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ABSTRACT
Today’s Internet-scale computing systems often run at a
low average load with only occasional peak performance de-
mands. Consequently, computing resources are often overdi-
mensioned, leading to high costs. While load control tech-
niques between clients and servers can help to better uti-
lize a given system, these techniques can place a signifi-
cant communication and computation load on servers. To
improve on these issues, we contribute with scalable tech-
niques for client-request rate control, achieved through in-
tegration of (i) a scalable distributed feedback channel to
transmit control information from the server to the clients
with (ii) decoupling strategies that allow to constrain and
filter client requests directly at the client, illustrated in the
area of first-price sealed-bid online auctions, and (iii) a PID
(Proportional-Integral-Derivative) controller that adaptively
controls the input parameters of those decoupling strategies
to facilitate an optimal server utilization. In contrast to re-
lated work, we can hence optimize server load directly at the
source through rate control of the clients. Our evaluations
show that this setup supports large sets of clients before the
controller becomes unstable.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Client/Server

General Terms
Performance, Measurement, Reliability

Keywords
Performance optimization, load control, temporal decoupling

1. INTRODUCTION
Performance and availability are two core concerns in to-

day’s Internet applications. In this paper we address these
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points for certain types of Internet applications. Our pri-
mary application scenario focuses on first-price sealed-bid
auctions: All bids submitted before a certain deadline are
accepted, while all bids submitted after this deadline are re-
jected. As users do not learn about each others bids before
the deadline, there is no direct interaction between users.
This allows us to decouple the auction deadline from bid
submission, because clients can locally timestamp bids using
a smart card and a secure time synchronization protocol [24]
and transmit those bids to the server at a later time. In case
of server overload or server outages, clients can therefore de-
fer the transmission of locally timestamped bids, thus decou-
pling bid submission from bid transmission. Such first-price
sealed bid auctions differ from eBay-style auctions, where
our temporal decoupling approach is not applicable. In ad-
dition, multiple auctions do not overlap, but are executed
sequentially. Our industrial partners estimate a global mar-
ket size of at least 4.05 billion Euros for first-price sealed-bid
auctions, mainly due to state bonds.

With our decoupling approach we increase performance,
scalability, and availability of the system by mitigating peak
loads during an auction’s deadline that would otherwise re-
quire additional hardware resources. As an example of the
relevance of this problem, consider the talk of Google engi-
neer Luiz André Barroso at the O’Reilly Velocity 2008 con-
ference1 who stated that Google’s servers are dormant most
of the time with only occasional spikes of peak activity. Our
decoupling technique approaches the problem by distribut-
ing requests in the temporal instead of the spatial domain.
Thereby, we can avoid peak loads and facilitate more effi-
cient use of the system’s capacity, by adding the temporal
dimension to the trade-off between performance and energy
efficiency.

To specify when a client is allowed to transmit informa-
tion, we introduce two decoupling strategies that defer re-
quests directly at the client. The first decoupling strategy
specifies which clients are allowed to transmit information at
a particular point in time, while the second decoupling strat-
egy controls the transmission rate of clients. For both decou-
pling strategies the input parameters can be adapted to alter
the load at the server. To prevent overload and to enable an
optimal utilization of the server we combine the decoupling
mechanisms with a server-side PID (Proportional-Integral-
Derivative) controller. To minimize the additional load at
the server caused due to operation of the controller’s feed-

1see http://en.oreilly.com/velocity2008/public/
schedule/detail/3694
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back channel we use a distributed feedback channel operated
mainly by the clients themselves. Hence, the server-side cost
for operation of the feedback channel becomes independent
from the total number of clients, allowing for better perfor-
mance during peak loads than state-of-the-art systems.

To summarize, our main contribution is the integration of
(i) a distributed feedback channel to transmit control infor-
mation from the server to the clients with (ii) decoupling
strategies that allow to constrain client requests directly at
the client side and (iii) a PID controller that adaptively con-
trols the input parameters of those decoupling strategies to
facilitate an optimal server utilization.

Section 2 defines the application scenario in more detail,
followed by Section 3 presenting our decoupling strategies.
Section 4 continues with our request rate control loop and
the distributed feedback channel, and Section 5 evaluates the
effectiveness of our approach, complemented by Section 6
discussing the limitations. We discuss related work in Sec-
tion 7 and conclude the paper in Section 8.

2. APPLICATION SCENARIO
In this section we first discuss first-price sealed-bid auc-

tions which are our main application scenario. We then
proceed with an examination of temporal decoupling, which
allows to reduce peak-loads by spreading requests in the
temporal domain. We conclude the section with a discus-
sion about client-side security.

While we discuss temporal decoupling in the context of
online auctions, this approach is also applicable to other
scenarios, such as online lotteries and online gaming [17],
where data transmission can be delayed, if exact and secure
client-side timestamps are available.

2.1 First-price sealed-bid auctions
In first-price sealed-bid auctions the time of bid placement

does not have an influence on the auction outcome, as long
as bids are placed before the fixed auction’s deadline, and
bidders do not learn about each other’s bids until the end
of the auction. Furthermore, bidders are allowed to submit
updates to their bids until the auction deadline. Examples
of such first-price sealed bid auctions are governmental bond
auctions and CO2 certificate auctions. The characteristics
of such first-price sealed-bid auctions differ from eBay-style
auctions, where our temporal decoupling approach is not ap-
plicable. However, our industrial partners estimate a global
market size of at least 4.05 billion Euros for first-price sealed-
bid auctions, mainly due to state bonds.

