video, as shown in the workload pattern in Fig.6.

The second service in our evaluation is a Machine-to-Machine (M2M) DaaS
which processes information originating from several different types of data sen-
sors (e.g., temperature, atmospheric pressure, or pollution). Specifically, the
M2M DaaS is comprised of an Event Processing Service Topology and a Data End
Service Topology. Each service topology consists of two service units, one with
a processing goal, and the other acting as the balancer/controller. To stress this
cloud service we generate random sensor event information (see Fig. 6) which is
processed by the Event Processing Service Topology, and stored/retrieved from



284 G. Copil et al.

Table 2. Elasticity metrics for different service parts

Cloud
Service

SP Name Metrics

Video
Service

Application Server Tier cost, busy thread number, memory uti-
lization, request throughput

Distributed Video Storage Backend cost, CPU usage, memory usage, query
latency

M2M
DaaS

Cloud Service cost per client per hour (Cost/Client/h)

Event Processing Service Topology cost, response time, throughput, number
of clients

Data End Service Topology cost, latency, CPU usage

Fig. 6. Workload applied on the two services

the Data End Service Topology. Tables 1 and 2 list the ECPs associated to each
SP and the monitoring metrics analyzed for the two cloud services respectively.

4.2 Elasticity Behavior Estimation

Online Video Streaming Service. Fig. 7 depicts both the observed and the
estimated behavior for the Application Server Tier of the cloud service when a re-
move application server from tier ECP occurs (ECP1). At first, we observe that
the average request throughput per application server is decreasing. This
is due to two possible cases: (i) the video storage backend is under-provisioned
and cannot satisfy the current number of requests which, in turn, results in
requests being queued; (ii) there is a sudden drop in client requests which in-
dicates that the application servers are not utilized efficiently. We observe that
after the scale in action occurs, the average request throughput and
busy thread number rises which denotes that this behavior corresponds to
the second case where resources are now efficiently utilized. ADVISE revealed
an insightful correlation between two metrics to consider when deciding which
ECP to enforce for this behavior.

Similarly, in Fig. 8 we depict both the observed and the estimated behavior
for the Distributed Video Storage Backend when a scale out action occurs
(add Cassandra node to ring) due to high CPU utilization. We observe that
after the scale out action occurs, the actual CPU utilization decreases
to a normal value as also indicated by the estimation. Finally, from Fig. 7 and 8,



ADVISE – A Framework for Evaluating Cloud Service Elasticity Behavior 285

Fig. 7. Effect of ECP1 on the application server tier

Fig. 8. Effect of ECP4 on the entire video streaming service

we conclude that the ADVISE estimation successfully follows the actual behavior
pattern and that in both cases, as time passes, the curves tend to converge.

M2M DaaS. Fig. 9 shows how an ECP targeting a service unit affects the
entire cloud service. The Cost/Client/h is a complex metric (see Table 2)
which depicts how profitable is the service deployment in comparison to the
current number of users. Although Cost/Client/h is not accurately estimated,
due to the high fluctuation in number of clients, our approach approximates how
the cloud service would behave in terms of expected time and expected metric
fluctuations. This information is important for elasticity controllers to improve
their decisions when enforcing this ECP by knowing how the Cost/Client/h
for the entire cloud service would be affected. Although the CPU usage is not
estimated perfectly, since it is a highly oscillating metric, and it depends on the



286 G. Copil et al.

Fig. 9. Effect of ECP7 on M2M DaaS

Fig. 10. Effect of ECP8 on the data controller service unit

CPU usage at each service unit level, knowing the baseline of this metric can
also help in deciding whether this ECP is appropriate (e.g., for some applications
CPU usage above 90% for a period of time might be inadmissible).

ADVISE can estimate the effect of an ECP of a SP , on a different SP , even if
apparently unrelated. Fig. 10 depicts an estimation on how the Data Controller
Service Unit is impacted by the data transferred at the enforcement of ECP8.
In this case, the controller CPU usage drops, since the new node is added to
the ring, and a lot of effort goes for transferring data to the new node, then it
raises due to the fact that reconfigurations are also necessary on the controller,
following a slight decrease and stabilization. Therefore, even in circumstances of
random workload, ADVISE can give useful insights on how different SPs behave
when enforcing ECPs exposed by other SPs.



ADVISE – A Framework for Evaluating Cloud Service Elasticity Behavior 287

Table 3. Elasticity control processes time statistics

ECP Standard Deviation Average ECP Time (s)

Video
Service

ECP1 0 65
ECP2 0 15
ECP3 0 25
ECP4 1.414 150

M2M
Service

ECP1 4.5 45
ECP2 1.4 20
ECP3 0 20
ECP4 1 75

4.3 ECP Temporal Effect

Table 3 presents the average time required for an ECP to be completed. This
application-specific information is of high importance and affects the decision-
making process of the elasticity controller since it is an indicator of the grace
period which it should await until effects of the resizing actions are noticeable.
Thus, it defines the time granularity of which resizing actions should be taken
into consideration. For example, we observe that the process of adding and con-
figuring a new instance to the video service’s storage backend requires an average
time interval of 150 seconds which is mainly the time required to receive and
store data from other nodes of the ring. If decisions are taken in smaller intervals,
the effects of the previous action will not be part of the current decision process.

