
Architecture-Centric Design of Complex
Message-Based Service Systems

Christoph Dorn, Philipp Waibel, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology, Austria
{dorn,dustdar}@infosys.tuwien.ac.at, philipp.waibel@gmail.com

Abstract. Complex, message-based service systems discourage central
execution control, require extremely loose coupling, have to cope with
unpredictable availability of individual (composite) services, and may
experience a dynamically changing number of service instances. At the
topmost level, the architecture of such a complex system often follows a
messaging style most naturally. A major problem during the design of
these systems is achieving an overall consistent configuration (i.e, ensur-
ing intended message routing across producers, consumers, and brokers).
While orchestration or choreography-based approaches support the de-
sign of individual composite services along a workflow-centric paradigm,
they are an awkward fit for specifying a message-centric architecture.
In this paper, we present an architecture-centric approach to designing
complex service systems. Specifically we propose modeling the system’s
high-level architecture with an architecture description language (ADL).
The ADL captures the message-centric configuration which subsequently
allows for consistency checking. An architecture-to-configuration trans-
formation ensures that the individual deployed services follow the ar-
chitecture without having to rely on a central coordinator at runtime.
Utilizing our provided tool support, we demonstrate the successful ap-
plication of our methodology on a real world service system.

Keywords: Decentralized Composite Services, Architecture Description
Language, Consistency Checking, Message-based Style.

1 Introduction

The last two decades have witnessed the emergence of various techniques for com-
posing complex service systems. Composition approaches based on orchestration
languages such as BPEL [12] and YAWL [1] or those based on choreography lan-
guages such as WS-CDL1 share a common assumption on the underlying system
architecture: namely workflow-like control and data flow among services. Not
all application scenarios, however, fit this workflow-centric scheme and hence
existing approaches are cumbersome to apply. A publish-subscribe architecture
is a better match for a complex service system which (i) discourages centralized
1 Web Services Choreography Description Language
http://www.w3.org/TR/ws-cdl-10/

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 184–198, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://www.w3.org/TR/ws-cdl-10/


Architecture-Centric Design of Complex Message-Based Service Systems 185

execution control, (ii) consumes and provides data rather than method invoca-
tions, (iii) experiences unpredictable service availability, and (iv) must support
a dynamically changing number of service instances.

In this paper we address challenges emerging from the design and configura-
tion efforts of such decentralized, highly decoupled, event-based (composite) ser-
vices. A system architect following a naive approach would specify the individual
(composite) services and wire them up in an ad-hoc manner via message queues.
The resulting message flow might be documented somewhere but the overall
consistency of the ultimately developed services and the deployed message bro-
kers cannot be guaranteed. The ground truth message flow remains implicit in
the configuration of individual services and the utilized message-oriented mid-
dleware (MOM). It is only a matter of time and complexity before the design
and configuration of such a composite system becomes inconsistent. An engineer
engaging in example tasks such as restructuring the message flow, integrating
additional services, deploying additional instances, or adapting services has lit-
tle means to ensure that a particular change leaves the updated system in a
coherent state. Enterprise Application Integration (EAI) patterns [10] guide the
architect in how to structure the overall system but cannot guarantee correct
implementation. Consequently high costs occur in terms of time and invested
resources when attempting to maintain consistency, as well as for detecting and
repairing inconsistencies.

We propose to address this problem through a combination of architecture-
centric composite service specification, separation of message routing aspects
from local invocation-centric message processing, and architecture-to-configura-
tion transformation. Specifically, our approach applies a component and connec-
tor view for describing the high-level, overall complex service system’s
architecture. The components represent individual, composite services while the
connectors represent message brokers. The resulting centralized system architec-
ture serves as the authoritative source for configuring the MOM and each ser-
vice’s publish/subscribe endpoints. Individual services leverage the advantages
of proven technologies such as Enterprise Service Buses (ESB) and workflow en-
gines for processing messages locally. This cleanly separates the responsibility
of designing the overall, distributed architecture from designing its constituent
components. Constraint checks ensure that the architecture itself is consistent.
Ultimately transformations derive the actual technology configuration automat-
ically from the architecture description and thus guarantee consistency.