In this paper we consider first-price sealed-bid auctions
as used for the auctioning of bonds. These auctions exhibit
high peak loads around the auction deadline, as a majority
of bidders tries to submit bids shortly before the deadline.
Moreover, these auctions also exhibit high dependability re-
quirements as an auction canceled due to technical reasons
can lead to significant financial losses, because market con-
ditions change over time. Unlike in the case of eBay-style
auctions, only few non-overlapping auctions are conducted
per year. Therefore, it is not possible to schedule multiple
auctions in a way that the combination of the individual
auction peaks produces a more or less constant load, which
would lead to good overall server utilization.

As a consequence, systems need to be designed for ex-
cessive peak loads and high availability, leading to massive
over-provisioning and excessive costs. While cloud services

would allow to mitigate some of the availability and per-
formance issues, the high trust requirements and the high
monetary amounts eliminate cloud services as an option for
deployment.

2.2 Temporal decoupling
In previous work [6] we have outlined our basic idea to

temporally decouple bid submission at the client from bid
transmission to the server. In this paper, our first contribu-
tion elaborates on this idea and presents different strategies
to actually implement the basic idea (see Section 3). In this
approach we improve dependability and resource utilization,
but at the same time increase the demands for security (see
Section 2.3). To facilitate this approach, we apply secure
client-side timestamps [24] that can then be used by the
server to verify the time of bid submission.

An example of temporal decoupling is given in Figure 1.
The grey line depicts the amount of bids placed by the users
in a first-price sealed-bid auction, while the black line in-
dicates the amount of bids transmitted to the server. The
deadlines for both lines are different. Thus, once the user
places a bid locally, it can be transferred to the server at
a later point in time. Due to the longer duration for bid
transmission, the peak load can be decreased, as the bids
can be spread in the temporal domain. After receiving the
bids, the server can read the secure timestamps assigned by
the user’s smart card, to ensure that the bid has been placed
before the deadline for bids. However, bid transmission can-
not be delayed indefinitely, as the server cannot determine
the winner of an auction without knowledge of the individ-
ual bids. Thus, there is a second deadline for messages that
constitutes the point in time where the temporally decou-
pled messages need to be received at the server.

auction�
start

deadline�
for�bids

deadline�for�
messages

time

#�bids

original�
peak�load peak�load�with�

temporal�decoupling

Figure 1: Effect of temporal decoupling. The dead-
line for bids specifies the deadline until which a user
can place a bid, while the deadline for messages
specifies the deadline until which the bid has to be
received at the server.

By decoupling the deadline for bids from the deadline for
message reception at the server (as depicted in Figure 1),
we increase system performance, scalability, and availability
during peak loads:

1. We increase performance and scalability, as we can in-
tentionally delay transmission of bids during brief pe-
riods of peak loads. This decreases peak load at the
server and and increases the amount of bids that can
be placed at clients.
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2. We increase availability, as in case of problems we can
allow bids to be transferred to the server at a later
time.

For the availability, it is sufficient to apply correct times-
tamps locally. If the system works, we can immediately
transfer bids to the server. For performance and scalability
we additionally use a decoupling strategy in combination
with a PID controller and a distributed feedback channel,
which enables an optimal utilization of the server.

While our approach increases the effective performance of
the system under peak loads, it also introduces new secu-
rity challenges, as malicious bidders could tamper with the
timestamp, thereby cheating the system. Therefore, we do
not define a global deadline for messages—as in the simpli-
fied example given above—but instead define an individual
deadline for each single message by restricting the maxi-
mum transmission delay of each message. An example of
such a maximum transmission delay is the delay given by
one of the decoupling strategies discussed in Section 3 plus a
fixed amount of time sufficient for transmission to the server.
Thus, an attacker trying to manipulate timestamps has less
time to tamper with bid information stored on the smart
card and cannot assign arbitrary values to timestamps. In
case of server failures that prevent clients from abiding to
these deadlines, the individual deadlines can be adaptively
prolonged on the server-side by the auctioneer.

2.3 Client-side security
In our system, security critical components are executed

within secure smart cards, including software to maintain
the current time with a secure time synchronization proto-
col [24]. The smart card is also responsible for the appli-
cation of tamper-resistant and accurate timestamps to in-
dividual bids. Therefore, our system does not depend on
cooperative users, as only the smart card is able to assign
timestamps accepted by the server.

The code responsible for temporal decoupling is not run-
ning within a smart card, but directly running on each user’s
client. Therefore, a user could theoretically manipulate the
software and place bids without abiding to the decoupling
strategies introduced in Section 3. However, as it is triv-
ial to validate if a transmitted bid has been sent within the
correct time interval, the auctioneer can detect such cases
on the server-side and, e.g., disqualify the user from further
participation in the auction.

3. DECOUPLING STRATEGIES
This section provides our first contribution: decoupling

strategies and simulations of their expected influence on the
clients’ transmission rate. A decoupling strategy specifies
when and how long a placed bid is held back on the local
client. In this section we consider open-loop control [12],
where fixed input parameters are used for the decoupling
strategies. In later sections we extend this open-loop ap-
proach by providing closed-loop control, which extends open-
loop control with (i) a distributed feedback channel (control
channel) and (ii) a PID controller to dynamically adapt the
input parameters to attain an optimal server utilization.

Each of the examined rate control strategies can be used
in two different variants: Data-overwrite and data-queue.
In the data-queue variant, all submitted data are queued
and eventually transmitted to the server, while in the data-

overwrite variant, items not yet sent are overwritten by sub-
sequent items—only one item per-auction is queued at a
time. The data-overwrite strategy is applicable to all tem-
porally decoupled systems where later information obsoletes
former information, such as bids in a first-price sealed-bid
auction system.

3.1 Group-based control
With group-based rate control we partition the set of clients

into disjoint subsets, where at a given point in time only the
clients within a particular subset are allowed to transmit
data to the server. There are two distinct steps: (i) Par-
titioning the original set into a set of disjoint groups and
(ii) the selection of an active group. In our approach these
two concepts are intertwined: Each client has a unique ID.
When the server wants to select a particular group it broad-
casts two values: A divisor and a modulo value. The divisor
specifies how many groups exist, while the modulo value
specifies which of these groups is currently active. Each
client divides its ID by the divisor and verifies if the congru-
ence class modulo the divisor matches the modulo value. If
this is the case, the client is within the active group. Other-
wise, the client needs to wait until its group gets activated.

