
Poster: Improving Cloud-based Continuous
Integration Environments

Alessio Gambi, Zabolotnyi Rostyslav and Schahram Dustdar
Distributed Systems Group, Vienna University of Technology, Vienna, Austria

Email: name.surname@infosys.tuwien.ac.at

Abstract—We propose a novel technique for improving the
efficiency of cloud-based continuous integration development
environments. Our technique identifies repetitive, expensive and
time-consuming setup activities that are required to run integra-
tion and system tests in the cloud, and consolidates them into
preconfigured testing virtual machines such that the overall costs
of test execution are minimized. We create such testing machines
by reconfiguring and opportunistically snapshotting the virtual
machines already registered in the cloud.

I. CONTINUOUS INTEGRATION ENVIRONMENTS IN THE

CLOUD

Continuous integration environments automatically execute

integration and system tests on remote computing resources,

and move the burden of test execution away from developers

machines. Remote resources are shared among all the devel-

opers and might easily become a bottleneck when the number

of developers increases, thus limiting the effectiveness of the

continuous integration environments.

Some address this problem by defining techniques that

filter and prioritize the tests scheduled for execution such

that developers could get interesting results within acceptable

time also in the presence of resource shortage [1]. Others

instead leverage cloud platforms to access increasingly large

and elastic pools of computing resources to reduce the risk of

incurring in bottlenecks [2].

Current solutions mostly focus on improving the efficiency

of cloud-based continuous integration by automating repetitive

activities to setup and execute integration and system tests [3],

which account for the coordinated deployment of several

virtual machine instances and their configuration by installing

software components, restoring system state, and configuring

test drivers. As an example, system testing of a two-tiered

Web service requires at least the deployment of two virtual

machines, the installation of the application server code and
the business logic on the ‘front-end’ server, and the installation

of the database server and its content in the ‘back-end’ server.

This setup process repeats for all the instances that are

started by the tests; therefore, automated solutions have the

potential of speeding up the overall test execution. However,

blind automation in the cloud might result in surprisingly

high costs and long execution times that can easily overpass

the potential benefits of automation and jeopardize the use

of cloud-based continuous integration environments. In fact,

cloud providers charge the usage of any resource, including

network communications, and the set up of virtual machines

might involve the download of large amount of data and the

re-installation of software components whose costs accumulate

over test executions.

We argue that consolidating repetitive setup actions into

prepackaged testing virtual machines that better match the

required testing environment might reduce the effort required

to set up integration and system tests in the cloud, thus

improving the overall efficiency of cloud-based continuous

integration environments. Therefore, we propose to leverage

snapshotting, a standard feature of cloud platforms, and op-

portunistically create the required testing virtual machines

by executing partial updates of the virtual machines already

registered in the cloud.

II. OPPORTUNISTIC SNAPSHOTTING

To efficiently execute a given set of integration and system

tests in the cloud, cloud-based continuous integration envi-

ronments need to decide which virtual machines should be

reused as-they-are and which ones should be updated. This

requires to understand for each test the needed setup and

the cost to implement it using available virtual machines,

potential snapshots, or any combination of the two. In other

words, an efficient test execution in the cloud needs to balance

the trade-off between using the current virtual machines and

incurring in variable costs to repeatedly set up them, and

creating new virtual machines and incurring in fixed costs for

the snapshotting.

We propose the following approach to address this problem:

re-formulate the opportunistic snapshotting problem as an op-

timization problem using integer linear programming and find

the optimal solution with standard techniques. In particular,

we re-formulate our original problem as a variation of the

well known minimum cost flow problem, where a given flow

must be sent through a capacity constrained flow network in

the cheapest possible way.

The intuition behind this choice is that we can represent

instances of testing virtual machines as the flow, and build a

flow network that reflects the status of the cloud, the require-

ments of the tests to be executed, and the act of performing

various actions such as virtual machine setup, deployment, and

snapshotting. Given such a network, we can associate a cost

to each setup action and quantify the total cost of executing

a given list of tests as the aggregated cost for sending the

flow corresponding to the testing instances started by the tests

through the network. Under constraints of flow conservation

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.253

797

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.253

797

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.253

797

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.253

797

Installation arcn, c Deployment arcSnapshot arcC

Installation DAG

AS
AS
DB

—

DB

AS
DB
db

DB
db

AS, 2

DB, 3

DB, 3

AS, 2

db, 5

AS, 2

db, 5

25

source 0

0

25

22

27

front-end

back-end

Fig. 1. Flow model for the Web service example

and balance we can find the distribution of the flow that has

the minimum cost. We decide to create snapshots by observing

the presence of the flow through the corresponding arcs in the

network model.

