SOFTWARE DISTRIBUTION ENVIRONMENTS FOR WORKFLOW
MANAGEMENT SYSTEMS -THE CASE OF MQ SERIES WORKFLOW

Rainer Anzbc’ick', Schahram Dustda:‘e, Harald GalP’

'DATA. Corporation, Invalidenstrasse 5-7/10, A-1030 Wien, Austria

ari@data.at
23 Distributed Systems Group, Vienna University of Technology, Argentinierstrasse 8/184-1, A-1040 Wien, Austria

{dustdar.gall} @infosys.tuwien.ac.at

Abstract

Workflow Management Systems (WfMS) are increasingly
gaining importance as a main building block for intra- and
inter-organizational information systems, Enterprise Application
Integration (EAI), as well as for Business-to-Business (B2B)
systems on the Internet. WfMS are complex and require Software
Distribution Environments (SDEs) for managing configuration,
distribution, and deployment of their components. However, few
research papers can be found in scientific literature that deal
with SDEs for WIMS. This paper discusses architectural issues
of SDEs in this context and presents a prototypical SDE-
architecture for MQ Series Workflow, a Workflow Management
System.

Keywords
Software Distribution Environment, Workflow Manage-
ment Systems, Software architecture

1. Introduction

Workflow Management Systems (WfMS) are increasingly
gaining importance as a main building block for intra- and
inter-organizational information systems, Enterprise
Application Integration (EAI), as well as for Business-to-
Business (B2B) systems on the Internet. W{MS are
complex and require Software Distribution Environments
(SDEs) for managing configuration, distribution, and
deployment of their components. However, very few
papers can be found in scientific literature that deals with
SDEs for WfMS. This paper discusses architectural issues
of SDEs in this context and presents a prototypical SDE-
architecture for MQ Series Workflow [17], a Workflow
Management System. Software configuration, distribution,
and deployment of enterprise information systems have
changed dramatically through the Internet evolution from
simple e-mail distribution of software to sophisticated
distribution and configuration portals for software. Many
commercial tools and environments have been developed

and are in use in such portals: System Management Server
[8], Marimba Management Solution [6], NETDeploy
[4,5], WebStart [14], InstallShield [3], Tivoli Software
Distribution [15], Rational ContentStudio [10] and many
others [1]. We have performed a detailed evaluation of 12
products in the area of software distribution environments
(SDEs) that defines the basis for our architectural
considerations. Details on this evaluation can be found in
[1]. Many concepts covering software distribution are also
related to configuration management (CM) [2]. Producers
require software configuration management (SCM) to be
integrated in their development environments. Software
distribution should be based on SCM information to ship
or offer particular releases (or configurations) to
customers. For that, many SDEs also cover some software
configuration tasks such as management of development
artifacts, product and release management, software
description (languages), or software packaging.

The contribution of this paper is to discuss a soffware

architecture for SDEs suitable for Work flow Management
Systems (W{MS). This is achieved by discussing
architectural properties, common components, and
relationships across particular tools and products, as well
as considerations of quality attributes of a reference
architecture for SDEs derived from our previous analysis
[1]. Our results are based on the aforementioned product
evaluation and three case studies that functioned as means
to distil architectural elements.
The paper is organized as follows: the next section
provides a brief overview of Workflow systems. Section 2
describes a case study for Workflow systems and
discusses architectural issues and requirements for SDEs.
Logical and process views for configuration, distribution,
and deployment are presented in Section 3. Finally
Section 4 concludes the paper.