The modulo value is incremented in predefined time inter-
vals, enabling iteration over existing groups. This interval
between groups in combination with the amount of groups
determines the maximum possible delay of client requests.
In the worst case a client wants to issue a request right at the
moment where it became inactive. Thus, the client has to
wait interval between groups · (amount of groups − 1) time
units until it is able to transmit the request.

3.2 Interval-based rate control
Interval-based rate control exploits the fact that during

a peak not only the overall system load increases, but also
the transmission rate of individual clients. The idea is to
partition time into disjoint intervals with length i and to
allow each client to send at most one data item during such
an interval. If a client has not transmitted any data to the
server in a particular interval, it can transmit the next data
item directly to the server without any delay. Otherwise,
the client needs to wait for the next interval to be able to
send further data. It is crucial that the start points of the
intervals differ between clients. Otherwise, all clients with
queued packets that wait for the next interval would start
submitting their queued packets at exactly the same time.

An advantage of the interval-based approach is that it
does not delay data transmission under low load, i.e, when
new data items are created at a client in time intervals larger
than the submission interval. Only in cases where more than
one data item per interval is created, transmission of data
will be delayed. This approach can be seen as a special
case of token bucket based rate control with a bucket size
of one and a new token added each i seconds. To control
the request rate of clients, the size of the interval i can be
adapted.

3.3 Simulation
In this section we use discrete event simulation [10] to vali-

date the performance benefit of our temporal decoupling ap-
proaches. Compared to traditional simulation approaches,
discrete event simulation allows for efficient simulation of
long time spans within short amounts of time. The simula-
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tion uses a priority queue of events sorted after the events’
time from which events are iteratively dequeued and pro-
cessed. When an event is executed, the simulated clock is
updated to the value of the event’s time. The execution of
an event can lead to additional events that are pushed on
the priority queue.

First, we generate a load curve that represents when bids
are submitted by users during the peak load. Afterwards,
we examine the effectiveness of our two temporal decoupling
strategies. For each of the strategies we provide performance
evaluations for different parameters and both variants (data-
overwriting and data-queuing). Neither the shape of the
curves nor the relative load at a particular point in time de-
pend on the total number of clients. Therefore, we give the
load relative to the peak load that occurs when no decou-
pling strategy is used.

3.3.1 Bid behavior
For the simulation of the bidder’s behavior we focus on the

area around the peak load. Using statistical data obtained
from real world auctions of our industrial project partner we
observe that 2

3
of the bids are placed during the peak load

in the final five minutes of an auction. We exploit the fact
that in a Gaussian distribution 68.27% of all measurements
are located within a distance of σ from μ. As these 68.27%
roughly correspond to the 2

3
of the bids, we can assume a

value of 150 seconds for σ, to let the Gaussian distribution
approximate a peak load over a duration of five minutes.
For μ we use a value of zero—placing the peak of the load
at the null point of the diagram.

The resulting load curve representing the bidding behavior
is shown as grey line in the diagrams in Figure 2. The x-axis
represents the time in seconds and the y-axis represents the
amount of placed bids per second given in percentage of the
peak load of the original load curve. This load curve is used
as input for our two different decoupling strategies.

3.3.2 Group-based rate control
For the simulation of the group-based strategies we sim-

ulated the load with two different sets of input parame-
ters: In the first case we used 20 groups—shown in Fig-
ure 2(a)—while in the second case we used 75 groups—
shown in Figure 2(b). In both cases we switch groups in
4 second intervals. In addition, we simulated the data-
overwriting behavior (in red with dashed linestyle) and the
data-queuing behavior (in blue with solid linestyle). The pa-
rameters used in the simulation have been chosen according
to the constraints—such as the maximum time span between
the deadline for bids and the deadline for messages—in real-
world first-price sealed-bid auctions.

First, we observe that there are no considerable differ-
ences between the original load curve and the decoupled
load curves when data-queuing is used. The only difference
is that in the case of data-queuing the load curve is slightly
shifted to the right, which is the expected behavior, as the
total amount of transmitted bids does not differ and as bid
submission is never delayed for more than one full iteration
of all groups. However, when data-overwriting is used, sig-
nificant load reductions can be observed. Again, this is the
expected behavior, as at most one bid is queued while the
node itself is not active, even if multiple bids are placed.
Rate reduction with data-overwriting is only effective, if—
on average—more than one bid is placed on a client while

it is inactive, as otherwise the resulting rate would be the
same as in the data-queuing scenario.

3.3.3 Interval-based rate control
Similarly to the previous strategy, we simulated the results

for two different parameters. In the first case we used an in-
terval size of 80 seconds (shown in Figure 2(c)), allowing only
one bid to be transmitted within an interval of 80 seconds.
Bids that cannot be placed immediately are delayed and
placed after the interval’s end. In the second case we used
an interval size of 300 seconds (shown in Figure 2(d)). In
both cases we simulated the data-overwriting and the data-
queuing variants. As in the case of group-based rate con-
trol the parameters have been chosen according to the con-
straints of real-world first-price sealed-bid auctions. There-
fore, the maximum possible delay in the two interval-based
data-overwriting cases corresponds to the maximum possible
delay in the two group-based data-overwriting cases.

In the results we can observe a brief overshoot and then
a relatively stable amount of load. This is the expected be-
havior: The overshoot occurs as during the increasing over-
all bid rates some clients have not yet transmitted a bid in
the current interval. Thus, they can immediately transmit
a newly placed bid without any rate restrictions. Once the
interval-based rate control sets in, this is not possible as
clients typically transmit bids in each individual interval.