In support of this approach, our contribution in this paper is four-fold. We
provide (i) an message-centric extension for the Architecture Description Lan-
guage xADL [5] (Sec. 5.2), (ii) message-centric architecture consistency checking
(Sec. 5.3), (iii) tool support through extension of ArchStudio4 [4] (Sec. 6), and
(iv) proof-of-concept architecture-to-configuration transformations for the Ac-
tiveMQ JMS server and the Mule ESB (Sec. 6.1). We applied our approach and
techniques to an industry case study, demonstrating that our methodology is
not only feasible, but also easily applicable in real world situations (Sec. 7).



186 C. Dorn, P. Waibel, and S. Dustdar

2 Motivating Scenario

A parking management system consists of a high number of distributed ser-
vices. Figure 1 depicts a simplified, typical system configuration. Data services
at parking sites provide primarily static and highly dynamic information about
the parking sites structure (e.g., structure layout, spots per vehicle type), proper-
ties (e.g., location, typical occupation level at a given time), the current capacity,
and reserved spots. Filter services obtain these details and bring all messages to a
uniform format for structural data and dynamic change events (i.e., EAI message
translator pattern and the normalizer pattern). Aggregator services maintain a
coherent, property-specific view on the parking structures. For example, one ag-
gregator provides details on all parking structures in a particular region, another
specializes on caravan parking. Ultimately, Point-of-Sales (POS) services serve
particular business cases such as hotels, airports, train stations, rental-car com-
panies, or car-sharing initiatives for reserving parking spots. These POS services
obtain the structural data, and changes thereof from aggregator services but
receive dynamic updates from filter services directly.

Fig. 1. Parking Management Complex Service System comprising, Data Services, Filter
Services, Aggregator Services, and POS Services, as well as message brokers. (Note that
icons are meant to depict services and not servers.)

This scenario reflects the challenges from the introduction. The overall system
relies primarily on asynchronous message exchange. There is no single service
that would logically serve as a central point of control. Individual service partic-
ipants may be disconnected or briefly overloaded and thus temporarily unavail-
able. New services may be introduced anytime but must not affect the remaining
service participants’ interaction nor require their extensive reconfiguration. Our
approach aims at preventing (respectively detecting) following example prob-
lems: a Data service publishing its updates to the wrong topic, respectively a
Filter service reading from the wrong topic; an Aggregator service expecting an
incompatible message type from a filter. Multiple POS services using a single,



Architecture-Centric Design of Complex Message-Based Service Systems 187

shared reply queue for asynchronous requests, or a POS service connecting to a
non-existing request topic.

3 Related Work

Choreography and Orchestration are the two main contemporary paradigms for
addressing design and configuration of complex service systems. Orchestration
languages such as BPEL [12], JOpera [13], or YAWL [1] represent centralized
approaches and thus need a single coordinating entity (i.e., the workflow en-
gine) at runtime. Decentralized orchestration approaches (e.g.,[11,16]) mitigate
this shortcoming through distributing control flow among the participating ser-
vices. While orchestration takes on a single process view including all participat-
ing services, choreography specification languages such as BPEL4Chor [6], Let’s
Dance [17], or MAP [3], on the other hand, aim at a holistic, overarching system
view. Both choreography and orchestration, however, presume a workflow-like
system style, with services playing fixed roles, and being highly available (respec-
tively easily replaceable on the fly). It is rather cumbersome to model complex
service systems that experience dynamically fluctuating service instances, mul-
tiple (a-priori unknown) instances of the same service type, and temporal un-
availability with the languages and approaches outlined above. Our work caters
predominately to systems that more naturally rely on one-way events and less
on request/reply style information exchange. In addition, our approach offers
more flexibility on where to locate and manage coordinating elements by strictly
separating them from services concerned with business logic as well as modeling
them as first class entities. Enterprise Application Integration patterns (EAI)
[10] demonstrate the benefits of message-centric service interaction. Scheibler et
al. [14] provide a framework for executing EAI-centric configurations; however,
by means of a central workflow engine.

At no point are we suggesting that our approach is superior to any of these
existing approaches, methodologies, or technologies. We rather see our work as
focusing on different service system characteristics. We believe that integrating
these existing technologies are well worth investigating as part of future work.
This holds also true for existing research efforts that focus on other qualities
than high-level architectural consistency. Work on integrating QoS or resource
allocation is highly relevant but currently not applicable to our scenarios. Such
approaches [7] typically rely on centralized control and/or exclusively employ
the request/reply invocation pattern.

