
Preventing SLA Violations in Service

Compositions Using Aspect-Based Fragment
Substitution

Philipp Leitner1, Branimir Wetzstein2, Dimka Karastoyanova2,
Waldemar Hummer1, Schahram Dustdar1, and Frank Leymann2

1 Distributed Systems Group, Vienna University of Technology
Argentinierstrasse 8, 1040 Wien, Austria

lastname@infosys.tuwien.ac.at
2 Institute of Architecture of Application Systems, University of Stuttgart, Germany

Universitätsstraße 38, 70569 Stuttgart, Germany
lastname@iaas.uni-stuttgart.de

Abstract. In this paper we show how the application of the aspect-
oriented programming paradigm to runtime adaptation of service compo-
sitions can be used to prevent SLA violations. Adaptations are triggered
by predicted violations, and are implemented as substitutions of frag-
ments in the service composition. Fragments are full-fledged standalone
compositions, and are linked into the original composition via special
activities, which we refer to as virtual activities. Before substitution we
evaluate fragments with respect to their expected impact on the perfor-
mance of the composition, and choose those fragments which are best
suited to prevent a predicted violation. We show how our approach can
be implemented using Windows Workflow Foundation technology, and
discuss our work based on an illustrative case study.

1 Introduction

As more and more companies shift towards a service-based model [1] of do-
ing business, e.g., by providing coarse-grained value-added services as composi-
tions of existing (external) Web services, management of service level agreements
(SLAs) [2] is becoming increasingly important. SLAs are contractual agreements
between a service provider and its customers, which govern the quality that the
customers can expect. Violating SLAs is often associated with monetary penal-
ties for the provider, i.e., the service provider generally has a strong interest in
preventing SLA violations.

To this end, research in the area of SLA monitoring and compliance man-
agement [2, 3, 4] has so far mostly focused on detecting and explaining SLA
violations after they have happened. While this is very useful to optimize ser-
vice compositions in the long run, it does not prevent the problem in the first
place. Therefore, we see the need for mechanisms to prevent violations at run-
time, before they have happened. Basically, such mechanisms need both, a way

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 365–380, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

366 P. Leitner et al.

to predict violations ahead of time, and a means to actually adapt the prob-
lematic composition instance in such a way that the violation is prevented. The
former has already been covered in earlier work [5, 6].

The main contribution of this paper is a proposed solution for the latter prob-
lem. We apply the aspect-oriented programming (AOP) approach [7] to adap-
tation of running composition instances. Adaptations are triggered by predicted
violations. Unlike in earlier work [8], aspects can contain composition fragments
of arbitrary complexity, which can be applied before, after or instead of any sub-
set of the original composition. We evaluate potential fragments based on their
expected impact on SLA conformance, in order to identify the fragments which
are best suited to prevent a predicted violation. Note that in this work we focus
on performance-related service level objectives (SLOs). Our work is not directly
applicable for most qualitative SLOs, such as security.

The rest of this paper is structured as follows. In Section 2 we present an
example case, which we use as an illustrative example in the remainder of the
paper. In Section 3 we present our approach to aspect-based adaptation in detail.
In Section 4 we explain how our approach can be implemented using Windows
Workflow Foundation [9] (Windows WF) technology. Section 5 contains an eval-
uation of our approach. In Section 6 we discuss related scientific work. Finally,
Section 7 concludes the paper with a summary and an outlook on future work.

2 Case Study and Motivation

To illustrate the core ideas of the paper we use an order processing scenario. The
scenario consists of a reseller who offers products to its customers. As shown
in Figure 1 (left part of the figure), the reseller composes services from other
providers (supplier, shipper, banking) to implement its process. After receiving
the customer order, the list of needed parts is determined and parts which are not
in stock are ordered from a supplier. After all the parts are gathered, the product
is assembled and shipped to the customer. The reseller guarantees its customers
a certain order processing time via an SLA. The goal of the reseller is to prevent
cases of SLA violations, as this would lead to reduced customer satisfaction as
well as penalty payments. The reseller can use SLA monitoring and prediction
techniques as discussed in our previous work [5] to predict at process runtime
whether the SLA with the customer is likely be violated, i.e., in our case, whether
the order processing time will exceed the agreed value. If SLA prediction shows
that the SLA with the customer will be violated, the reseller wants to adapt the
service composition instance by using alternative, better performing services.
Assume that in our scenario there are two alternative suppliers who offer faster
delivery times, but do not provide all needed product types on their own. The
full product range offered to the customer can only be realized by using both
alternative suppliers in conjunction. Figure 1 shows a composition fragment
consisting of a switch between those two suppliers, whereby supplier 2 is used if
supplier 1 is unable to provide a certain part. Even though not the default case,
this composition fragment can be used at runtime instead of the original supplier

Preventing SLA Violations in Service Compositions 367

invocation if a given instance is likely to exceed the maximum processing time
as promised to the customer in the SLA.

There are two approaches for supporting the execution of alternative compo-
sition fragments: (1) the straight-forward approach is to model all alternative
fragments already at design time as part of the composition, e.g., using if-else
branches; (2) the approach of this paper is to model alternative fragments sep-
arately from the original composition model, and dynamically substitute them
based on prediction results at composition runtime. We will now explain this
approach and its advantages in detail.