1.1 Workflow Management Systems

Business processes in general and associated workflows in
particular exist as logical models. A business process
consists of a sequence of activities and activities are
distinct process steps and may be performed either by a
human or by a software system. A W{MS [18] enacts the
real world business process for each process instance.
Examples of business processes are purchase orders,
insurance claims in administrative or production
workflows or any software development process in a
collaborative workflow. Any activity may consist of one
or more tasks. Examples of tasks include updating a
document, a database, or calling a customer by telephone.
A set of tasks to be worked on by a user (human
participant or software application) is called work list. The
work list itself is managed by the WIMS. The WiMC [18]
calls the individual task on the work list a work item.
Workflow management systems have been defined as
“technology based systems that define, manage, and exe-
cute workflow processes through the execution of soft-
ware whose order of execution is driven by a computer re-
presentation of the workflow process logic” [18].
Workflow systems generally aim at helping organizations’
team members to communicate, coordinate and
collaborate effectively and efficiently. Therefore WfMS
possess temporal aspects such as activity sequencing,
deadlines, routing conditions, and schedules. WfMS are
typically “organizationally aware” because they contain
an explicit representation of organizational processes (pro-
cess model). Traditional WfMS therefore present a work
environment consisting of roles and their associated
activities and applications. The goal of WIMS is to allow
an organization to automate its business processes by
instantiating them using a WfMS. More recently WfMS
technology is utilized in Business-to-Business (B2B)
systems, Enterprise Application Integration efforts and
nearly in all large and distributed information systems.

Increasingly W{MS are found in software engineering
processes. However, it is interesting to note that very few
papers can be found in the scientific literature dealing with
configuration, distribution, and deployment issues of
WiMS.

2. Case study “Workflow”

The case study “Workflow™ covers the configuration and
distribution of a workflow system that is implemented
using the MQ Series workflow client and server
components. The system consists of a hierarchical model.
On top, the domain concept separates multiple physical
sites but shares a common workflow model. The MQ
Series Workflow queue management provides
synchronization. The next level consists of system groups
that refer to a single location where one or more workflow
systems are implemented. Systems grouped together use
the same database and their communication is optimized.
A single system consists of a one, two or threetier
architecture with a client and Web-server tier, a workflow

server tier and a database server tier. Clients implement
the workflow client API [18] and can be Web-browser,
DCOM [7], DotNet [9], or Java-based applications using
HTTP or RMI [12, 13] over IIOP [13]. Their
communication can be consolidated by client
concentrators that forward their requests. Depending on
the protocol a Web-server with servlets or the EJB-based
WebSphere [16] application server is used. The workflow
tier has several functionalities that can be distributed over
multiple servers. The database can be run i a cluster to
provide load-balancing [16].

The model described here covers the distribution of a
MQ Series Workflow system and takes into account
multiple locations, multi-tier systems, distributed server
architecture, a large number of clients and the us e of client
concentrators. The Configuration Management tasks are
mainly covered by the workflow administrator and can be
substituted or extended with a custom built
implementation; however the model fits both scenarios.
One benefit is the homogenous structure of distributing a
single system; on the other hand the heterogeneous
operating systems infrastructure requires advanced setup
techniques. The workflow system provides setups for all
server and client components.

Figure 1 provides a sequence of the key interaction of
the components necessary to distribute a MQ Series
workflow system. For distribution purposes, information
about specific workflow system architectures has to be
stored and maintained. A configuration database has to
cover all installation-related domain, system group, and
system node information. Clients in this case study are
likely to be catalogued with an inventory system.
Therefore an inventory database or a directory service is
part of the configuration. A mechanism has to be provided
that supports transfer of installation packages by
implementing parts of the workflow API and querying the
additional information. There exists an order dependency
for installing workflow components. The server
infrastructure is built before the client. The hierarchy has
to be set up from a domain down to a system. An initial
queue manager has to be installed for communication
between components [17].

| i
Iu\u;m' Sarein | backene it || akbada ke, MO e fan &0 ” Lari s B B

i I

1 pravadiacnsdelzimak v

s dsnen ” asdiioa dalston ”em o HMMHWI
i i i

¥

!

T
1 provasinecienivoseion :
T]

5 i

qrriseciry i :

H e T
]

=

sy 1

- 1
o setapdas kel idan ol
i

el fetorel iy 1

¥

.
o Ry M 1ok

.

e g

bt s

T PSR W 3

ceverad ki alon

i

1

/

]

! _—
#

i

i

§

i

. JUGpTo

., ”
- b vy praeage

T meaniortoatdamatan o
| i f

e

. SRR "SR S —————— S——

i
¢
i
% L} "
: } ;
3 i ¥
3 i ¢
¥ i s
2 |]
¥ i +
£ i
} g
T o 3 e B &
T I T e T T e
e e e 1 o