Our work takes inspiration from significant contributions in the software ar-
chitecture domain. Zheng and Taylor couple architecture-implementation con-
formance with change management in their 1.x mapping methodology [18]. 1.x
mapping focuses primarily on maintaining consistency between an architecture
specification and its underlying Java implementation and how changes are propa-
gated from the architect to the software developer. We follow a similar procedure
by separating high-level architectural design and configuration decisions from the
engineers that implement the actual (composite) services.



188 C. Dorn, P. Waibel, and S. Dustdar

Garcia et al. investigate the issues of architecture-centric consistency bottom-
up [9]. In contrast to our top-down specification of event handling, Garcia et
al. identify message flows from source code of event-based systems implemented
in Java or Scala. Their technique appears also very suitable for recovering the
messaging architecture of an already existing complex service system.

Baresi et al. model publish/subscribe systems for rigorous verification [2].
Their approach requires modeling of a component’s internal publishing/subscrib-
ing behavior in order to evaluate message reliability, ordering, filtering, priorities,
and delays. On the one hand, we do not assume knowledge of precise service in-
ternal behavior at the architectural level, and on the other hand, such analysis
is significantly more fine-grained than required for our purpose.

The SASSY framework [8] targets service system specification by domain ex-
perts through the Service Activity Schema (SAS) language. Inspired by BPMN,
SAS provides OR, XOR, AND gateways, loops, activities, input/output ele-
ments, and external services for specifying the system’s data and control flow.
The resulting specification lacks first class connectors and primarily lends itself
to workflow-style systems.

4 Approach

Our approach to designing and configuring a complex service system consists of
four phases (depicted in Figure 2). First, a high-level architectural component
and connector view identifies the main (composite) services (architecture-level
components), and their interactions via messages (architecture-level interfaces).
Explicit message channels (architecture-level connectors) enable the clear sepa-
ration of interaction concerns from (service) logic concerns [15]. An architect may
model connector-specific properties, configurations, simplify N:M links (become
N:1:M), interaction monitoring, etc when connectors become first class model
elements. In our specific context, the high-level architecture also separates the
responsibility of the overall service system architect from engineers tasked with
the internal design and wiring of the individual services (incl. applied tools such
as ESBs). We apply an existing extensible Architecture Description Language
(xADL) [5] for expressing the high-level architecture. Subsection 5.1 below pro-
vides a short introduction of xADL and its main modeling elements.

At any stage in the architecture modeling, the architect may choose to spec-
ify messaging-specific configuration properties. For connectors, these properties
define messaging middleware-specific details such as channel name, applicable
protocol, or deployment host. For interfaces, these properties include messaging
endpoint related details such as reply channel references, event-centric request
endpoint references, as well as framework-centric properties.

Upon triggering consistency checking, our algorithm iterates through all com-
ponents, connectors, and links that exhibit messaging-specific configurations. It
verifies allowed link cardinalities, missing configuration values, and matching
interface details. For a detailed description of constraints see Subsection 5.3.

For all elements that passed these constraint checks, the system architect may
then trigger architecture-to-configuration transformations. Distinct tool-centric



Architecture-Centric Design of Complex Message-Based Service Systems 189

transformations exist for connectors and components. Connectors plus messaging-
centric configuration become a message broker configuration; in our case a set
of ActiveMQ configurations. Components plus messaging-centric configuration
translate into Mule workflow skeletons (see Subsection 6.1).

Fig. 2. A methodology for designing and configuring complex service systems

Figure 2 displays the four phases in a sequential manner. The system architect
and her co-worker, however, will typically progress through these phases in an
iterative manner. An initial configuration may sufficiently serve for checking
overall consistency and for identifying core individual services. This approach
addresses the four properties of complex service systems outlined earlier in the
introduction:

No centralized execution control. The high-level system architecture con-
stitutes a central, authoritative specification only at design-time. The top-
down specification of message infrastructure and message-centric service end-
points ensures that the decentralized elements remain true to the architecture
at runtime.

Publish/Subscribe interaction. The high-level composite services in this sys-
temareprimarily concernedwith their business logic andnothowmany sources
they receive information from or how many destination in turn are interested
in their processed information. Hence, an event-driven interaction style best
reflects this loose coupling.

Unpredictable service availability. The message-oriented architecture ena-
bles reasoning on the effect of unavailable services. As a durable subscriber,
individual services may process at their own pace without affecting simultane-
ous subscribers. Explicit connector modeling also enable reasoning on where
to host which channels, further decoupling message routing from processing.