3 Aspect-Based Adaptation

In this paper we use the notion of aspect-based fragment substitution to model
how service composition instances can be adapted at runtime in order to pre-
vent predicted SLA violations. Our approach is general, in the sense that it is
not specific to any concrete composition model. Instead, it can be applied to
many existing block-structured composition models (for instance WS-BPEL or
Windows Workflow Foundation [9]). In our work we reuse well-known AOP ter-
minology to describe adaptations of service compositions. The most important
of these terms are aspects (cross-cutting concerns, which are turned off and on
at design or run-time, e.g., logging), advices (business logic which implements
aspects, e.g., the code to implement logging), joinpoints (points in the applica-
tion code where advices can potentially be inserted), and weaving (the process
of dynamically inserting advices in jointpoints). Note that in literature AOP is
often discussed as both a design time and a run time technology, i.e., weaving can

Received
Order

Get List
of Parts

foreach
Part

Get From
Warehouse

Order From
Supplier

Wait For
External Delivery

part in stock?

[yes]
[no]

Assemble
Product

Ship Handle
Billing

Order
Finished

Quality Assurance

TARGET
COMPOSITION

FRAGMENT

Order From
Supplier 2

Order From
Supplier 1

Wait For
External Delivery

Available at
Supplier 1?

[yes] [no]

JOINPOINT - IN IMPACT MODEL

Estimated
Avg. Part Delivery

Time
[VALUE]

ASPECT

ADVICES

JOINPOINT - OUT

CONSTRAINTS AND ORDERING

CONFLICTS_WITH AdviceA
REQUIRES_BEFORE AdviceB

.........

OTHER PROPERTIES

OFFLINE_WEAVING

TRIGGER

PREDICTION
CHECKPOINT

Fig. 1. Illustrative Example and Approach Overview

368 P. Leitner et al.

happen both statically or dynamically. In this paper we only consider weaving
at runtime (at running instances), since our primary concern is the adaptation
of composition instances, without modification of the underlying definition.

The main concepts of our work are summarized in Figure 1. Aspects are de-
fined as an adaptation trigger, which is based on a predicted SLA violation, and
any number of advices. Every advice in turn contains exactly one composition
fragment, one impact model containing any number of impact clauses, a list of
constraints on other advices of the same aspect, and any optional other prop-
erties. The fragment is linked to the service composition to adapt (denoted as
target composition in the following) using two types of joinpoints – in-joinpoints
mark the beginning of the composition segment to replace, while out-joinpoints
mark the end of the segment. We will now discuss these components in more
detail.

3.1 Adaptation Triggers

As discussed extensively in Section 1 and Section 2, our approach is motivated by
the need to prevent SLA violations. Therefore, runtime adaptation is generally
triggered by predictions of such violations. In the remainder of this paper we
will assume that some means of prediction are available. This may be powerful
prediction tooling as presented in [5] or [6], or simply some estimations provided
by a human domain expert. The actual approach to prediction is out of scope of
this paper, however, for the sake of completeness we give a very brief overview
of our own earlier work.

We generate predictions using regression from runtime data. This data is
collected using an event-based approach (i.e., components in the service-based
system emit status events, which are collected and correlated). The actual re-
gression is implemented as a black-box function, using methods from the field
of machine learning, more precisely artificial neural networks [10] (ANNs). We
sketch this in Figure 2. This prediction is carried out in predefined places in the
service composition, the so-called checkpoints. Checkpoints should be selected in
such a way that enough data is already available to generate useful predictions.
Note that there is a strong relationship between the checkpoint selection and
which actions can be associated with an advice – in earlier checkpoints a lot
of adaptation actions are still available, while later checkpoints allow for more
accurate predictions because of more data being available. The problem of se-
lecting checkpoints is discussed in more detail elsewhere [5].

23
NOKIA

C45
1 923 26

Number
Of_Parts

Product
To_Asse Quantity QoS_

Warehouse
QoS_

Supplier

27953

Predicted Order
Processing Time

Artificial Neural
Network

Fig. 2. Generating Predictions From Runtime Data

Preventing SLA Violations in Service Compositions 369

3.2 Composition Fragments

Composition fragments can be considered the core of our adaptation approach. In
essence, fragments are full-fledged, even if usually small, service compositions.
That is, fragments may contain variables, branches, Web service invocations,
parallel execution, loops, scopes, fault handling, compensation, or any other
construct which is legal in the composition model used. However, they do not
have to follow the same syntactic and semantic rules as the target composition.
For example, if WS-BPEL is used as composition model, designers of fragments
may access e.g., variables defined in the target composition, even if the respective
data is undefined in the fragment itself (syntactic rule). Also, they could specify
a receive activity without a corresponding reply activity (semantic rule). The
reason for this is that during weaving the fragment will be inserted into the
composition model of the target composition, essentially becoming part of the
composition itself. A fragment definition is valid if it results in an executable
composition after weaving, which cannot be checked in isolation.