In the data-overwriting variant, the height and the width
of the load curve are comparable to the group-based strategy
examined in the previous section. However, in the data-
queuing variant, there is a fundamental difference between
the group-based strategy and the interval limitation strategy:
While in the group-based strategy data-queuing leads to a
higher load when compared to the data-overwriting case, in
the interval limitation strategy, data-queuing does not show
a higher peak load, but an increased duration. Again, this
is the expected behavior, as interval-based rate control re-
stricts the possible transmission rate. Thus, in data-queuing
the larger amount of bids leads to additional transmission
delays. With an interval size of 80 seconds, we can observe
that the original curve would have a peak at around 28 000
bids per second, while the decoupled curve shows a peak
at around 14 000 bids per second—which essentially doubles
the amount of users a system can handle. With larger de-
lays or intervals the peak load can be even further decreased.
However, larger interval sizes also imply larger time spans
between the deadline for bids and the earliest possible dead-
line for messages.

3.3.4 Transmission failures
Figure 3 shows the performance of interval-based rate con-

trol in case of transmission failures. In the depicted scenario,
bids cannot be transmitted to the server between the time
values 0 and 180 on the x-axis. For the simulation an interval
size of 80 is used. The re-transmission strategy of a client
is to try again when the next local interval starts. In the
data-overwriting variant the only difference to Figure 2(c)
is that the transmission rate drops to zero during the out-
age. As each client can have at most one outstanding bid,
the point until all bids have been received at the server is
not substantially deferred. In the data-queuing variant each
single bid needs to be transferred to the server. Therefore,
the duration until all bids have been collected at the server
is prolonged by approximately the duration of the outage.
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(a) Group strategy: 20 groups, iteration each 4 seconds
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(b) Group strategy: 75 groups, iteration each 4 seconds
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(c) Interval limit strategy: 80 seconds
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(d) Interval limit strategy: 300 seconds

Figure 2: Group-based and interval-based decoupling strategies

Due to the re-transmission strategy, the transmission rates
of clients do not change when the server is not available. In
the figure this can be observed by the server’s load instantly
reaching its normal value as soon as transmission is possible
again.
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Figure 3: Transmission failure mitigation

3.3.5 Results
Our results show that the group-based and interval-based

decoupling strategies are suitable for temporal decoupling
to mitigate temporary peak loads. The group-based strat-
egy allows to mitigate peak loads by assigning nodes to
a set of groups and allowing nodes to transmit data only
when their particular group is active. We have evaluated
this strategy with two different variants: Data-queuing and
data-overwriting. As bids that are placed while the node’s
respective group is inactive are delayed, both variants also
slightly shift the load curve to the right. However, for a
given delay parameter the data-overwriting variant is able
to reach a considerably lower peak load than data-queuing.

The idea behind the interval limit strategy is to limit the
maximum transmission rate of each single client. There-
fore, from a bidder’s point of view bids are not delayed
until the local transmission rate exceeds the allowed trans-
mission rate. For both variants—data-queuing and data-
overwriting—the resulting peak load is the same for a given
parameter. However, the time until all bids have been col-
lected at the server is longer when data-queuing is used, due
to the larger amount of total bids.

The simulations in this section used predefined input pa-
rameters, such as the amount of groups or the interval size.
While those input parameters allow to reduce request rates,
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Client
P2P�network Sensor

Server

Controller

Control�channel

P

P

HTTP�RequestInternet�
application

PP

Controller

HTTP
Requests

Figure 4: Control loop architecture overview. The
individual clients send requests to the server. At the
server the sensor measures the server-side queuing
and processing delay and the controller uses the in-
put provided by the sensor to adjust the output,
e.g., the interval length or group size of our decou-
pling strategies. A distributed feedback channel is
used to scalably propagate the control output back
to the clients. On each client the Internet applica-
tion originates the application-level requests, while
the client application (labeled P) receives input from
the controller over the distributed feedback channel
and provides input to other peers and the Internet
application.

they are open-loop control approaches that do not take ac-
tual load at the server into account. Thus, these approaches
are not able to prevent server overload if input parame-
ters are suboptimally chosen, e.g., if the amount of active
clients changes over time. Moreover, open-loop control only
achieves a sub-optimal server utilization. In the next sec-
tion we upgrade this open-loop approach to a closed-loop
approach, allowing for an optimal server utilization.

4. CLOSED-LOOP CONTROL
In this section we contribute with our closed-loop con-

trol approach that integrates our decoupling strategies with
(i) a distributed feedback channel and (ii) a PID controller
to induce an optimal utilization at the server. The PID
controller dynamically adapts the input parameters of our
decoupling strategies—in the context of the controller la-
beled as manipulated variable (MV)—while the distributed
feedback channel can relay control information to the clients
with only minimal overhead at the server.

The advantage of closed-loop control in comparison to the
open-loop strategies presented in Section 3 is that the PID
controller allows the system to adapt to changing transmis-
sion rates of clients, as well as a changing number of overall
clients. While open-loop decoupling strategies can adapt
to the worst-case considering the highest potential overall
server load, this unnecessarily delays bid transmission at the
clients. Consequently, malicious bidders would have more
time to tamper with the stored bids, thereby increasing the
system’s security threats.

System and software architectures are depicted and de-
scribed in Figure 4. First, we discuss the setup at the client-
side. Then we proceed with a discussion of the controller.
Finally, we conclude the section with our distributed feed-
back channel.

Controller

System�
input

Measured�
error

Setpoint
Measured�output

Server

Controlled�System

S
ensor

Figure 5: Control loop. Our controlled system con-
sists of the individual clients and the server. A sen-
sor at the server measures the processing delay. The
measured error between an externally provided set-
point and the measured output is fed into the con-
troller, which adjusts the system input accordingly.
The system input is provided via a distributed feed-
back channel back to the clients.