190 C. Dorn, P. Waibel, and S. Dustdar

Dynamically fluctuating service instances the system architect may spec-
ify in the architecture that theremay existmultiple instances of particular com-
posite service types, and control their impact on the overall system through
selection of publish-subscribe versus point-to-point channel connectors.

5 Architecture-Centric Design and Configuration

5.1 Background

The extensible Architecture Description Language xADL 2.0 [5] comprises a set
of XML schemas (XSD) explicitly aimed at encouraging simple, domain-specific
model element refinements, extensions, and constraints.2 We will briefly describe
xADL’s main elements that are relevant for our purpose and outline where our
extensions plug into the overall schema hierarchy. The interested reader will find
an extensive discussion of the language’s features in [5].

At its core, xADL provides a component and connector view where connectors
are treated as first class entities (i.e., components and connectors are wired up
via links). It introduces a simple type systems, thus differentiating between Com-
ponent and ComponentType, Connector and ConnectorType, as well as Interface
and InterfaceType. This type-instance hierarchy allows reasoning on common
component (i.e. service) and connector (i.e., message middleware) behavior or
implementation. For our purpose, within the scope of the xADL types schema,
the architect defines general publish-subscribe and point-to-point channel con-
nector types in addition to all the various component types foreseen in the com-
plex service system. ComponentTypes and ConnectorTypes expose Signatures
which in turn may refer to interface types. It is thus possible to distinguish be-
tween provided and required interfaces. A messaging connector type typically
exhibits a signature for sending messages and a signature for retrieving mes-
sages, both according to the same interface type. The xADL structure schema
subsequently exhibits all the component and connector instances including their
specific wiring. Type inheritance is optional.

A second set of schemas target the specification of implementation details.
The abstract implementation schema identifies the plug-in locations where con-
crete implementations subsequently provide technology specific details. Natively
xADL provides only modeling constructs for Java-based implementations de-
ployed on a single JVM. Figure 3 depicts the xADL modeling constructs, their
relations, and our extensions.

5.2 Message-Centric ADL Extension

The main architecture modeling concerns in a message-centric complex service
system are configuration of the messaging middleware, definition of message
channels, direction and type of messages, message request/reply correlation be-
yond generic one-way messages, and messaging middleware access properties.
2 Throughout this paper any reference to xADL always implies xADL version 2.0.



Architecture-Centric Design of Complex Message-Based Service Systems 191

Fig. 3. Simplified xADL schema excerpt including the messaging extensions (dark grey)

To this end, we provide a set of four implementation extensions (see also Figure 3
bottom). The schemas for Channel Implementation and Endpoint Implementa-
tion provide general messaging properties, while Mule Implementation and JMS
Implementation express technology specific properties for Mule and ActiveMQ
respectively. The separation into four schemas also reflect the fact that each
schema applies only to a particular core architecture element.

Channel Implementation (aka EAI message channel pattern) applies to a
Connector element and specifies whether the Connector behaves as a publish-
subscribe channel or point-to-point channel and provides the respective name.

Endpoint Implementation (aka EAI message adapter pattern) applies to an
Interface element associated with a Component (and will be ignored when
the Interface is associated with a Connector). The Durable_Name properties
identifies the subscriber of a durable subscription towards the channel con-
nector. When a component dispatches a message for which is expects a reply,
its sending interface must identify the point-to-point channel where it ex-
pects to eventually receive the reply message from via the Reply_To_Queue
property. To completely specify a request/reply pattern, the requesting com-
ponent exhibits a receiving interface that signals its role via the Connec-
tion_To_Request_Endpoint property. A component may thus exhibit mul-
tiple, unambiguously defined request/reply interface pairs. On the reply-
ing component (within a request/reply pattern), the receiving in interface
points to the replying out interface via the Reply_To_Queue property,
which in turn completes the bi-directional references via the Connection_
To_Request_Endpoint property. The Endpoint_Position_No property al-
lows for specifying an ordering of interfaces.



192 C. Dorn, P. Waibel, and S. Dustdar

Mule Implementation applies to a Component element, indicating that the
component is a composite service, specified by a Mule workflow. The con-
figuration properties comprise the file_id where to save the Mule workflow
skeleton and generic parameter/value AdditionalConfig properties targeted
at Mule. All components with the same file_id end up in the same configu-
ration and thus will be collocated on the same Mule instance.