In addition to all activities provided by the composition metamodel, fragments
may contain three additional activity types (FRAGMENT START, in the following re-
ferred to as start, FRAGMENT END, end, and TRANSPARENT BLOCK, transparent)
with a semantic specific to our approach. We refer to these activities as virtual
activities, because they are never actually executed. Instead, virtual activities
are dropped or replaced during weaving. Virtual activities are solely responsible
for defining the joinpoints between the fragment and the target composition,
marking the segment of the target composition to substitute.

Every fragment starts with exactly one start activity and ends with exactly
one end activity. In-joinpoints, defined via the start activity, represent the start
of substitution, and out-joinpoints, defined via the end activity, represent the end
of substitution. All joinpoints can reference any activity in the service composi-
tion, either before or after the execution of the activity (i.e., both “immediately
before executing Get List of Parts” and “immediately after executing Get List
of Parts” are valid joinpoints). However, the in- and out-joinpoint of a fragment
need to reference activities in the same sequence in the target composition, i.e.,
the joinpoints defined in Figure 1 are correct, but, for example, it would not be
possible to move the in-joint point to the activity ”Get List of Parts”. The reason
for this limitation is that semantic problems arise if in- and out-joinpoints are
situated in different sequences. In the example, the branching activity ”part in
stock?” would be removed, but not the actual branches, rendering it impossible
to decide which branch to execute.

It is not only possible to replace a segment of the target composition, even
though this is the general case we discuss. Trivially, one may also just insert the
fragment at a specific joinpoint (the in- and out-joinpoints are identical, and
the fragment is non-empty), or remove a segment (substitution with an empty
fragment). We refer to the sum of all joinpoints of a fragment as the linking of
the fragment to the target composition. Figure 3 summarizes this linking. The
start activity specifies that the fragment should be inserted before the activity
“Schedule Assembling”, while the end specifies that the end of the substitution

370 P. Leitner et al.

FRAGMENT

FRAGMENT_START

FRAGMENT_END

T :: Schedule
Assembling

T :: Wait

T :: Do
Assembling

T :: Check For
Faults

T :: Do Repair

T :: Billing &
Shipping

[no faults]

[faults]

F :: External
Assembling

TRANSPARENT
BLOCK

F :: Object To
External Assembler

[faults]

[no faults]

TARGET
COMPOSITION

T :: Order Parts

F :: External
Assembling

T :: Check For
Faults

T :: Billing &
Shipping

[no faults]

[faults]

WEAVED
INSTANCE

T :: Order Parts

F :: Object To
External Assembler

WEAVING

Fig. 3. Fragment Activities and Linking

segment is before the activity “Billing & Shipping”. On the right-hand side,
Figure 3 shows the dynamically constructed instance after the fragment has
been weaved into the target composition. Activities depicted with the prefix
T originate from the target composition, while activities with the prefix F are
specified in the fragment.

Transparents are more complicated than start or end . They are a place-
holder representing a part of the target composition in the fragment. This part
is defined in the same way as the substitution segment, i.e., transparents have
both out- and in-joinpoints. Additionally, the same restrictions apply (in and
out-joinpoints need to reference activities in the same sequence). At runtime,
transparents are replaced by a copy of the part that they represent. The pur-
pose of transparent activities is threefold. Firstly, they allow for the definition
of fragments which substitute segments, while still retaining some of this seg-
ment’s functionality. One example of this usage is depicted in Figure 3, where
the “Check for Faults” activity from the target composition is retained in the
fragment. Note that it is not mandatory that a transparent references only a
single activity. Secondly, transparent activities allow to essentially duplicate ac-
tivities in the target composition. This is because transparents are in fact free
to reference any part of the target composition, not only parts which are in the
substitution segment (and hence removed during weaving). Additionally, many
transparents may copy the same activities, multiplying them even further.
Thirdly, transparent activities allow for the definition of generic fragments.

3.3 Generic Fragments

Generic fragments are (unlike the fragments discussed so far) not developed
specifically for a given target composition. Instead, they can be applied to a num-
ber of compositions. Therefore, generic fragments do not contain any concrete

Preventing SLA Violations in Service Compositions 371

case-specific business logics. They are used to implement adaptation scenarios
which can be useful across several concrete target compositions and domains.
Figure 4 exemplifies three generic fragments. The main property of generic frag-
ments is that they consist only of virtual activities and control flow constructs,
i.e., they do not contain any concrete activities such as Web service invocations.
These generic fragments are instantiated by defining the linking (i.e., all in-
and out-joinpoints) to concrete target compositions. As soon as this linking is
defined, the fragment stops being generic, and is as case-specific as any other
fragment.

GENERIC FRAGMENT
Parallelize2

FRAGMENT_START

BRANCH_2BRANCH_1

FRAGMENT_END

GENERIC FRAGMENT
Reorder2

FRAGMENT_START

BEFORE

AFTER

FRAGMENT_END

GENERIC FRAGMENT
Remove

FRAGMENT_START

FRAGMENT_END

Fig. 4. Examples of Generic Fragments

The first and most simple generic fragment in Figure 4 (Remove) has been
mentioned before – it is an empty fragment consisting only of a start and end ac-
tivity. Using this generic fragment any segment of the target composition can be
deleted. The second example is a generic fragment named Reorder2. It consists of
start, end, and two transparents (“after” and “before”). Using this fragment
two segments in the target composition can be rearranged, e.g., exchanging their
order. Trivially, one can also implement similar generic fragments ReorderX, re-
arranging X segments instead of just two. Finally, Parallelize2 consists again
of start, end, and two transparents (“branch 1” and “branch 2”), however,
this time “branch 1” and “branch 2” are executed in parallel. Using this generic
fragment one can parallelize two segments from the target composition (which
presumably have been executed in serial before). Of course, it is again possible
to define ParallelizeX fragments to parallelize more than two segments at the
same time.