¥

Figure 1: Case study “Workflow” processes

Next, the installation pro cess, also shown in Figure 1, is
described. All hosts except the workflow clients provide
information to the- directory service. Key information
provided here covers system name, version and location,
user and user group constellations and security policies.
Additionally the installation process can be supported by
storing which MQ Series Workflow server components
and database systems have to be installed. An inventory
like the Tivoli inventory module collects information
about all hosts of a MQ Series workflow system. An
inventory client provides system information that can be
used during package creation for version selection and
installation customization. The information collection
process is done independently of the installation process.
The distribution system initially stores dependencies
between workflow components to enable ordered
installation activities. Next, it queries the directory service
to setup workflow information. During this operation a
plan of installation activities is created considering the
component dependencies. Each activity is related to a
target host and a MQ Series workflow service to be
installed. Furthermore, the inventory system is queried to
select the product versions that fit the operating system
and language requirements. Additionally the inventory
provides information about installer services and
workflow components, which are already setup. Based on
the product and system description, the workflow
information is setup, the activities are specified to whether
install or upgrade installer services and workflow
components and the packages that should be used are
defined. From this point the distribution system is enabled
to setup the installer components on the target systems.
For a more complex distribution system like Tivoli
additional distribution services have to be provided.
Therefore a customized installation procedure and
additional target systems have to be considered. This
setup proceeds until all hosts are enabled to receive
installer packages. During this process all required
installation packages are created by importing or creating
them with an external packager. After the distribution

infrastructure is setup and all packages are ready for
installation, the distribution activities from the installation
plan are executed. First, except for deletions, the packages
are distributed. An internal mechanism can be used or it
can be delegated to a transport mechanism. Retrans-
mission and resume operations have to be considered if
unreliable transport is used. The state of the distribution
has to be maintained for all activities to start the
installation activities themselves. Depending on the
distribution system, the system or the user decides
whether to install, upgrade or reinstall the package. For
example the Tivoli integration toolkit can be used to
distribute components and to maintain state of the
installation process. A manual installation is not
recommended for workflow components. The activities
are executed in order based on the initial dependency
information and the workflow system is finally distributed
consistently. From the products we described in [1] the
Tivoli [15] distribution and Inventorying system meets
most requirements for complex distribution tasks. SMS
[8], Marimba [6] and others [1] shouldn’t be taken into
account as long as they are not implemented for other
purposes. InstallShield [3] can be used as an exernal
packager and version control systems can be customized
to provide the required information.

3. Software Architecture

In this section a reference architecture is elaborated, based
on the requirements and functionalities presented
previously. The case study is discussed and conclusions
for a reference architecture are presented resulting in an
architectural model forsoftware distribution of WiMS.

3.1 Logical View

The logical view of the architectural model [11] covers
UML class diagrams and a description of class semantics,
relationships and dependencies. Figure 2 shows the
configuration related classes and the classes common to
the whole process.

fventory management
1 drwciany seivica

T dient secice ntadace

configuralion sarvice

provites stata
eaternisl packger

K cheni sanvica knartace

distribution sorvice

[orevideSarviosDast ot)

1

pomeete ey chent
i gniCmiatont) P ‘ § pPiaal)

] texecuiePLanll

|+ doc sy S eevicolpeaation | Lsecvice tyoe st x Y

Ve OiRion!) 1 ratoath BAdYERD I:::‘?:A?D?:;ur”

[dridutadleCpenanonly v:eﬁm&éxm-

toposineyOpacatent) i}

b proideSenviceCencrprontl] pedonms netatation acivithes

T
'
1
rdistribigtalinOperadont) i
'
|

;
! A
4

'!i |!

1
SDE definktions

software abstraction target abyiraction
FotwarFoiny fageiPory R Pty
Lia Y

¥ FiewctonySaree p Atuibutes
LsarvicaNods v =
[oveoinvancyG 1 [+ ergaeDintributatiePolicyi}
- 9 senpl
creatsSeracatioe)
poresieTargedoioyt

3

= totware etviions target calntons
1 system service node.
A
e . jrama ™
I e VETIAN Pemiion
Sotan ge = nensngs

packager Instalker planner
A Interfocok: fop] Hpatiags i package
[éysimnDenininm [Cdribetadhe jdnubuiabie ARSI
o Gngubiopal) | prawdais erba P Ig]
-SeibutabieDokation s scdFaesToPropa() perA AL Ry i
pockage 38D ¢ P i
hupdoteSuety
e
linsents s croatePackagel} [L 1
rupdated o achiget) Bpndoys
deteteds |vexporiPactagaiy ' g i
receiePackaget)
path wctivity history
ours Dwraton | Fimmaiamy
et beeCootion | dsate
oAb Options "
L.___L_Y