4.1 Clients
On the client-side we use a decoupling client to facilitate

request rate control. This decoupling client performs two
tasks: (i) It acts as actuator by receiving control informa-
tion over the distributed feedback channel and by controlling
request rates of the Internet application accordingly, and
(ii) it is itself part of the distributed feedback channel as it
forwards control information to other clients. Due to our
closed user group, installation of custom client-side software
is a feasible approach. As a consequence, we do not target
generic Internet applications, but specific types of applica-
tions such as first-price sealed-bid auctions that benefit from
temporal decoupling as outlined in Section 2.2.

4.2 Controller
The task of the controller discussed in this section is to

adaptively control the parameters of the rate control tech-
niques introduced in Section 3. We use a closed-loop control
approach that allows the controller to provide feedback to in-
dividual clients and thereby provides a better performance in
case of unpredictable loads and unanticipated load changes.

The setup of our controller is depicted in Figure 5. The
controller is implemented as a PID (Proportional-Integral-
Derivative) controller, as measurements showed that it pro-
vides a lower standard deviation of the process variable (PV)
than a P (Proportional) or PI (Proportional-Integral) con-
troller in our application scenario. Clients regularly send
requests to the server. The input to the controller is pro-
vided by a sensor at the server that measures the process
variable. The controller then compares the error (or devi-
ation) e between the given setpoint (SP) and the measured
process variable. The goal of the controller is to minimize
e by adapting the input parameters of the system accord-
ingly. In our system the process variable is—depending on
the configuration—either the queue length of requests wait-
ing to be processed, or—alternatively—the request process-
ing delay at the server. Consequently, the setpoint is the
target value of the system and given in the same unit as
the process variable. The manipulated variable (MV) is the
input to the process, in our system this corresponds to the
input parameters of the decoupling mechanisms introduced
in Section 3. In case of group-based decoupling this parame-
ter reflects the percentage of active clients, while in the case
of interval-based decoupling it reflects the interval size.

Due to the fact that the system behavior differs between
application scenarios and as we anticipate that in real-world
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deployments at best a heuristic tuning or auto-tuning method
will be used, we use the Ziegler-Nichols heuristic method [8,
29] to obtain P, I, and D gains with a quality that can be
compared to such real-world deployments. First, the P gain
is increased until the system starts to oscillate. Then, the
Ziegler-Nichols charts are used to calculate the respective
gains for a PID controller.

4.3 Distributed feedback channel
The task of the distributed feedback channel is to trans-

mit control information from the controller to the clients.
The typical implementation approach is to let the server
communicate with each individual client. However, previ-
ous work has shown that for large amounts of clients such a
system cannot be easily implemented without a specialized
broadcasting infrastructure [9].

Consequently, we contribute with the integration of a broad-
casting infrastructure based on an overlay network that can
be used to flood information to the set of clients. We use
application-level broadcast [28] based on a tree-based net-
work structure as depicted in Figure 6. Therefore the height
of the tree—and thereby the propagation delay—grows only
logarithmically with the amount of clients. To prevent fail-
ures caused by single clients, we use multiple independent
trees, so that each client receives broadcasts from multiple
sources. To detect partitions we use a keep-alive mechanism.
The server regularly broadcasts cryptographically secured
sequence numbers to the tree. A client can detect problems,
if it has not received sequence numbers for some time or if
individual sequence numbers are missing. However, due to
the closed user group in our application scenario we expect
a low node churn.

Client Client

Client Client Client Client

Application
servers

D
ead�T

im
e

Figure 6: Distributed feedback channel. The servers
send information to only a few clients with a tree-
based network structure used to propagate data be-
tween clients. Parameters of the tree are the arity
and the height.

For our distributed broadcast channel there is a trade-off
between the total number of clients and the stability of our
system:

• With a growing number of clients the height and/or
arity of the tree have to increase to accommodate more
clients. However, with a growing height or arity the
dead time of our system increases as well, which in
turn leads to instabilities such as oscillation.

• With increasing height of the tree, the clients’ average
distance to the server increases. Thus, it takes longer
until a server broadcast is received by a majority of the

clients. Similarly, with increasing arity each client has
to transmit information to a larger amount of children,
lowering the bandwidth available for each individual
transmission.

• When the dead time of the system increases, this de-
creases the stability, making the system susceptible to
overshoots or oscillation. It is possible to mitigate this
issue by decreasing the gains of the controller. How-
ever, this slows down the system, potentially prevent-
ing it from responding to load changes in time.

By adapting the arity and the height of the N-ary tree,
we can control the trade-off between the maximum amount
of clients and the dead time. For example, consider an av-
erage propagation delay between two clients of 100 ms and
a maximum tolerable dead time of 5 seconds. This would
allow a total tree height of 50. When using a binary tree,
this equals a theoretic total of 22.5 ·1014 clients. In practice,
the number of clients is therefore not limited by our broad-
cast channel, but by the lower bound of the request rate
acceptable for each individual client. Under most configura-
tions, the feedback channel itself is capable of supporting an
amount of clients several dimensions higher than the max-
imum amount reasonably supported by the servers of the
system. As a consequence, we can use the additional ca-
pacity to increase the redundancy of our tree, allowing for
correct propagation of broadcasts in cases where individual
clients fail.

As a majority of bidders generally places bids shortly be-
fore the auction deadline and as the set of bidders is pre-
defined for each auction, node churn during this critical
period is typically smaller than in comparable application
scenarios—if not non-existent at all. Therefore, our dis-
tributed feedback channel is not specifically adapted to high
node-churn scenarios. However—depending on the concrete
scenario—alternative application-level broadcast protocols
can be used for such cases.