JMS Implementation applies to a ConnectorType element and configures an
ActiveMQ instance. The Transport_Configuration property specifies at least
one ActiveMQ connection endpoint URL. The optional JMS_Specification_
Version property holds the JMS protocol version, by default 1.1. The op-
tional Persistence_Configuration property captures persistence adapter (de-
fault is kahaDB) and storage directory. Finally, the file_id property deter-
mines which JMS endpoints are hosted on the same ActiveMQ instance.

5.3 Consistency Checks

We have devised an initial set of soft and hard consistency checks that issue warn-
ings and recommendations on how to mitigate the inconsistency. The checks are
restricted to Component, Connectors, ConnectorTypes, and Interfaces refined
with our xADL extensions. Basic checks such as interface direction and type
compatibility are already available in the ArchStudio4 (see Sec. 6).

Most messaging-centric checks apply at the architecture level. We detect when
there exists a link directly between two components or two connectors. Two
connector instances of the same connector type cannot share the same channel
name. Subscriber and publishers would otherwise share the same channel which
is in conflict with the architecture-prescribed distinct channels. Every component
interface can only link to a single connector interface as the interface represents
the message channel at the service side. We recommend that every connector has
exactly one in and one out interface. The use of inout interfaces is discouraged.
Instead a set of separate request and reply queues, thus implying separate in
and out interfaces, unambiguously document the intent of the inout direction.
Our checks warn when multiple message consumers link to the out interface of
a point-to-point channel. Only one nondeterministic subscriber will be able to
obtain the message. We also warn when a publish-subscribe channel (rather than
a point-to-point channel) is used within the scope of a request/reply pattern.
With multiple subscribers to the request topic, multiple responses may occur.

Complementary component level checks ensure the proper use of the message-
centric request/response pattern. A response endpoint (interface) must refer to
its respective, initiating request endpoint (interface), both must exist, reside on
the same component, and may not be identical. Additional tool-centric checks
ensure that the architect provided all required information for transforming the
model to message broker and ESB configuration (see following section 6).



Architecture-Centric Design of Complex Message-Based Service Systems 193

6 Tool Support

6.1 Architecture-to-Configuration Transformation

For the purpose of this paper, we focused on two architecture-to-configuration
transformations. As example for configuring a message-oriented middleware, we
generate the XML-based ActiveMQ Server configuration. A ConnectorType’s
JMS implementation is sufficient for deriving a server’s configuration which
consists of two parts. The Persistence_Configuration determines the persis-
tenceAdapter and all Transport_Configurations determine the set of available
transportConnectors. The transformation also ensures traceability by adding the
connector type’s id as a comment to the configuration files broker element. Note
that the transformation ignores any connectors and thus doesn’t specify what
queues or topics the server will eventually manage as ActiveMQ creates these on
the fly. Ultimately, every connector type with a JMS implementation results in
a separate transportConnector element. Configurations for connector types that
share a file_id are aggregated into a single configuration file and subsequently
end up collocated on the same ActiveMQ server instance.

As example for configuring a service endpoint, we provide the complete mes-
sage specification for a Mule workflow, i.e., a workflow designer may neglect any
message-broker related details and can focus purely on the local message pro-
cessing. The Mule workflow configuration captures components, interfaces, and
their wiring to the various connectors, while the ActiveMQ service configuration
represents only the connector types in complex service system’s architecture.
Each component results in a separate mule workflow specification. The transfor-
mation places all workflow specifications from component with the same file_id
in the same file, and thus collocates them on the same Mule ESB instance. To
this end, the transformation first retrieves all connectors (with channel imple-
mentation) and obtains the JMS configuration from the corresponding connector
type. Each distinct connector type becomes an activemq-connector element. For
each interface, a new [inbound|outbound]-endpoint element obtains the config-
uration properties from the endpoint implementation, the channel name from
the linked connector’s channel implementation, and the respective connector-ref
to the activemq-connector. Our transformation treats two interfaces coupled via
a Connection_To_Request_Endpoint property and Reply_To_Queue property
differently depending on whether they represent the requesting component or the
replying component. In case of the former, the respective two mule endpoints
become wrapped in a request-reply element and a preceding message-properties-
transformer element. In case of the latter, the receiving interface becomes a
inbound-endpoint with an exchange-pattern="request-response" property while
the outgoing interface is ignored. The respective reply endpoint information ar-
rives embedded in the request message at runtime.