4.4 Quality of Results

ADVISE is able to estimate, in time, the elasticity behavior of different SPs by
considering the correlations amongst metrics and the ECPs which are enforced.
To evaluate the quality of our results, we have considered the fact that existing
tools do not produce continuous-time estimations. Thus, we choose to evalu-
ate ADVISE by computing the variance V ar and standard deviation StdDev
(Equation 9), over 100 estimations as the result differs little afterwise.

V armetrici =

∑
(estMetrici − obsMetrici)

2

nbEstimations− 1
, StdDevmetrici =

√
V armetrici(9)

Table 4 presents the accuracy of our results. When comparing the two services,
the Video Service achieves a higher accuracy (smaller standard deviation), since
the imposed workload is considerably stable. Focusing on the M2M DaaS esti-
mation accuracy, we observe that it depends on the granularity at which the
estimation is calculated, and on the ECP . Moreover, the standard deviation
depends on the metrics monitored for the different parts of the cloud service.
For instance, in the case of the M2M Service, the number of clients metric
can be hardly predicted, since we have sensors sending error or alarm-related
information. This is evident for the Event Processing Service Topology, where
the maximum variance for the number of clients is 4.9.



288 G. Copil et al.

Table 4. ECPs effect estimation quality statistics

Cloud
Service

Observed Cloud
Service Part

Elasticity Control
Process

Average Standard
Deviation

Maximum
Variance

Minimum
Variance

Video
Service

Video Service
ECP3 0.23 0.09 0.03

ECP4 0.61 0.99 0.23

Distributed Video
Storage Backend

ECP3 0.28 0.14 0.034

ECP4 0.2 0.042 0.04

Application Server
ECP1 0.43 0.4 0.06

ECP2 0.31 0.47 0.01

M2M
Service

Cloud Service ECP5 0.9 6.65 0.24

Data End Service
Topology

ECP5 0.23 0.35 7.44E-05

Event Processing
Service Topology

ECP7 1.1 4.9 0.046

ECP8 0.76 2.46 0.027

Data Controller
Service Unit

ECP6 0.12 0.25 0

ECP8 0.22 0.41 0

Data Node
Service Unit

ECP5 0.572 0.68 0.32

ECP6 0.573 1.4 0.07

Event Processing
Service Unit

ECP7 1.08 3.59 0.11

ECP8 0.77 1.9 0.14

Overall, even in random cloud service load situations, the ADVISE framework
analyses and provides accurate information for elasticity controllers, allowing
them to improve the quality of control decisions, with regard to the evolution
of monitored metrics at the different cloud service levels. Without this kind of
estimation, elasticity controllers would need to use VM-level profiling informa-
tion, while they have to control complex cloud services. This information, for
each SP , is valuable for controlling elasticity of complex cloud services, which
expose complex control mechanisms.

5 Related Work

Verma et al. [3] study the impact of reconfiguration actions on system perfor-
mance. They observe infrastructure level reconfiguration actions, with actions on
live migration, and observe that the VM live migration is affected by the CPU
usage of the source virtual machine, both in terms of the migration duration
and application performance. The authors conclude with a list of recommen-
dations on dynamic resource allocation. Kaviani et al. [10] propose profiling as
a service, to be offered to other cloud customers, trying to find tradeoffs be-
tween profiling accuracy, performance overhead, and costs incurred. Zhang et
al. [4] propose algorithms for performance tracking of dynamic cloud applica-
tions, predicting metrics values like throughput or response time. Shen et al. [5]
propose the CloudScale framework which uses resource prediction for automat-
ing resource allocation according to service level objectives (SLOs) with mini-
mum cost. Based on resource allocation prediction, CloudScale uses predictive



ADVISE – A Framework for Evaluating Cloud Service Elasticity Behavior 289

migration for solving scaling conflicts (i.e. there are not enough resources for
accommodating scale-up requirements) and CPU voltage and frequency for sav-
ing energy with minimum SLOs impact. Compared with this research work, we
construct our model considering multiple levels of metrics, depending on the
application structure for which the behavior is learned. Moreover, the stress
factors considered are also adapted to the application structure and the elas-
ticity capabilities (i.e. action types) enabled for that application type. Juve et
al. [11] propose a system which helps at automating the provisioning process
for cloud-based applications. They consider two application models, one work-
flow application and one data storage case, and show how for these cases the
applications can be deployed and configured automatically. Li et al. [12] propose
CloudProphet framework, which uses resource events and dependencies among
them for predicting web application performance on the cloud.