3.4 Dynamic Weaving

At run-time, one or more previously selected fragments are weaved into the
running instance of the target composition. The selection procedure will be dis-
cussed in Section 3.5. As we have sketched in Figure 5, the general weaving
algorithm is a simple 2-step procedure. Firstly, the fragment is pre-processed,
i.e., for each transparent in the fragment the linking to the target composition
is resolved, and the transparent is replaced by a deep copy of the segment that
it represents. Secondly, the linking of the fragment itself is resolved, and the

372 P. Leitner et al.

� �

1 # input : instance , fragment , mode # output : weaved in s tanc e
2

3 i f (mode == ”OFFLINE”) suspend (in s t anc e)
4

5 # step 1 − fragment p r ep roc e s s i ng
6 f o r e ach transparent in fragment
7 l i n k i n g = r e s o l v e l i n k i n g (t ransparent , i n s t anc e)
8 copy = copy segment (l i nk ing , i n s t anc e)
9 r ep l a c e f r agment s (fragment , t ransparent , copy)

10

11 # step 2 − fragment sub s t i t u t i o n
12 seqment := r e s o l v e l i n k i n g (fragment , i n s t anc e)
13 r emov e s t a r t a c t i v i t y (fragment)
14 r emove end ac t i v i t y (fragment)
15 r ep l a c e f r agment s (instance , segment , fragment)
16

17 i f (mode == ”OFFLINE”) resume (in s t anc e)
18

19 re turn in s tanc e
� �

Fig. 5. Weaving Algorithm

start and end virtual activities are removed from the fragment (they are not
needed anymore). Finally, the segment of the target composition (indicated by
the linking) is removed, and the fragment is inserted instead.

Weaving can be done either online or offline. For offline weaving the composi-
tion instance is halted while the adaptation is applied (see Line 4-5 in Listing 5),
and resumed when the adaptation is finished (Lines 19-20). If online adaptation
is used the instance continues running during weaving. This has the advantage
that weaving does not introduce additional execution time overhead. However,
if after weaving the running instance has already passed the entry point of the
fragment (the linking of the fragment’s start activity) the weaving fails and is
rolled back. This is because our system needs to guarantee that a fragment is
either executed as a whole, or not at all (which cannot be guaranteed after the
instance has begun executing the substitution segment in the target composi-
tion). Our system falls back to offline adaptation as soon as at least one advice
which needs to be applied requires it (i.e., if many advices are applied and only
one of them requires offline weaving, we still need to suspend the composition
instance before adaptation).

Generally, if more than one advice needs to be applied, we use recursive
one-by-one weaving, that is, we start by weaving the first fragment into the
instance (ignoring any other fragments). The result of this first weaving pro-
cess is then the input to the weaving of the second fragment. This is continued
until all fragments are weaved. The order in which fragments are applied is
unimportant as long as all fragments are independent (i.e., as long as none of
the segments indicated by any linking of either fragments or transparents over-
laps). If this is not the case the user can specify a defined ordering of advices
as part of the advice definition. The ordering can be defined using five differ-
ent order predicates (REQUIRES BEFORE, REQUIRES AFTER, IF PRESENT BEFORE,

Preventing SLA Violations in Service Compositions 373

IF PRESENT AFTER, and CONFLICTS WITH). REQUIRES [BEFORE|AFTER] specifies
that a given advice has to be applied before or after this advice (otherwise the
advice cannot be applied at all). IF PRESENT [BEFORE|AFTER] specifies that if
the other advice is present, it has to be applied before or after this one (but the
other advice can also simply not be applied). Using REQUIRES BEFORE one can
specify complex fragments, whose linking does not actually point to the target
composition itself, but to another fragment. This is possible since we can rely
that the referenced fragment has already been weaved into the target composi-
tion before before the weaving of the dependent fragment starts. Another type
of ordering predicate is CONFLICTS WITH. This predicate specifies that two frag-
ments are mutually exclusive, i.e., they cannot be applied together. At runtime,
we construct a forest of directed graphs from these predicates, whose nodes are
advices and whose edges are “is executed after” relationships. If the graphs in
this forest are acyclic there is at least one allowed order of advices, which can be
consructed using topological ordering. If the graphs contains at least one cycle
the definition of advices is invalid, since the definition contains at least one cyclic
dependency.

3.5 Impact Model and Advice Selection

As described briefly in Section 3.1, we build upon a predictor which estimates
SLO values by assessing a set of lower level metrics. Examples include ordered
product types, duration of branches of the composition, expected delivery times
of suppliers and shipper, or QoS of services used. In order to being able to
evaluate whether a given advice will actually help preventing the predicted SLA
violation, we need to specify for each advice its impact on those lower-level base
metrics (impact model). The impact model is used to identify which concrete
advice (from all advices designed within an aspect) should be applied, i.e., which
advices are best suited to prevent a predicted violation (advice selection).