5. PERFORMANCE MEASUREMENTS
In this section we evaluate the effectiveness of our rate

control approach. The goal of the measurements is to evalu-
ate different system configurations in regard to stability and
performance. While there are several common benchmarks
for evaluating Web applications, they are not applicable to
our temporally decoupled system. RUBiS (Rice University
Bidding System) [3] models an auction site similar to eBay.
While in RUBiS the typical user interactions such as brows-
ing of auctions and consulting of bid histories are modeled,
in our system the focus lies on the request rate control of
temporally decoupled bid submissions. Similarly to RUBiS,
TPC-W [25] models a Web shop to test the performance of
Web server and database systems. As a consequence, neither
RUBiS nor TPC-W can be used in their current specification
to evaluate our rate control system, as they are not applica-
ble to temporally decoupled systems. Instead, we evaluate
our system in the auction scenario specified in Section 5.4.

In the following evaluations we first examine the open-
loop behavior of our system and the system’s response to
changes in the input. Then, we examine the closed-loop
behavior of our controller in a simulated auction scenario
using group-based and interval-based control. In addition,
we also compare our approach to alternative solution ap-
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proaches, such as an approach piggybacking control infor-
mation in HTTP requests and another approach rejecting
requests on the server-side [1].

5.1 Configuration
In the evaluation we focus on single-threaded clients using

data-queue for transmission and the processing and queuing
delay as metric. In addition, we also conducted measure-
ments where we limited the number of concurrently pro-
cessed requests at the server to 1, and subsequently used the
size of an unbounded queue of the waiting requests as a met-
ric for the controller. Such a setup better reflects application
servers with a fixed number of worker threads. However, as
we did not observe significant differences in comparison to
the processing and queuing delay metric, we only show the
results for the processing and queuing delay metric in this
section, which also reflect our results for the queuing size
metric.

5.2 Test setup
For the evaluation, we measure how our controller works

for a CPU bound service, as this has been indicated by our
industrial partner to be the limiting factor. Our service
performs a simple calculation—prime factorization—that re-
quires about 100 ms of processing time. An increasing con-
currency rate also increases the processing delay for each
individual request. The hardware setup consists of six stan-
dard PCs (Personal Computers) running on Ubuntu 8.04
server edition. The first PC hosts the server, while the re-
maining PCs act as load generators. The server is imple-
mented as Java application using Jetty to provide HTTP
access. The clients are also implemented in Java with one
thread per simulated client. Each load generator is responsi-
ble for the simulation of multiple clients. Due to the fact that
we test a CPU bound service, local network performance is
not an issue.

As all clients run on the same local network and as mul-
tiple clients run on the same host, the propagation delay
between individual clients is low. To account for the fact
that dead time has a considerable influence on the perfor-
mance of a controlled system, we implemented dead time
simulation into the distributed broadcast channel used to
propagate control information to clients. This simulation
works by enabling a client to hold feedback information for
a particular amount of time before forwarding this informa-
tion to the next client. This allows to simulate different
network conditions, such as latency on wide area networks
(WANs).

5.3 Response to request change
First, we evaluate how fast our system reacts to sudden

changes of the request rate. The evaluation was done in two
distinct steps depicted in Figure 7.

In the“No Control” curve the behavior of the uncontrolled
system is shown and in the “PID Controller” curve our sys-
tem is extended with a PID controller that provides closed-
loop control. In both cases we double the amount of active
clients and verify how the system reacts to this input change.
In the“No Control” case, doubling the amount of clients also
doubles the processing time at the server. In the “PID Con-
troller” case, the controller tries to keep the response time
stable at 1 000 ms. We can see a peak at the beginning,
when the controller needs to find an optimal range at the
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Figure 7: Response to system change: Without con-
troller and with PID controller in place

start of the simulation, and during the change, when the
controller needs to adapt group sizes to the new client sizes
accordingly (see circles).

Stability of the controller is a considerable factor, as it
does not only affect the processing time at the server, but
also the total throughput of the system. With a low stability
caused by an unstable PID controller, there are time peri-
ods where no clients send requests, although the server is
not fully loaded. In addition, also the case where too many
requests are sent by clients can cause decreased throughput
due to overload at the server. Generally, the goal of a con-
troller is to reach the best performance possible with a given
limit for the stability.

5.4 Auction scenario
For the second test we examine the behavior of our con-

troller when used for the characteristic load of our auction
scenario. In particular, we examine the performance during
the peak load that resembles the bids of a first-price sealed-
bid auction [15].

To model the peak load we distribute each client’s request
rate according to a Gaussian distribution with σ = 50 sec-
onds and μ = 130 seconds. There is a total of 1 000 clients
and each client transmits a total of 30 requests. For each
request at the server, the server executes a calculation that
takes 100 ms. The set-point of the controller that reflects
the acceptable processing delay is set to 1 000 ms.

The results of this evaluation for group-based rate control
are presented in Figure 8. In the first measurement we ex-
amine the response time when no rate control is used, i.e.,
not even open-loop. The maximum response time peaks at
around 10 000 ms. The reason for the plateau at 10 000 ms
is given by the fact that the concurrency of each client is
limited to 1 and that thus for 100 concurrent requests for an
operation that takes 100 ms the total average will not exceed
10 000 ms. In the next three measurements we examine the
behavior of our PID controller for different amounts of dead
time.

