
IoT Design Patterns: Computational Constructs to
Design, Build and Engineer Edge Applications

Soheil Qanbari∗, Samim Pezeshki†, Rozita Raisi †, Samira Mahdizadeh∗, Rabee Rahimzadeh†, Negar Behinaein†,
Fada Mahmoudi†, Shiva Ayoubzadeh †, Parham Fazlali†, Keyvan Roshani†, Azalia Yaghini†, Mozhdeh Amiri†,

Ashkan Farivarmoheb†, Arash Zamani†, and Schahram Dustdar∗
∗Distributed Systems Group, Vienna University of Technology, Vienna, Austria

{qanbari, dustdar}@dsg.tuwien.ac.at
†Baha’i Institute for Higher Education (BIHE)

{firstname.lastname}@bihe.org

Abstract—The objective of design patterns is to make design
robust and to abstract reusable solutions behind expressive
interfaces, independent of a concrete platform. They are ab-
stracted away from the complexity of underlying and enabling
technologies. The connected things in IoT tend to be diverse
in terms of supported protocols, communication methods and
capabilities, computational power and storage. This motivates
us to look for more cost-effective and less resource-intensive
IoT microservice models. We have identified a wide range of
design disciplines involved in creating IoT systems, that act as
a seamless interface for collaborating heterogeneous things, and
suitable to be implemented on resource-constrained devices. The
IoT patterns covered in this paper vary in their granularity and
level of abstraction. They are inter-related, well-structured design
artifacts, providing efficient and reliable solutions to recurring
problems discovered by IoT system architects. The authors offer
sound advice for designing, building, and scaling with cross-
device interactions inherent in complex IoT ecosystems.

I. INTRODUCTION

Design is the use of scientific principles, technical in-

formation and imagination in the definition of a structure,

machine or system to perform pre-specified functions with the

maximum economy and efficiency[1]. The Internet of Things

(IoT) means that hardware and software design practices blend

into each other. A well-designed IoT application may be

composed of utilized edge devices, fine-grained microservices,

cloud gateways to connect edge network to the Internet and

mobile or web applications for the user to interact with the

underlying things.

There are huge opportunities but considerable challenges

[2], [3], [4], [5], [6] in designing IoT applications. These

challenges range from the provisioning of ultra-low power

operation and system design using modular, composable com-

ponents to smart automation. Furthermore, the advancement

in sensor instrumentation requires an efficient stream data

processing. There are also hidden opportunities and challenges

in monetizing the edge applications. In response to such chal-

lenges, we propose a set of reusable and abstract prescriptive

design principles or patterns, which aid system architects in

modeling and building context-tailored IoT applications. The

patterns behold an integrated thinking across many facets of

design in an IoT application ecosystem by incorporating the

wiring approach of Hanmer [7]. This articulates the benefits

of applying patterns by showing how each piece can fit into

one integrated solution.

With this motivation in mind, the paper continues in Sec-

tion II, with a brief review of how IoT design patterns are

documented. Next, we introduce the diversity of our proposed

patterns and how they are related to the edge applications

life-cycle in Section III. With some definitive clues on the

pattern language convention, we propose an edge provisioning
pattern in Section IV, showing how the baseline environment

provisioning can be automated. Once the baseline container

is provisioned, we demonstrate how code can be automati-

cally pushed to the container via a deployment pipeline. The

code deployment pattern interacting entities are detailed in

Section V. Here, we also define how dynamic configuration

effects the quality and performance of the service delivery.

Next, in Section VI, the orchestration of IoT services, their

dependencies and configurations are focused on and presented

as an edge orchestration pattern. This leads to rendering

the edge application by metering its usage along with its

underlying resource usage. Such a metering model is proposed

as a Diameter of Things pattern and is detailed in Section

VII. Finally, Section IX concludes the paper and presents an

outlook on future research directions.

II. PATTERN LANGUAGE CONVENTIONS

Pattern language is intended to describe the solution in a

way that is easy to digest. We are incorporating the cloud

computing pattern document format defined by Wellhausen[8]

and Meszaros[9] as well as the semantics of its graphical

elements to define the structure of our IoT design patterns

and their interrelations. All IoT patterns comprise the same

document sections with the following semantics.

� Pattern Name: This name is a handle used to abstract

and identify a design challenge.

� Problem: This is a short summary of the pattern, i.e., the

driving question in one or two sentences.

� Context: This section of the pattern documentation

describes the setting in which the problem arises. Assessing

the pattern’s context influences the solution.

2016 IEEE First International Conference on Internet-of-Things Design and Implementation

978-1-4673-9948-7/16 $31.00 © 2016 IEEE

DOI 10.1109/IoTDI.2015.18

277

� Motivation Forces: This basically provides a use-case

scenario, in which the problem is likely to happen and there-

fore the pattern can be used effectively.