The impact model contains a non-empty set of impact clauses. An impact
clause relates to one base metric and specifies the expected value of that met-
ric after adaptation (i.e., after this fragment has been applied). This value can
be determined in several ways: (1) based on measured history data if the cor-
responding advice has already been used in past composition instances, e.g.,
using data mining techniques; (2) based on SLAs with external providers; or
(3) by using QoS aggregation techniques as discussed in earlier research [11]. In
QoS aggregation, based on the composition fragment structure, the properties of
atomic activities are recursively aggregated (e.g., the duration of a sequence of
activities is the sum of durations of those activities, the duration of the parallel
execution of activities is given by the duration of the longest acitivity etc. [11]).
The impact model should specify impact clauses for all metrics which the advice
affects.

The impact model is specified as part of advice definition. Advice selection
at runtime is performed as follows. If in a checkpoint a violation is predicted,
we obtain the set of advices defined for this checkpoint. For each allowed com-
bination of advices we evaluate if the usage of these advices would prevent the

374 P. Leitner et al.

23
NOKIA

C45
1 0.9 26

Number
Of_Parts

Product
To_Asse Quantity Availability

Supplier
QoS_

Supplier

27953

Predicted Order
Processing Time

Predictor

23
NOKIA

C45
1 0.99 12

Number
Of_Parts

Product
To_Asse Quantity

QoS_
Availability

Supplier

QoS_
Supplier

After
Adaptation

25123

Predicted Order
Processing Time After

Adaptation

Impact Clauses Adaptation Impact

Fig. 6. Evaluation of Impact Models

SLA violation, i.e., all impact clauses are applied to the data which has origi-
nally been used to generate the prediction. The updated data (which essentially
represents the state after adaptation) is then again fed to the predictor, to re-
generate the prediction after adaptation. The difference between the original
prediction and the new prediction is the estimated impact of applying these ad-
vices. This is sketched in Figure 6. If more than one advice should be applied at
the same time, the impact clauses are applied in the same order to the data as
the weaving order of the fragments would be. If the predicted value complies to
the SLA, that advice or advice combination is put into a candidate set. In the
next step, we then select the best alternative from the candidate set by looking
at additionally specified criteria (in addition to the concrete predicted value). In
this step, complex evaluations can take place, taking into account and weighting
different dimensions (e.g., cost, customer satisfaction, reliability) according to a
user-defined utility function, which is currently left for future work. At the mo-
ment, we simply choose the candidate which brings the SLO value closest to the
target value, i.e., we apply “just as much” adaptation as necessary to prevent
the predicted violation.

4 Prototype Implementation

In our prototype we consider the aspect-based adaptation of service compo-
sitions implemented using the Windows Workflow Foundation [9] (WF) com-
position model. More concretely, our system can be applied to WF Sequential
Workflows1. WF Sequential Workflows are similar to e.g., Web service composi-
tions implemented using WS-BPEL. However, unlike most WS-BPEL engines,
WF is deeply integrated with Microsoft .NET (starting with version 3.0), along
with strong tool support for developing compositions. Additionally, and most
importantly for this paper, Microsoft .NET supports the dynamic adaptation of
WF instances via an explicit API, the WorkflowChanges API2. This API allows
us to suspend, modify, and resume any running composition instance. Addition-
ally, activities in the composition can easily be replicated. Implementation of
1 http://msmvps.com/blogs/theproblemsolver/archive/2006/10/11/

Sequential-versus-State-workflows.aspx
2 http://msdn.microsoft.com/en-us/library/ms734569(VS.85).aspx

http://msmvps.com/blogs/theproblemsolver/archive/2006/10/11/
Sequential-versus-State-workflows.aspx
http://msdn.microsoft.com/en-us/library/ms734569(VS.85).aspx

Preventing SLA Violations in Service Compositions 375

the weaving algorithm as discussed in Section 3 is, therefore, straight-forward.
Another important advantage of building the prototype based on WF is that we
can reuse the tooling integrated in Visual Studio to support the development of
fragments.

We have implemented the approach discussed in this paper within the larger
VRESCo SOA runtime environment project. VRESCo is discussed in detail
elsewhere [12], and will not be covered here. To trigger adaptations as briefly
discussed in Section 3.1, we utilize our earlier work on prediction of violations,
as discussed in [5]. The prototype has been designed to fit into PREvent , an
autonomous system for prevention of SLA violations [13]. The interested reader
may download a recent snapshot of our VRESCo prototype, which includes an
implementation of the case study used in this paper3.

5 Evaluation

We will now evaluate our approach in two different ways. Firstly, we will qualita-
tively analyse the expressiveness of our approach by comparison with previously
published adaptation patterns [14]. Secondly, we will have a look at performance
implications. This is done by monitoring the weaving time in our prototype
system, as well as comparing the execution time of dynamically weaved and
statically defined composition instances.

5.1 Coverage of Adaptation Patterns

In order to discuss the expressiveness of our approach we have used the adap-
tation patterns defined in [14]. In this work, 14 patterns of structural changes
in processes are identified. Using our approach 9 of these patterns are fully
supported.