In the first case, the simulated dead time is near zero. The
actual dead time is non-zero due to inevitable delays in our
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Figure 8: Auction scenario with: PID controller,
group-based control, average process delay metric

broadcast channel. In the second case we simulate a dead
time of 500 ms per level of the broadcast tree and in the third
case a dead time of 2 000 ms. In each of the cases there is
a total of 3 levels in a quinary (5-ary) tree. While the con-
troller is able to constrain the processing delay in the first
case, in the second case it takes some time until the system
is stable. In the third case we see a relatively large oscil-
lation during the whole test, suggesting that the dead time
is too high for our controller. In a real-world application
scenario such propagation delays between nodes are consid-
erably lower. If we assume an propagation delay of 50 ms, a
total of 30 levels would yield a maximum propagation delay
of 1500 ms, comparable to the maximum propagation delay
of the simulation with a dead time of 500 ms. A quinary
tree with 30 levels would support a theoretical maximum of
1.16 · 1021 nodes, more than anyone would need in practice.

During the evaluation of group-based rate control we ob-
served that the limited granularity of possible group sizes
can have negative impact on the performance of the system.
Especially when large groups are used, the possible group
sizes that can be declared using a single divisor and a single
modulo value often considerably differ from the manipulated
variable calculated by the controller. As mitigation strategy,
we enhanced group-based control to use lists of divisors and
modulo values, instead of two single values. Clients match-
ing a divisor/modulo combination in the list are allowed to
transmit information. This allows for a more fine-grained
specification of group-sizes, and thereby for a better stabil-
ity of the controller.

In Figure 9 we show the results for interval based rate
control. While the output of interval-based control is stable
after the initial peak, variations are slightly larger than with
group-based rate control. The stable behavior in Figure 9 is
achieved by limiting the maximum difference between two
consecutive rate control parameters calculated and broad-
cast by the controller. The respective limit is automatically
derived based on the estimated amount of clients and the
measured average time per operation. Due to this limita-
tion the controller requires some time until it can reduce
the load during steeply increasing client request rates.
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Figure 9: Auction scenario with: PID controller,
interval-based control, average process delay metric

5.5 Comparison
In this section we compare the effectiveness of our ap-

proach with two alternative approaches found in related
work (Section 7) that work without distributed feedback
channels.

In the first approach in Figure 10 we use a piggyback
strategy where we embed rate control feedback in HTTP
responses. When an HTTP client sends an HTTP request
to a server, the server includes rate control information in
the HTTP response. The results show that the piggyback
approach is unstable and leads to oscillation. A major cause
for this problem are variable dead times and the fact that
control information at clients cannot be updated between
individual requests of a client. Thus, the system is only able
to provide request rate control, but not admission control as
our distributed feedback channel.
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Figure 10: Comparison between distributed feed-
back channel and piggyback approach
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In the second approach in Figure 11 we use a reject strat-
egy similar to the control-theoretic approach by Abdelzaher
et al. [1] where we reject requests at the server instead of the
client. When a client is not able to establish a connection
to the server, we use an exponential backoff strategy simi-
lar to TCP’s retransmission timer [19] without the adjust-
ments using the Smoothed Round Trip Time (SRTT) [21].
The original approach is not directly applicable to our appli-
cation scenario, as implementation of a reject/request-ratio
would not allow us to reject requests on a per-client basis.
Instead, we reject requests at HTTP level instead of TCP
level, as our existing decoupling mechanism depends on the
client IDs. As a consequence, the performance of the re-
ject approach in our evaluation is restricted by our required
adaptations.
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Figure 11: Evaluation of reject/request-ratios

With the reject strategy the results depend on the ratio
between the cost of accepting a request and the cost of re-
jecting a request. Figure 11 depicts the results for different
ratios between accepting requests and rejecting requests. In
the first case processing a request takes 100 ms, while we
do not artificially delay the time for rejecting a request. In
the additional two cases we increase the time for rejecting a
request to 10 ms and 100 ms to simulate a reject/request-
ratio of 0.1 and 1 respectively. While the results show that
the stability does not significantly differ between different
reject/request-ratios, there is a considerable difference in
the throughput. While our distributed feedback channel is
able to achieve a throughput of 8.6 requests per second, the
throughput in the best reject approach is only 7.0 requests
per second. When increasing the reject/request-ratio the
throughput declines further to 5.0 and 2.9 requests per sec-
ond accordingly. Therefore, the benefits of our distributed
feedback channel are primarily relevant in scenarios with a
high reject/request-ratio, where the cost of rejecting a re-
quest is not negligible. Abdelzaher et al. have shown that
this is the case in Web-server end systems, where they mea-
sured a reject overhead of 1.1 ms per request, while process-
ing a request for a zero-sized URL took 1.604 ms [1]. A more
detailed examination of the reject/request-ratio’s influence
is given in the next section.

6. LIMITATIONS OF OUR APPROACH
The applicability of our approach for certain application

scenarios can be determined by comparing the effort re-
quired at the server for processing requests with the effort
required for rejecting requests and with the typical ratio
between average load and peak load. For comparison, we
assume a simple system that does not use distributed load
control: If a request cannot be processed, it is rejected by
the system and the client does not try to retransmit the
request.

First, we examine the theoretical limitations due to the
cost difference between accepting and rejecting requests. We
then proceed by discussing the implications of these trade-
offs on real-world application scenarios.

6.1 Theoretical limitations
We denote the maximum request rate that the system

can sustain without rejecting requests as rprocess , the fac-
tor between the system load under normal operation and
the system load during a peak as factorpeak , and the fac-
tor between the cost of accepting a request and rejecting
a request as factor request (= cost for request

cost for reject
). We then cal-

culate an upper bound for the server’s effort of rejecting
requests when not all requests can be processed by calculat-

ing rprocess · factorpeak
factorrequest

: We have factorpeak as many requests,

but rejecting each request only takes 1
factorrequest

of the time

it would take to process these requests.
If factorpeak is equal to factor request the system is not able

to handle any business requests during peak load, as re-
jecting requests takes up all available resources. Thus, in
this case our distributed broadcast channel would be able to
double the effective capacity of the system, as the resources
previously used for load control can now be used for re-
quest processing. With a higher factor request the advantage
of our distributed broadcast channel increases, while with
a lower factor request the advantage decreases. For example,
if factor request is 100, but factorpeak is only 10, the upper

bound of rejection costs during the peak load is about 1
10

of
the system’s overall performance. In this case, the advan-
tage of outsourcing the broadcast channel is rather limited.