6.2 ArchStudio Integration

We realized our approach as a prototype on top of ArchStudio 4 [4], a visual,
Eclipse-based IDE for editing xADL documents. ArchStudio comes with two



194 C. Dorn, P. Waibel, and S. Dustdar

Fig. 4. ArchStudio extension screenshot: schema extension (left), transformation con-
figuration file mapping (top), exemplary inconsistency alerts (inset)

main editors: ArchEdit provides access to the underlying xADL document (in-
cluding all extensions) as a tree, while Archipelago offers a drag-and-drop, point-
and-click interface for placing and wiring up components and connectors. Arch-
Studio foresees the integration of additional functionality through extensions.

Schema Extensions. For the purpose of our approach, it proved sufficient
to extend xADL at the implementation schema level. The additional elements
(recall subsection 5.2) blend in smoothly with the existing user interface, merely
appearing as new implementation options (see Figure 4 left). An existing Arch-
Studio 4 user won’t have to learn any new steps for utilizing our schema exten-
sions. Under the hood, ArchStudio applies its Apigen tool for creating a data
binding library for each xADL schema. ArchEdit and Apigen’s limitations com-
bined result in configuration properties being limited to strings, references, and
complex data structures thereof.

Consistency Checking. We implemented the consistency checker as a ded-
icated component within ArchStudio. The checker raises warnings and errors
during execution, depending on the consistency rule severity. The user may de-
cide to ignore warnings and still continue to configuration transformation later
on. Transformation is disabled, however, in the presence of consistency errors (see
Figure 4 inset). In general, consistency checking is cheap. The consistency algo-
rithm’s runtime complexity is Θ(comp+ l) for architecture components (comp)
and links (l) as rules are either local (e.g., interface properties, interface link
cardinality) or access only a link’s two referenced elements (e.g., compatible



Architecture-Centric Design of Complex Message-Based Service Systems 195

interface direction). Checking the uniqueness of channel names of connectors
deriving from the same connector type is slightly less efficient: the algorithm’s
complexity is Θ(n log n) in the number of connectors.

Transformation. As mentioned above, the actual transformation component
becomes only available after passing all consistency checks. The only user inter-
action with the transformation consists of mapping a component’s and connector
type’s file id to an actual file location (see Figure 4 top).

We are currently in the process of open-sourcing our tool as an ArchStudio4
add-on and will update this paper with a link to the tool website as soon as we
have put together sufficient installation documentation. For now, the extending
xADL schema documents, example architecture model, and corresponding gen-
erated configuration files are available as Supporting Online Material (SOM) at
http://wp.me/P1xPeS-5H.

7 Proof-of-Concept Case Study

We utilized our prototype tool support for developing a parking management
complex service system. The system is similar to the one introduced in the mo-
tivating scenario but for reasons of confidentiality we cannot disclose the actual
system architecture. Any depicted and described architecture excerpts, hence,
closely match the system in structure but exhibit generalized element names and
properties. We briefly report on the development process and respective applica-
tion of our approach to demonstrate not only feasibility but also actual benefit
in a representative, real-world development environment.

Our approach and tool support allows for an iteratively refining system design
methodology. As the architecture goes through various iterations, the architect
gradually assigns implementation elements to components, connectors, and in-
terfaces. Mule workflow developers pick the various components and generated
workflow specification and implement the internal composite service behavior.
Specification and changes need not necessarily flow only from architecture to
configuration. Due to page constraints, we are unable to describe our additional
tool capabilities such as generating the messaging endpoints within pre-existing
Mule workflows (rather than from-scratch workflow generation), non-destructive
change propagation of architecture updates into workflow configurations, and
consistency checking upon changing message-centric elements conducted within
the mule workflow editor. These aspects are subject to future publications. The
architect runs consistency checks in any development phase, after any update
to the architecture or Mule workflow and thus can guarantee that inconsisten-
cies are immediately detected, respectively that the prescribed architecture and
system are in a consistent configuration.