We have summarized the coverage of adaptation patterns in Table 1. The
patterns AP1, AP2 and AP4 are the core feature of our approach, and can
be implemented trivially. For AP2 and AP5 we specifically described a generic
fragment in Section 3. Similarly, all of AP3, AP5, AP8, AP9, AP10 AP14
can be implemented rather elegantly using transparents. The patterns concern-
ing subprocesses (AP6 and AP7) cannot be implemented since our approach
does not support linking to more than one composition at the same time. AP11
and AP12 are in simple cases implementable using transparents, but our
approach does not provide any explicit support for it, making the implementa-
tion rather cumbersome. Similarly, AP13 can be implemented by replacing the
branching node as a whole, but we do not consider this solution as in line with
the idea of this pattern.

5.2 Performance Analysis

In a second step we have evaluated the runtime implications of our prototype.
For this, we monitored the average execution time of dynamically weaved com-
position instances with an increasing number of activities, and compare them to
3 http://sourceforge.net/projects/vresco/

http://sourceforge.net/projects/vresco/

376 P. Leitner et al.

Table 1. Coverage of Adaptation Patterns

ID Pattern Name Covered

AP1 Insert Fragment �

AP2 Delete Fragment �

AP3 Move Fragment �

AP4 Replace Fragment �

AP5 Swap Fragment �

AP6 Extract Sub Process �

AP7 Inline Sub Process �

AP8 Embed Fragment in Loop �

AP9 Parallelize Activities �

AP10 Embed Fragment in Conditional �

AP11 Add Control Dependency �

AP12 Remove Control Dependency �

AP13 Update Condition �

AP14 Copy Fragment �

 3700

 3750

 3800

 3850

 3900

 64 66 68 70 72 74

E
xe

cu
tio

n
T

im
e

of
 P

ro
ce

ss
 (

in
 m

s)

Number of Activities in Process After Weaving

Statically Defined Workflow
Online / Concrete Activities

Online / Transparent Activities
Offline / Concrete Activities

Offline / Transparent Activities

(a) Execution Time

 40

 45

 50

 55

 60

 65

 70

 64 66 68 70 72 74 76 78 80 82 84

W
ea

vi
ng

 T
im

e
(in

 m
s)

Number of Activities in Fragment

Online / Concrete Activities
Online / Transparent Activities

Offline / Concrete Activities
Offline / Transparent Activities

(b) Runtime Weaving

Fig. 7. Performance Analysis Outcomes

the same instance defined statically. We also compare online and offline weav-
ing, and distinguish between fragments defined using transparent activities and
fragments defined without. For simplicity, all compositions and fragments are se-
quences of “wait” activities. Using different types of activities would not have
an impact on the evaluation outcome, since our adaptation approach handles all
non-virtual activities the same way, i.e., weaving an “invoke” activity has a sim-
ilar overhead than weaving a “wait” activity. To mimimize external influences
all results are the average of 50 independent test runs. We have also repeated
the evaluation multiple times to make sure that the outcome is reproduceable.
The outcomes of these experiments are summarized in Figure 7(a).

As can be seen, online weaved compositions exhibit very little overhead as
compared to statically defined compositions. Of course, offline weaving intro-
duces some overhead, which stems from the time necessary to select the frag-
ments, to implement the actual weaving, and to suspend and unsuspend the
composition. In our experiments, the largest part of these factors is the actual

Preventing SLA Violations in Service Compositions 377

weaving time. Therefore, we have further analyzed this factor in Figure 7(b). We
depict the weaving time depending on the number of activities to weave. Gen-
erally, concrete activities are faster to weave than transparent activities (since
the logics of weaving transparents is more complicated), and offline weaving
is faster than online weaving (since, in the online case, some additional sanity
checks are done by the Windows Workflow runtime). In general, this increased
weaving time for online weaving does not matter too much, since the online
weaving time does not directly impact the execution time of the process. Over-
all, the overhead introduced by weaving is relatively constant in [45 : 80] ms,
even for large fragments (more than 80 activities).

Summarizing, we can see that dynamic weaving does not introduce a big
overhead, especially if online weaving is possible. If offline weaving has to be
used, an additional weaving overhead, which is generally in [45 : 80] ms, is
introduced. We argue that for most application areas this overhead is still far
from being dramatic. Even though the concrete numbers are specific for our
prototype implementation, they still show that implementing our ideas efficiently
is well possible.

6 Related Work

In this paper we apply the AOP paradigm to adaptation of service composi-
tions. On the level of atomic services earlier work in this direction has been
presented by Kongdenfha et al [15]. In this work, they use the AOP paradigm
to adapt the implementation of atomic Web services. A comparable approach
has also been presented by Song et al. [16], who use the AOP approach to
weave cross-cutting concerns, such as security, into all atomic Web services in
a composition. A similar track has also been followed by Narendra et al., who
used AOP-based adaptation of services in a composition to propagate changes
in non-funtional properties through the composition [17]. Of course, all of these
approaches assume that the developer has access to the implementation of these
atomic services.