6.2 Real-world applications
In a real world system the examination of our system’s

advantages are more complex than the calculations for the
simplified model given in Section 6.1: (i) Our model does
not deal with retransmission of requests. If a request is
rejected, the client would need to try a retransmission at
some point. This increases the advantage of our approach.
(ii) We assume that each request is transmitted independent
of other requests. In reality, a client can use information
from earlier requests to optimize the rate for later requests.
This in turn decreases the advantage of our approach, but
may lead to unstable behavior as shown in Figure 10.

While our approach cannot prevent clients from trying to
cheat by ignoring control information, the server can easily
verify if individual clients act according to the broadcast
control information. If clients continuously violate those
rules, the server can ban those clients from further participa-
tion in the auction by rejecting requests without processing
them. In addition, to prevent clients from injecting bogus
messages into the network, clients will only forward mes-
sages digitally signed by the server.
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7. RELATED WORK
Our system is not the first effort to dynamically control

request rates of clients on higher level application layers. For
example, several papers [1, 13, 20] describe approaches that
use controllers to react to system load and thereby manage
to improve the system’s overall performance. The main dif-
ference to our work is that we do not take actions on the
server side (such as rejecting requests or content adaption),
but rather try to solve the problem directly at the source—
at the client side. This section gives a brief overview of
relevant and related work. First, we discuss load control
mechanisms in standard Internet protocols. Afterwards, we
proceed to specialized solutions for particular types of Web
applications.

Transmission Control Protocol.
TCP based servers [21] are able to implicitly control the

transmission rate of clients by only allowing a particular
amount of parallel connections and by using a window to
restrict the amount of data waiting to be processed. If SYN
packets of clients are dropped, clients use an exponential
backoff approach [18,19] to time retransmissions, which can
further be improved with a PI controller [14]. In our applica-
tion scenario, TCP based rate control is not fully applicable
as our goal is to prevent overload by filtering requests di-
rectly at the clients.

Control-theoretic approaches.
The goal of RacingSnail [7] is to monitor and optimize

the performance of existing systems. The authors state that
each system exhibits an optimal performance at a specific
request rate. With a lower request rate the system is under-
loaded, and with a higher request rate the system is over-
loaded. RacingSnail is implemented using a blackbox ap-
proach where one module is responsible for measuring and
analyzing the server’s performance, and another module is
responsible for slowing down client request rates. Com-
pared to our adaptive rate control approach the applica-
tion scenario and the solution approach are different. While
our system deals with scalability aspects in case of large
amounts of clients distributed over the Internet, the appli-
cation scenario of RacingSnail is request rate control within
more self-contained systems. As a consequence, our sys-
tem mostly contributes with techniques required to facili-
tate request rate control for large amounts of clients, while
RacingSnail deals with issues such as how existing blackbox
services can be slowed down.

Abdelzaher et al. [1] describe performance control of a
Web server using classical feedback control theory. An-
other control-theoretic approach guaranteeing bounded and
predictive response times by Web servers been based pub-
lished by Lim et al. [13]. Chan et al. [4] propose a fuzzy
PI controller to guarantee proportional delay differentiation
on Web servers by providing a better service to a premium
class of users. The main difference to the first two works
is that we directly control the request rates at clients. The
work of Chan et al. could complement our solution.

Self-adapting service level.
Philippe et al. describe an approach for an self-adapting

service level [20] that allows some components in an appli-
cation server to dynamically degrade or upgrade their level

of service, thereby trading a lower service level for a better
overall performance of the server. This could complement
our solution in general, but is not applicable for our specific
application scenario.

In addition to the discussed publications there is a number
of publications [2, 5, 11, 16, 23, 26, 27] that deal with admis-
sion control for Web server systems. Most existing systems
adapt parameters at the server to influence the load pro-
duced by clients, e.g., by deciding which requests should be
rejected. In contrast, our technique frees the server from re-
jecting individual requests, as we directly filter requests at
the client.

8. CONCLUSION
This paper presents a new approach for adaptive load con-

trol and performance for first-price sealed-bid auctions. Our
main contribution is the integration of (i) a distributed feed-
back channel to transmit control information from the server
to the clients with (ii) decoupling strategies that allow to
constrain client requests directly at the client side and (iii) a
PID controller that adaptively controls the input parameters
of those decoupling strategies to facilitate an optimal server
utilization.

In comparison to established techniques, our system al-
lows to control the quality of higher layer protocols without
relying only on the load control mechanisms provided by
lower layer protocols. Unlike related work, the servers in our
system do not need to communicate with each single client
individually. In particular, we can control request rates of
clients even before a connection to a server is established,
leading to a significant reduction in the required server-side
resources. Our system does not only prevent clients from
overwhelming the capacity of the servers, but allows to re-
duce the capacity required at the server-side infrastructure
for applications that show temporary peaks in transmission
rate or that can queue and send client requests in a single
batch request, whereby data obsoleted by newer information
can already be filtered at the client side.

Concluding, our approach provides viable means to man-
age high loads in first-price sealed-bid auctions without re-
quiring large clusters able to cope with brief peak loads.
Controlling transmission rates at clients decreases the num-
ber of required servers and makes more efficient use of avail-
able resources. A potential drawback is the necessity of a
distributed feedback channel, which, however, could be ap-
proximated through similar infrastructures. As future work
we identify the use of a Smith predictor [22,30] to compen-
sate for dead time due to delays and thereby stabilize the
controller as well as an evaluation of fuzzy controllers [4]
to verify if they are able to yield acceptable results in our
system.
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