Compared with presented research work, we focus not only on estimating the
effect of an elasticity control process on the service part with which it is associ-
ated, but on different other parts of the cloud service. Moreover, we estimate and
evaluate the elasticity behavior of different cloud service parts, in time, because
we are not only interested in the effect after a predetermined period, but also
with the pattern of the effect that the respective ECP introduces.

6 Conclusions and Future Work

We have presented ADVISE framework, which is able to estimate the behavior
of cloud service parts, in time, when enforcing various ECPs, by taking into
consideration different types of information represented through the elasticity
dependency graph. Based on results from two different cloud services, we show
that ADVISE framework is indeed able to advise elasticity controllers about
cloud service behavior, contributing towards improving cloud service elasticity.

As future work, we intend to integrate ADVISE with the rSYBL elasticity
controller [8] and develop new decision mechanisms that take continuous ECP
effects as inputs, taking decisions based on the expected behavior of each SP .

References

1. Al-Shishtawy, A., Vlassov, V.: Elastman: Autonomic elasticity manager for cloud-
based key-value stores. In: Proceedings of the 22nd International Symposium on
High-Performance Parallel and Distributed Computing, HPDC 2013, pp. 115–116.
ACM, New York (2013)

2. Wang, W., Li, B., Liang, B.: To reserve or not to reserve: Optimal online multi-
instance acquisition in IaaS clouds. Presented as part of the 10th International
Conference on Autonomic Computing, Berkeley, CA, USENIX, pp. 13–22 (2013)

3. Verma, A., Kumar, G., Koller, R.: The cost of reconfiguration in a cloud. In:
Proceedings of the 11th International Middleware Conference Industrial Track.
Middleware Industrial Track 2010, pp. 11–16. ACM, New York (2010)

4. Zhang, L., Meng, X., Meng, S., Tan, J.: K-scope: Online performance tracking for
dynamic cloud applications. Presented as part of the 10th International Conference
on Autonomic Computing, Berkeley, CA, USENIX, pp. 29–32 (2013)



290 G. Copil et al.

5. Shen, Z., Subbiah, S., Gu, X., Wilkes, J.: Cloudscale: elastic resource scaling for
multi-tenant cloud systems. In: Proceedings of the 2nd ACM Symposium on Cloud
Computing, SOCC 2011, pp. 5:1–5:14. ACM, New York (2011)

6. Moldovan, D., Copil, G., Truong, H.L., Dustdar, S.: Mela: Monitoring and analyz-
ing elasticity of cloud services. In: 2013 IEEE Fifth International Conference on
Cloud Computing Technology and Science, CloudCom (2013)

7. OASIS Committee Specification Draft 01: Topology and Orchestration Specifica-
tion for Cloud Applications Version 1.0 (2012)

8. Copil, G., Moldovan, D., Truong, H.-L., Dustdar, S.: Multi-level Elasticity Control
of Cloud Services. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013.
LNCS, vol. 8274, pp. 429–436. Springer, Heidelberg (2013)

9. Trihinas, D., Pallis, G., Dikaiakos, M.D.: JCatascopia: Monitoring Elastically
Adaptive Applications in the Cloud. In: 14th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing (2014)

10. Kaviani, N., Wohlstadter, E., Lea, R.: Profiling-as-a-service: Adaptive scalable re-
source profiling for the cloud in the cloud. In: Kappel, G., Maamar, Z., Motahari-
Nezhad, H.R. (eds.) Service Oriented Computing. LNCS, vol. 7084, pp. 157–171.
Springer, Heidelberg (2011)

11. Juve, G., Deelman, E.: Automating application deployment in infrastructure
clouds. In: Proceedings of the 2011 IEEE Third International Conference on Cloud
Computing Technology and Science, CLOUDCOM 2011, pp. 658–665. IEEE Com-
puter Society, Washington, DC (2011)

12. Li, A., Zong, X., Kandula, S., Yang, X., Zhang, M.: Cloudprophet: towards
application performance prediction in cloud. In: Proceedings of theACMSIGCOMM
2011 Conference, SIGCOMM 2011. ACM, New York (2011)


	ADVISE – A Framework for Evaluating Cloud
Service Elasticity Behavior

	1 Introduction
	2 Cloud Service Structural and Runtime Information
	2.1 Cloud Service Information
	2.2 Elasticity Control Processes
	2.3 Cloud Service Elasticity during Runtime

	3 Evaluating Cloud Service Elasticity Behavior
	3.1 Learning Process
	3.2 Determining the Expected Elasticity Behavior

	4 Experiments
	4.1 Experimental Services
	4.2 Elasticity Behavior Estimation
	4.3 ECP Temporal Effect
	4.4 Quality of Results

	5 Related Work
	6 Conclusions and Future Work
	References