� Solution Details: This section briefly states how the

pattern solves the problem.

� Sketch: It depicts the functionality of the solution or the

resulting architecture after application of the pattern.

We have also ensured that the pattern names are abstract-

enough to reflect the pattern’s intended design. This con-

forms to the principle of pattern’s name cohesion defined by

Hanmer[10].

III. IOT DESIGN PATTERNS

Designing for an IoT is different. Connected devices may

use different types of networks and various connectivity pat-

terns. IoT design patterns vary in their granularity and level

of abstraction. To create a valuable, appealing, usable, and co-

herent edge applications, we have to consider design on many

different layers. This is a fine-grained design, as it exposes

low-level data from the device itself. While documenting the

patterns, we also give an overview of existing implemented

frameworks to give a clue and a closer touch on the efficiency

of our proposed patterns in production.

Methods for automated provisioning, deployment and con-

figuration management of the behavior of edge applications

disclosed herein pertain to governance patterns. Setting up the

system and getting the devices connected are hard to simplify.

IoT governance patterns deal with governing the edge appli-

cations life-cycle from definition through deployment. Such

patterns govern all aspects of edge applications including their

provisioning and deployment mechanisms by applying runtime

reconfiguration and allocation and by scheduling policies to

deployed edge services.

Last but not least, we will demonstrate how edge applica-

tions are considered value-added and metered services. The

proposed metering pattern implements a real-time metering

of IoT services for prepaid as well as Pay-per-use economic

models.

IV. EDGE PROVISIONING PATTERN

♣ Problem: How can operation managers and developers

ensure all of their edge devices are started with a reliable

baseline environment, as needed? How can they provision all

the devices automatically all at once?

♣ Context: IoT devices are usually scattered geographically,

sometimes hard to reach and large in number. Operation

managers and developers must be able to reconfigure devices

or provision new ones in an efficient way and have pre-

configured nodes.

♣ Motivation Forces: Suppose you have designed a system

to display advertisements on some billboards spread in a

region, each controlled by an IoT city hub[11]. At some

point, you need to replace your technology stack entirely and

provision a new environment remotely. You may also want to

add new devices and provision their runtime environment and

applications quickly.

It should be able to provision new devices in a way that

can be repeated and produce the same results, so that it can

be automated. This also contributes to keeping devices fault

tolerant via a rollback to the known-good working state of the

environment or applications quickly, if provisioning fails.

♣ Solution Details: Container-based virtualization is a good

choice for provisioning resources, as they contain not only

the code but also all other software dependencies, configu-

rations and the whole runtime environment. By transferring

the containerized image to a new machine and running it, we

have a pre-configured environment with required applications

installed along with any software dependencies.

Fig. 1: IoT provisioning pattern sketch.

For instance, provisioning and automated configuration can

be done using tools like Puppet1, Chef2, or using Docker files,

with which the Docker image is built and then transferred to

the devices. Docker images utilize a layered and versioned file

system, which has two benefits. First, the devices can only pull

the layers they need and not the whole image; second, they

can rollback to the latest or any working version of the image

in case of failure or need. As images are static and read only,

this leads to an incorruptible environment for the devices as a

backup.

Docker images are built against a Docker file or other afore-

mentioned automated configuration manager, which describes

steps needed to build an image as commands to be run inside

the container per line of the Docker file. Each step creates a

new layer. The image is built; therefore, any resource-intensive

step, such as compiling or downloading large files, is done

once. Once the image is built, it is pushed to the central

Docker registry/hub so that devices then pull the whole image

or only the missing layers. These configuration files, like

Chef recipes, Puppet manifests or Docker files can be kept

as documentation of the steps of provisioning under a version

control system such as Git, so that a new commit can trigger

the container builder system to build a new Docker image. The

edge application together with its environment configuration

can be kept in the same Git repository. Therefore, any update

to the code or its environment will build a new Docker image

and is transferred to the geographically distributed devices,

using the same mechanism that is used for deployment. When

1https://puppetlabs.com
2https://www.chef.io

278

Provisioning Server

Containerizer
APIs

Isolator APIs

(Container Builder)

container
image

Container
Registry

C
1

D
3

..

..
.

C
2

D
1

D
2

cpu
mem

file

cpu
mem

file

cpu
mem

file

Developer

> git push

deploy
(push/pull) image

Edge
Layer

source code

env config

app config

Version Control
Artifact Repository

binaries

test reports

metadata

build
code to binary

container
file (spec, binarie, config)

unit analysis
test results

Acceptance Tests

commit tests

smoke test

code analysis

Fig. 2: Edge code deployment pipeline pattern sketch.

the image is delivered to the end device, a new container

is created using the image. A sketch of an IoT provisioning

pattern is shown in Fig. 1.