We describe the construction of the flow model using the

pedagogical example of a two-tiered system. Figure 1 depicts

the resulting model. The system under test is composed of an

application server (AS) acting as a front-end, and a database

(DB) loaded with the test data (db) acting as a backend. The

example assumes that the front-end and the backend always

run on separate virtual machines.

We execute two types of test: T1 that deploys each com-

ponent once, akin to integration tests, and T2 that deploys

multiple times the front-end but only one time the backend,

akin to scalability tests.

We start by extracting the list of required software com-

ponents to install (AS, DB and db), the types of virtual

machines to use (front-end and backend), and the number of

virtual machine instances to deploy (1 front-end and 1 backend

for T1, 3 front-ends and 1 backend for T2). Then, we build

the Installation DAG: a directed acyclic graph that represents

all the possible virtual machines that we can build using

the required software components. Installation nodes represent

configured virtual machines and are labeled with the names

of installed components; arcs represent the act of installing

new components and are labeled with component names and

installation costs.

We augment the installation DAG by introducing an in-
stance node for each type of virtual machine to be used in the

tests and by connecting installation nodes to instance nodes

by means of deployment arcs. In details, we introduce a new

deployment arc whenever the set of components listed in the

installation node is a superset of the components required

by the instance node. In the example, we connect the nodes

labelled {AS}, {AS,DB} and {AS,DB, db} to the front-end

node, which requires AS, and the nodes labelled {DB, db}
and {AS,DB, db} to the backend node, which requires both

DB and db. We introduce a synthetic source node and link

it to the installation nodes via snapshot arcs to account for

the existing virtual machines, the potential snapshots that we

can create, and the costs for creating the snapshots. Snapshot

costs account for the variable costs for updating existing

virtual machines ({−} and {DB} in the example) and the

fixed cost for creating new snapshots (e.g., 20). In particular,

only snapshot arcs that do not correspond to existing virtual

machines are labeled with such costs.
We complete the formulation of the problem with the flow

constraints. The source generates a flow that corresponds to

the total number of the instances used by the tests (6 in the

example); instance nodes absorb an amount of flow compatible

with the deployment information (e.g., 4 units flow in the

front-end and 2 in the backend); and, the flow is balanced.
By solving this optimization problem we identify the need

for new snapshots and an optimal strategy to create them. In

the example, if we execute two times T1 and one time T2, our

approach suggests to create no snapshots; however, if execute

more times the tests (e.g., six times T1 and four times T2), our

approach suggests to create the {AS,DB, db} virtual machine

by updating {DB}.
III. RELATED WORK AND OUTLINE

The definition of open standards and automated solutions for

managing complex systems in the cloud enabled the creation

of novel testing environments [3]. For example, Van der Burg

and Dolstra [4] proposed a declarative approach for setting

up complex applications during integration testing of complex

systems in virtualized data centers, while Hanawa et al. [5]

introduced D-Cloud for automated dependency analysis of

distributed systems in the cloud. In this work we address a

different problem, that is, opportunistically leveraging cloud-

specific functionalities to improve the efficiency of cloud-

based testing and propose a complementary solution.
Currently, we are focusing on refining the optimization

problem to include setup times and additional setup actions,

automatically constructing the flow model from design time

artifacts such as test code and the history of commits, and

developing a prototype tool to enable extensive evaluation of

the proposed approach. Future work include extending the

approach to deal with continuous on-line test executions, and

using meta-heuristic techniques for scaling the approach to

complex test settings [6].

REFERENCES

[1] S. Elbaum et al., “Techniques for improving regression testing in contin-
uous integration development environments,” in Proc. of the Intl. Symp.
on Foundations of Software Engineering (FSE’14), 2014, pp. 235–245.

[2] RightScale, Inc., “Dynamic scaling Jenkins in the cloud,”
http://www.rightscale.com/blog/cloud-management-best-practices/
dynamic-scaling-jenkins-cloud.

[3] K. Incki et al., “A survey of software testing in the cloud,” in Proc. of the
Intl. Conf. on Software Security and Reliability Companion (SERE-C’12),
2012, pp. 18–23.

[4] S. van der Burg and E. Dolstra, “Automating system tests using declar-
ative virtual machines,” in Proc. of Intl. Symp. on Software Reliability
Engineering (ISSRE’10), 2010, pp. 181–190.

[5] T. Hanawa et al., “Large-scale software testing environment using cloud
computing technology for dependable parallel and distributed systems,”
in Proc. of the Intl. Conf. on Software Testing, Verification, and Validation
Workshops (ICSTW’10), 2010, pp. 428–433.

[6] M. Harman et al., “Cloud engineering is search based software engineer-
ing too,” Journal of Systems and Software, vol. 86, no. 9, pp. 2225–2241,
Sep. 2013.

798798798798