Ultimately, the architect arrives at a model similar to the excerpt in Figure 5.
It contains one composite Filter Service, Aggregator Service, and POS Service
each (for a total of eight Mule workflows), along with the five intermediate mes-
sage queues/topics. The Filter Service comprises of two components: one Mule
workflow for filtering and enhancing dynamic changes events from parking sites

http://wp.me/P1xPeS-5H


196 C. Dorn, P. Waibel, and S. Dustdar

Fig. 5. Evaluation system architecture except: depicting composite service components
(dark/blue) and message broker connectors (light/beige) - ArchStudio screenshot (col-
ors online)

(not shown), and one workflow processing structural events. The composite Ag-
gregator Service comprises three workflows: one for obtaining structural data
(typically provided by more than one Filter Service), one for checking the struc-
tural data for changes relevant to POS services and dispatching those changes,
and one for providing POS services with initial complete state information. A
generic POS Service contains at minimum flows for (i) obtaining initial data (in
this case, the POS service is aware from which Aggregator Service it receives such
initial information), for (ii) receiving structural updates and for (iii) dynamic
data updates. Further locally relevant flows which contain the actual business
logic are irrelevant at this architectural level. Similarly, shared databases serving
multiple flows within a single Mule instance need not be configured at this level
but instead are within the scope of a Mule configuration file. Note also that the
architectural substructures are included for sake of better understanding. Collo-
cation of mule workflows depends solely on specifying the same implementation
file id property.

Tool supported consistency checking pays of even for this small architecture
excerpt. A single execution of the all consistency checks outlined in Section 5.3
on the architecture in Figure 5 results in four architecture-level checks, four
link-specific checks, three connector checks, one connector type check, and six
component checks (including respective interfaces). Remember that an archi-
tecture would need to conduct many more checks when conducting the same
analysis on Mule and ActiveMQ files alone. The ActiveMQ configuration is void
of any topic and queues definitions, thus there exists no authoritative, explicit
connector element. Observing a simple example such as ensuring that a queue
has only a single receiver or that queue/topic names are unique: the architect
needs to traverse the Mule configuration for each queue and topic definition first
to the corresponding Mule messaging endpoint definitions (requiring a detailed
understanding of the configuration file) and then pairwise compare this informa-
tion across all included mule workflows (i.e., n ∗ (n− 1)/2 comparisons, thus 45x
for our use case’s 10 connected component interfaces); a tedious and error-prone
task, especially for larger systems.



Architecture-Centric Design of Complex Message-Based Service Systems 197

Discussion and Limitations

Complex service systems do not necessarily need to exhibit all the challeng-
ing properties listed in the introduction: prohibiting centralized execution con-
trol, consuming and providing data rather than invocations, experiencing unpre-
dictable service availability, and supporting a dynamically changing number of
service instances. Systems that encounter only a subset will equally benefit from
our approach and tools.

Currently, our architecture-to-configurationtransformationproduces onlyMule
workflows and ActiveMQ configurations. The underlying real world development
project underlying our evaluation scenario identified these technologies as suffi-
cient and providing a good balance between a light-weight messaging framework
and the expressive and extensible Mule workflows for composite service design.
Our approach remains valid for other messaging protocols or frameworks as well as
for other service designmethodologies.The architecture-level consistency checking
mechanism remain applicable. Ultimately, supporting other runtime frameworks
does not necessarily require adapting our ArchStudio add-on. For small deviating
tasks, such as generating an OpenJMS server configuration, access to the architec-
ture model via Apigen’s data binding libraries, or directly via the xADL XML file
will be sufficient.

8 Conclusions

We made the case for architecture-centric design of complex, message-based ser-
vice systems. Our approach targets the specification of systems comprising dy-
namically fluctuating instances of message-driven, highly decoupled composite
services with uncertain availability. Our extension to xADL provides the basis
for central specification and consistency checking at design-time, subsequently
achieving consistent run-time configuration without having to rely on a cen-
tral coordinator. Our prototypical tool integrated with ArchStudio4 produces
configurations for the ActiveMQ message broker and Mule workflow endpoints.

Our future work focuses on following two aspects: on the one hand, we plan to
extend the set of supported protocols and tools (e.g., the advanced message queue
protocol AMQP or WS-Notification). It will be especially worthwhile evaluating
how the EAI patterns (currently modeled internally in Mule) may be explicitly
supported by our ADL and subsequently mapped to EAI frameworks such as
Apache Camel. On the other hand, we will investigate additional analysis aspects
such as optimal channel allocation across message-broker instances and their
location in proximity to the various services.