The general scope of our work is similar to work presented by Gmach et al. [18].
However, the focus of our contribution is purely on adaptation of service compo-
sitions, while Gmach et al. adapt on service infrastructure level (i.e., by moving
services to different hosts, or by re-scheduling requests in the service bus). Fi-
nally, adaptation with the explicit goal of preventing SLA violations has been
discussed by various authors, e.g., our own earlier work on PREvent [13] or
recent work by Metzger et al. [19]. The concrete execution of adaptation of com-
positions has in the past been covered by research in various directions. Earlier
approaches often did not consider the adaptation of the composition structure
at all, instead focusing solely on service rebinding. In a simplistic manner such
adaptations can in fact be carried out using WS-BPEL alone, by using the Dy-
namic Partner Link feature. However, practical problems such as finding the
right service to bind to (often based on QoS), or the need to resolve interface
differences, demand for more sophisticated service rebinding approaches. Exam-
ples of such work include the WS-Binder [20] or the PAWS [21] frameworks.

378 P. Leitner et al.

More advanced service rebinding was also one of the contributions of Moser et
al. in [22]. Finally, some work on service rebinding (dealing also with stateful
services) has been presented by Mosincat and Binder in [23].

An early approach towards structural adaptation of compositions has been
discussed in [24]. However, in this work no free-form adaptation is possible.
Instead, predefined parameterizations are applied if certain conditions hold. Ar-
guably, the AOP paradigm can provide a more powerful abstraction for adapta-
tion in compositions. This idea has first been introduced by Charfi et al. [25,26].
However, unlike our work, Charfi et al. focus on the traditional AOP idea of
weaving crosscutting concerns into the composition, while we apply the AOP
paradigm with a different goal (adaptation for SLA compliance) in mind. Using
aspects for runtime adaptation in WS-BPEL has been covered by the BPEL’n’-
Aspects framework [8]. Our main contribution over this work is that in our case
aspects can be composition fragments, while BPEL’n’Aspects supports only sin-
gle Web service invocations as aspects. Work with similar goals, but specific to
the telecommunications domain, has been presented Niemöller et al. [27]. An ap-
proach which deals with process fragment composition is presented by Eberle et
al. [28]. Their idea is to exploit the redundancy in separately modeled composi-
tion fragments and use those redundant overlapping fragment parts to merge the
fragments. In our approach we model how fragments should be merged explicitly
by using virtual activities.

7 Conclusions and Future Work

In this paper we have presented an approach to runtime adaptation of service
compositions for preventing SLA violations. The adaptation is based on com-
position fragments which are dynamically substitued at runtime using AOP
techniques. Composition fragments are modeled separately and are explicitly
linked into the original composition using virtual activities. In addition to their
process logic, fragments specify also their expected impact on the composition
performance. This is necessary in order to be able to choose the best fitting
fragments for preventing a predicted SLA violation at composition runtime. We
have implemented the approach using Windows Workflow Foundation technol-
ogy and experiments show that the performance impact of dynamic weaving is
acceptable.

While the current status of the approach is promising, there are still some
open issues left for future work. Firstly, we do not take into account that adap-
tation which prevents the violation of one SLA metric could easily lead to the
violation of another. In particular, we currently do not take the costs of adap-
tations into account (e.g., increased costs by using more expensive services in
the weaved fragment) which in some cases could be higher than the gain of not
violating the SLA. Therefore, we will extend the impact model and its evaluation
in our future work. Secondly, we currently assume that the number of possible
combinations of advices to apply is small, so that finding the best combination
via full enumeration is possible. In future work we plan to embrace heuristic
optimization for cases where full enumeration is not feasible.

Preventing SLA Violations in Service Compositions 379

Acknowledgments

The research leading to these results has received funding from the European
Community’s 7th Framework Programme under the Network of Excellence S-
Cube (Grant Agreement no. 215483).

References

1. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Com-
puting: State of the Art and Research Challenges. IEEE Computer 40(11) (2007)

2. Dan, A., Davis, D., Kearney, R., Keller, A., King, R., Kuebler, D., Ludwig, H.,
Polan, M., Spreitzer, M., Youssef, A.: Web Services on Demand: WSLA-Driven
Automated Management. IBM Systems Journal 43(1), 136–158 (2004)

3. Bodenstaff, L., Wombacher, A., Reichert, M., Jaeger, M.C.: Analyzing Impact Fac-
tors on Composite Services. In: Proceedings of the 2009 IEEE International Con-
ference on Services Computing (SCC 2009) (2009)

4. Wetzstein, B., Leitner, P., Rosenberg, F., Brandic, I., Leymann, F., Dustdar, S.:
Monitoring and Analyzing Influential Factors of Business Process Performance. In:
Proceedings of the 13th IEEE EDOC Conference (EDOC 2009) (2009)

5. Leitner, P., Wetzstein, B., Rosenberg, F., Michlmayr, A., Dustdar, S., Leymann,
F.: Runtime Prediction of Service Level Agreement Violations for Composite Ser-
vices. In: Proceedings of the 3rd Workshop on Non-Functional Properties and SLA
Management in Service-Oriented Computing, NFPSLAM-SOC 2009 (2009)

6. Zeng, L., Lingenfelder, C., Lei, H., Chang, H.: Event-Driven Quality of Service
Prediction. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008.
LNCS, vol. 5364, pp. 147–161. Springer, Heidelberg (2008)