Figure 2: Model logical view — configuration

The model consists of a main class providing services to
clients and external systems. It performs operations on its
subclasses for the configuration process. The processes of
configuration and distribution are kept separated but use
common SDE definitions to share and exchange software,
target and distributable data. This is reasonable because of
the tight integration of distribution solutions for
distributed systems like client/server products. Normally,
configuration and deployment of these products is done by
the same company, possibly on-site. The definitions could
be separated to support physically separated processes,
which is not necessary in this case. In distinction the
processes of configuration and distribution are kept
separated because client/server products normally have
different configuration procedures but similar distribution
methods. The separation should therefore provide more
flexibility in the implementation. Further software and
target abstractions are used to model the real-world
objects. They correspond to the requirements and
definitions in [1] and also consider an integration of
inventory and directory service interfaces. A customer
abstraction is omitted because normally one system
configuration has just one customer. Most requirements
like type of service can be implemented in the software
abstraction and others like licensing or payment do not
apply. The software abstraction is modeled with a
definition of a client/server system and constituting
services.

Both definitions get a name and a version attribute and
provide registration information for operating system
integration. These attributes are examples of many more
that might be useable like a service type that specifies
different service functionality within a client/server
system. The software and target policies contain
descriptions of supported and required services and roles

of the client/server system. These terms are example
descriptions that can be further extended with interface or
feature definitions. The require/support semantics
explicitly describe behavior that can be compared during a
negotiation of the software and target policy. The most
important abstraction provided by the architecture is the
distributable. It covers a single item of installation and a
policy about when and how to install the item. The
distributable definition is a compound of software and
target properties extended with properties that exclusively
define the installable item itself (for example installation
destination and component registration activity).

The policies and definitions of all abstractions are
stored in the SDE definitions. All three abstractions are
derived from a configuration abstraction class. The class
provides abstract operations to describe SDE definitions
with policies including dependencies, compounds and
restrictions of software, target and distributable
definitions’ properties.

The infrastructure abstraction is used to provide
information about the distribution system itself and covers
physical nodes, implemented internal (clients), external
interfaces (e.g. inventorying), service type, and network
parameters for system maintenance.

As with configuration classes, a main service class
coordinates interactions and provides interfaces to other
systems. The SDE definitions are used to exchange the
distributable policy and definition. The packager and the
installer provide their well’known services based on a
standardized interface that might have to be customized
for specific products to fit. The packager creates packages
from the distributable definition and the installer executes
activities on the packages as defined in the distribution
plan. The plan class provides the distribution process data,
operations and an activity state engine. Its substructure

consists of a path class that stores physical connections
that can be used during distribution and relevant data
transmission options. The activity class stores specific
operations that are invoked by the installer during plan
execution. In general, operations that should be
considered cover the whole lifecycle of distributed
software comparable to the description in [1]. The installer
activities can be customized with scripts or configuration
files generated by an installer encapsulation class. Pre-
and post conditions are used to decide whether a specific
activity can be performed and has terminated accordingly.
The history class is used to store state information about
performed activities. This state information is also used to
update the path and activity class properties to customize
related activities or change execution paths as shown in
the following section. To benefit from history the
packager interface has to support update, adapt and repair
operations. The client component shown in the diagram is
external to the class infrastructure but related to the
installer and distribution service for activities and state
management operations.

3.2 Process View

This view provides an insight to the dynamic behavior of
the client/server model. Collaboration diagrams are given
preference over sequence diagrams, because structural
similarities can be expressed more clearly. The focuses of
the process descriptions are operations that best describe
the specific requirements in client/server products; more
general parts are described in [1]. First some configuration
related class collaborations are shown.

1 create TargetPoscy =
2: cresteSoftwarePoiicy —
3. createDisvibutablePoky —»

ISTJF“‘—"-‘-—‘
a4-1.4 selectTargasDefinion
-2 1: soleciSofwareDeliniton
#-3.1: setaciDisiridutableDelicisary

22.1: combinaDefnitony—
33 1 memaTargetPolicy—
3.3 2. mergaSatwarePokcy -+

Figure 3: Model process view - configuration

Figure 3 shows the interaction between configuration
classes to create a distributable definition, using target and
software abstractions.