Acknowledgment. This work is partially supported by the European Union
within the SIMPLI-CITY FP7-ICT project (Grant agreement no. 318201).



198 C. Dorn, P. Waibel, and S. Dustdar

References
1. van der Aalst, W., Hofstede, A.H.M.T.: Yawl: Yet another workflow language.

Information Systems 30, 245–275 (2003)
2. Baresi, L., Ghezzi, C., Mottola, L.: On accurate automatic verification of publish-

subscribe architectures. In: Proc. of the 29th International Conference on Software
Engineering, ICSE 2007, pp. 199–208. IEEE Computer Society, Washington, DC
(2007)

3. Barker, A., Walton, C., Robertson, D.: Choreographing web services. IEEE Trans-
actions on Services Computing 2(2), 152–166 (2009)

4. Dashofy, E., Asuncion, H., Hendrickson, S., Suryanarayana, G., Georgas, J., Taylor,
R.: Archstudio 4: An architecture-based meta-modeling environment. In: Compan-
ion to the Proc. of the 29th International Conference on Software Engineering, pp.
67–68. IEEE Computer Society, Washington, DC (2007)

5. Dashofy, E.M., Van der Hoek, A., Taylor, R.N.: A highly-extensible, xml-based ar-
chitecture description language. In: Proceedings of the Working IEEE/IFIP Con-
ference on Software Architecture, pp. 103–112. IEEE (2001)

6. Decker, G., Kopp, O., Leymann, F., Weske, M.: Bpel4chor: Extending bpel for
modeling choreographies. In: IEEE 20th International Conference on Web Services,
pp. 296–303. IEEE Computer Society, Los Alamitos (2007)

7. Dustdar, S., Schreiner, W.: A survey on web services composition. Int. J. Web Grid
Serv. 1(1), 1–30 (2005)

8. Esfahani, N., Malek, S., Sousa, J.P., Gomaa, H., Menascé, D.A.: A modeling lan-
guage for activity-oriented composition of service-oriented software systems. In:
Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 591–605. Springer,
Heidelberg (2009)

9. Garcia, J., Popescu, D., Safi, G., Halfond, W.G.J., Medvidovic, N.: Identifying
message flow in distributed event-based systems. In: Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pp. 367–
377. ACM, New York (2013)

10. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley, Reading (2003)

11. Nanda, M.G., Chandra, S., Sarkar, V.: Decentralizing execution of composite web
services. SIGPLAN Not 39(10), 170–187 (2004)

12. Organization for the Advancement of Structured Information Standards (OASIS):
Web Services Business Process Execution Language (WS-BPEL) Version 2.0 (April
2007), http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

13. Pautasso, C., Heinis, T., Alonso, G.: Jopera: Autonomic service orchestration.
IEEE Data Eng. Bull. 29(3), 32–39 (2006)

14. Scheibler, T., Leymann, F.: A framework for executable enterprise application in-
tegration patterns. In: Mertins, K., Ruggaber, R., Popplewell, K., Xu, X. (eds.)
Enterprise Interoperability III, pp. 485–497. Springer, London (2008)

15. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,
Theory, and Practice. Wiley (2009)

16. Yildiz, U., Godart, C.: Information flow control with decentralized service compo-
sitions. In: IEEE Int. Conf. on Web Services, pp. 9–17 (July 2007)

17. Zaha, J.M., Barros, A., Dumas, M., ter Hofstede, A.: Let’s dance: A language for
service behavior modeling. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS,
vol. 4275, pp. 145–162. Springer, Heidelberg (2006)

18. Zheng, Y., Taylor, R.N.: Enhancing architecture-implementation conformance with
change management and support for behavioral mapping. In: Proc. of the 34th Int.
Conf. on Software Engineering, ICSE 2012, pp. 628–638. IEEE Press, Piscataway
(2012)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

	Architecture-Centric Design of Complex Message-Based Service Systems
	1 Introduction
	2 Motivating Scenario
	3 Related Work
	4 Approach
	5 Architecture-Centric Design and Configuration
	5.1 Background
	5.2 Message-Centric ADL Extension
	5.3 Consistency Checks

	6 Tool Support
	6.1 Architecture-to-Configuration Transformation
	6.2 ArchStudio Integration

	7 Proof-of-Concept Case Study
	8 Conclusions
	References