7. Miller, F.P., Vandome, A.F., McBrewster, J.: Aspect-oriented Programming. Al-
phascript Publishing (2010)

8. Karastoyanova, D., Leymann, F.: BPEL’n’Aspects: Adapting Service Orchestration
Logic. In: Proceedings of 7th IEEE International Conference on Web Services,
ICWS 2009 (2009)

9. Shukla, D., Schmidt, B.: Essential Windows Workflow Foundation. Microsoft.Net
Development Series (2006)

10. Haykin, S.: Neural Networks and Learning Machines: A Comprehensive Founda-
tion, 3rd edn. Prentice-Hall, Englewood Cliffs (2008)

11. Jaeger, M.C., Rojec-Goldmann, G., Muhl, G.: QoS Aggregation in Web Service
Compositions. In: Proceedings of the 2005 IEEE International Conference on
eTechnology, eCommerce and eService, EEE 2005 (2005)

12. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: End-to-End Support for
QoS-Aware Service Selection, Binding and Mediation in VRESCo. IEEE Transac-
tions on Services Computing, TSC (2010)

13. Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.: Monitoring, Prediction and
Prevention of SLA Violations in Composite Services. In: Proceedings of the 2010
IEEE International Conference on Web Services, ICWS 2010 (2010)

14. Weber, B., Reichert, M., Rinderle-Ma, S.: Change Patterns and Change Support
Features - Enhancing Flexibility in Process-Aware Information Systems. Data and
Knowledge Engineering 66(3), 438–466 (2008)

15. Kongdenfha, W., Saint-Paul, R., Benatallah, B., Casati, F.: An Aspect-Oriented
Framework for Service Adaptation. In: Dan, A., Lamersdorf, W. (eds.) ICSOC
2006. LNCS, vol. 4294, pp. 15–26. Springer, Heidelberg (2006)

380 P. Leitner et al.

16. Song, H., Yin, Y., Zheng, S.: Dynamic Aspects Weaving in Service Composition.
In: Proceedings of the International Conference on Intelligent Systems Design and
Applications (2006)

17. Narendra, N.C., Ponnalagu, K., Krishnamurthy, J., Ramkumar, R.: Run-time
adaptation of non-functional properties of composite web services using aspect-
oriented programming. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC
2007. LNCS, vol. 4749, pp. 546–557. Springer, Heidelberg (2007)

18. Gmach, D., Krompass, S., Scholz, A., Wimmer, M., Kemper, A.: Adaptive Quality
of Service Management for Enterprise Services. ACM Transactions on the Web 2(1),
1–46 (2008)

19. Metzger, A., Sammodi, O., Pohl, K., Rzepka, M.: Towards Pro-Active Adaptation
With Confidence: Augmenting Service Monitoring With Online Testing. In: Pro-
ceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS 2010 (2010)

20. Penta, M.D., Esposito, R., Villani, M.L., Codato, R., Colombo, M., Nitto, E.D.:
WS Binder: a Framework to Enable Dynamic Binding of Composite Web Services.
In: Proceedings of the International Workshop on Service-Oriented Software Engi-
neering, SOSE 2006 (2006)

21. Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P.: PAWS: A Framework
for Executing Adaptive Web-Service Processes. IEEE Software 24(6), 39–46 (2007)

22. Moser, O., Rosenberg, F., Dustdar, S.: Non-Intrusive Monitoring and Service Adap-
tation for WS-BPEL. In: Proceedings of the 17th International Conference on
World Wide Web, WWW 2008 (2008)

23. Mosincat, A., Binder, W.: Transparent Runtime Adaptability for BPEL Processes.
In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,
pp. 241–255. Springer, Heidelberg (2008)

24. Karastoyanova, D., Leymann, F., Nitzsche, J., Wetzstein, B., Wutke, D.: Parame-
terized BPEL Processes: Concepts and Implementation. In: Dustdar, S., Fiadeiro,
J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 471–476. Springer, Hei-
delberg (2006)

25. Charfi, A., Mezini, M.: AO4BPEL: An Aspect-oriented Extension to BPEL. World
Wide Web 10(3), 309–344 (2007)

26. Charfi, A., Dinkelaker, T., Mezini, M.: A Plug-in Architecture for Self-Adaptive
Web Service Compositions. In: Proceedings of the 2009 IEEE International Con-
ference on Web Services, ICWS 2009 (2009)

27. Niemöller, J., Levenshteyn, R., Freiter, E., Vandikas, K., Quinet, R., Fikouras, I.:
Aspect Orientation for Composite Services in the Telecommunication Domain. In:
Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900,
pp. 19–33. Springer, Heidelberg (2009)

28. Eberle, H., Unger, T., Leymann, F.: Process Fragments. In: Meersman, R.,
Dillon, T., Herrero, P. (eds.) OTM 2009. LNCS, vol. 5870, pp. 398–405. Springer,
Heidelberg (2009)

	Preventing SLA Violations in Service Compositions Using Aspect-Based Fragment Substitution
	Introduction
	Case Study and Motivation
	Aspect-Based Adaptation
	Adaptation Triggers
	Composition Fragments
	Generic Fragments
	Dynamic Weaving
	Impact Model and Advice Selection

	Prototype Implementation
	Evaluation
	Coverage of Adaptation Patterns
	Performance Analysis

	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