The process starts with the target abstraction, which is
not a required sequence. The target definition is selected
from the SDE definitions (1.1) target abstraction is
initialized (1.2). Then a policy containing dependencies,
compounds and restrictions of target properties is created
(1.3). Those operations are derived from the abstract
definitions in the configuration abstraction class. Similar
operations are executed for the software definition,

Selection (2.1) and initialization (2.2) in the software
abstraction are performed. Then the software policy is
created from properties used for software definitions (2.3).

In the third step the distributable policy is created.
Therefore the distributable definition is selected (3.1) and
the distributable abstraction is initialized (3.2). During this
initialization the properties from the target and software
definitions are combined with the distributable properties
to a related definition (3.2.1). Next the distributable policy
is initialized (3.3) and a merge operation for the policies is
performed (3.3.1, 3.3.2). Because policies contain
structured properties and rules the process is more
complex and has to combine rules and properties.
Additionally properties and rules of the distributable are
added and new rules containing mixed properties can
extend the distributable policy. A more detailed
description about policy structures and content is provided
in [1].

The configuration service centrally invokes these
operations but the process is guided by an administrator
through the client service interface. After this process the
configuration task is finished and parts of the distribution
process are described below.

1 cresteDisutbutable—» Z: provideDistributatio —

Figure 4: Model process view - shared data

Figure 4 shows the interaction of the configuration and
distribution service during exchange of the distributable.
The definition and policy handling (1.1, 1.2) has been
described above. Instead of providing the distributable
directly to the distribution process, the configuration
service stores the definition in the SDE definitions (1.3).
This allows the two processes to perform their operations
independent of each other. The distribution service is able
to define plans for distributables as soon as they become
available. There is no need for a complex application level
communication protocol. The distribution service selects
the distributable from the SDE definitions (2.1) and the
distributable abstraction is initialized (2.2). After the
abstraction is set up the process can continue to define the
distribution plan.

1 crentePackage
1.4: createPackageDefiniion-p
2 creaePian~4
3 execuiePlan—»
1.1: seleciDistrdutable —
1.6: inserPackage—p
23 irxeiiPlan -

’_EL‘ 3.1. seiaciPlan—»
i ion sorvic QQE-E
S e

Figure 5: Model process view - distribution 1

Figure 5 shows the creation of packages and plans out of a
distributable. First the distributable data stored in the SDE
definitions is selected (1.1) and the distributable is
initialized (1.2). In a further step, a package description is
extracted (1.3). The distribution service is responsible for
converting the description to a format readable for the
packager (1.4) and creates a package by invoking methods
of the packager interface (1.5). Finally the package is
stored in the SDE definitions (1.6). In the second step of
plan creation (2) the activities that can be performed on
the distributable are extracted from the description (2.1)
and provided during the creation step for a distribution
plan (2.2). The setup of the plan also consists of ordering
and selecting the required installation activities. After the
plan is set up the execution step (3) can proceed by
selecting (3.1), initializing (3.2) and executing the plan
(3.3). During execution state updates are provided that are
used to update the current state of the execution plan (3.4).
Figure 6 provides a more detailed description of the

distribution process.

2.5 adaptActivity —»
2.6: performActivity —»

1: craaiePlan—»
2: executePlan—»
3 updateStale —»

1.1 craatePath
3 2.2 setectPath
+-3.1: updatePathinformation

1.2: crealeActivity
2.1: initiakzoActivity

=

Figure 6: Model process view - distribution 2

The first phase of plan creation (1) is detailed in a path
creation for destination information (1.1) and followed by
an installation activity definition (1.2). The second phase
of plan execution (2) consists of the initialization of a
defined activity (2.1), a path selection for distributing the
installer and the packages to be installed (2.2). Then the
state history of the distribution plan is provided to the
installer (2.3) and the installer in invoked (2.4). The
installer adapts the activities based on the state

information (2.5) and performs the activity on the target
system (2.6). As a result of the second phase the state
information of the performed activities is provided to the
distribution service in the third phase (3) and influences
the path information (3.1) and updates the plans activity
history (3.2). Most operations provided in the process
view are customized to client/server environments.

3.3 Deployment

The deployment view of an architectural model covers the
physical system nodes and provides a description of how
they are distributed and how they interact.

A deployment diagram of this architecture is provided
in Figure 7. The model is a simplification of the
deployment view provided for the Tivoli deployment
system [1], which fits nicely for client/server systems such
as workflow management systems presented in this paper.
A development server is the starting point for the software
description exchanged during initialization of the
configuration process. The onfiguration server hosts the
configuration service and the common SDE definitions.
The configuration is executed in this node. The SDE
definitions have to use a replication mechanism to provide
the shared data to site servers where distribution takes
place. The site server node normally corresponds to a
customer's physical location. In large installations
additional installation server are introduced to provide
load balancing and fault tolerance of the process. A site
server uses installation servers to provide distributables
based on the path information in the distribution plan. The
client as the last node is the target of the installer that
performs the installation activities.

4. Conclusions

Workflow management systems (WfMS) have become
increasingly relevant for intra- and interorganizational
information systems as well as for Enterprise Application
Integration on the Internet. Software Distribution
Environments (SDEs) are required for managing
configuration, distribution and deployment of components
of such WfMS, but not much research has been done in
that area so far. This paper is based on an evaluation of 12
products in the area of software distribution environments
and distilled architectural issues relevant for SDEs for
Workflow Management Systems (WfMS). We described
logical and process views as well as deployment in terms
of a reference architecture for a WfMS called MQ Series
Workflow. As a result, this paper showed architectural
considerations in terms of components, connectors and
configurations of an SDE for workflow systems.

T e e T
£ R s

Development Server Site Servar

Configuration Service

[i
carfiggtationState=iniiafized

MisributionStatesinitialized

Distribution Service

distrivwrableldescription

i
sohware gascription
1 |

Installation Server

.
Configuration Service - : . i Distribution Service

i Instailer

Figure 7: Client/Server model deployment view

References

m Anzbdck, R. (2002). Architectures for a Software Distribution
Environment, Master’s thesis. Distributed Systems Group,
Technical University of Vienna, Austria 2002

2] Dart, S. (2000). Configuration Management: The Missing
Link in Web Engineering, Artech House, London.

3] InstallShield, InstallShield for Windows Installer Whitepaper,
http://www.installshield.com/isd/resources/ 2001

4] ManageSoft, NETDeploy Technical Specification,
http://www.managesoft.com/products/technical/index.xml,
2001

[5] ManageSoft, Managing software for mobile and remote users,
http://www.managesoft.com/products/mobile.xml, 2001

[6] Marimba, Marimba Management Solution,
http://www.marimba.com/products/intro.htm, 1999

[7] Microsoft ~ Corporation, DCOM, http://www.micro-
soft .com/com, 2001

[8] Microsoft, System Management Server Reviewer’s Guide,
http://www.microsoft.com/smsmgmt/ 1998

9] Microsoft, DotNET Framework http://www.microsoftcom-
/met, 2002

[10] Rational, An overview of Rational Suite ContentStudio,
http://www.rational.comproducts/icstudio’whitepapers.jsp,
2001

[11] Shaw, M., and D. Garlan (1996). Software Architecture:
Perspectives on an emerging discipline. Prentice Hall, 1996

[12] Sun Microsystems, Enterprise Java Beans,
http://java.sun.com/products/ejb/,2001

[13] Sun Microsystems, JAVA, http://java.sun.com, 2001

[14] Sun Microsystems, Webstart, http:/javasun.com/pro-
ducts/javawebstart/, 2001

[15] Tivoli, Tivoli Software Distribution Factsheet,
http://www.tivoli.com/news/press/pressreleases/en/2000/supp
lement/software_dist_factsheet.html, 2001

[16] IBM, WebSphere, http://www-4.ibm.com/software/-
webservers/appserv

[17] IBM, MQ Series Workflow Workflow Concepts and
Architecture, http://www-4.ibm.com/software/ts-
/mgseries/workflow

[18] Workflow Management Coalition (WfMC) (1995), Workflow

Management Specificatbn Glossary, http:/www.wfinc.org