V. EDGE CODE DEPLOYMENT PATTERN

♠ Problem: How can developers deploy their code to many

IoT devices automatically, quickly and safely, and configure

them without being concerned about the long process of build,

deployment, test and release?

♠ Context: Maintainability is a main factor while deploying

a piece of code to some remote IoT devices. As developers

enhance and improve the code or fix some critical bugs, they

expect to deploy the updated code to their several remote IoT

devices quickly. This grants distributing functionality between

devices. Also, at some point developers need to re-configure

the application’s environment.

♠ Motivation Forces: Suppose you have designed a system

to display advertisements on some billboards widespread in

a region. You need to update the text or graphical features

frequently or change the duration of ad display. Maintainability

and adaptability are the most important challenges in such

designs. You must be able to update the code and deploy it to

all your devices at once.

Regarding the poor and flaky Internet connection (e.g.,

3G) of a majority of IoT devices, it is best to only deliver

the changes and not the application as a whole across the

constrained network.

Also, developers should only be concerned with coding,

as well as the tools they are familiar with. The tools for

deploying the code to devices should be transparent to the

developers. This leads to a fully automated deployment. Once

automated, the safety of operations increases. The pipeline

includes building the application, its deployment and testing

and finally releasing and distributing it to edge devices. As

for testing, the created image is a production-like environment

and is used for testing. Once tests pass, edge devices can pull

the image or the corresponding layer. The image is created

against all the source code, the container specification and

configuration files. Another point is that the developer should

be able to rollback its deployment to an earlier version on-the-

fly to avoid outage, which is crucial in case of IoT devices.

Moreover, the deployment process should consider and con-

tain any software dependencies or configurations the new code

needs. As such, the developer should be able to re-configure

the application’s environment or the overall technology stack

remotely and safely to ensure consistency.

♠ Solution Details: As developers are familiar with version

control systems, it is best to utilize it for deployments too.

Nowadays, Git has become the de facto standard for develop-

ers to share their code and maintain versioning. It can be used

as the starting point to trigger the build system and then the

deployment process.

Git can be utilized by developers to push a specific branch

of code to a remote Git repository on the server and is notified

of the new version of the software. Then using hooks, it can

trigger the build system and start the next step of deploying

the code to the devices. The build server builds a new Docker

image and pushes the new layers of image to the central

Docker registry/hub for the devices to pull. This way the

developer only needs to use Git or any other version control

system as the only familiar tool for deploying the code into

geographically distributed devices.

Devices can periodically ask the central registry/hub for new

versions or the server can notify devices about a release of a

new image version. Then the devices will pull the new layers

of image, create a container from it, and utilize the new code.

In summary, as illustrated in Fig. 2, when the code is

modified, it is committed and pushed using Git. Then a new

Docker image is built and transferred to devices. Devices use

the image to create a container and use the deployed code. The

deployment pipeline is started with each commit, and changes

in the source code are published to all edge devices.

VI. EDGE ORCHESTRATION PATTERN

♦ Problem: How can we orchestrate IoT devices in ac-

cordance with their tightly scripted configurations as nodes

of a cluster remotely? How can edge cluster nodes discover

services?

♦ Context: Enabling a large number of devices connected

via edge layer means empowering the cluster to manage

its nodes to check their health state, their services state to

reconfigure them. Moreover, in case of IoT devices to adapt

and to calibrate nodes remotely and quickly. Furthermore,

279

we want to be able to manage and run services in the

cluster or schedule tasks on certain nodes and enable them to

discover the services they need and re-configure themselves

accordingly. Edge nodes in an IoT cluster should be able to

find themselves and advertise services they provide to each

other. Such configuration can be updated over-the-air via WiFi.

♦ Motivation Forces: Suppose you have designed a system

to display advertisements on some billboards widespread in a

region. You have devices to control each billboard. You want

to be able to check their state and health status, manage them,

check their services, change their runtime configuration, and

execute services in the cluster or on certain devices.

The architecture should avoid having a single point of

failure. Each node must be able to know the state of the whole

cluster, as well as the state of each service provided by other

nodes. In addition, it should manage and adapt itself so that

horizontal scaling, replacing nodes and/or adding new nodes

or services as ad portlets, in this case ad providers, remains

simple.

Such changes in the cluster take effect once nodes are able

to advertise their roles and services, as well as to discover each

other. Furthermore, we need solutions to allow nodes to recon-

figure themselves dynamically according to such changes.

Composite edge applications consist of several inter-related

constituents microservices, each in need of its own environ-

ment, configuration and even a device. For instance, a home

automation system is a composite application. We need a

declarative way to describe the whole topology and deploy it

considering the orchestration of the components, the services

it provides and depends on, without configuring and installing

each component separately on every device.

♦ Solution Details: Edge infrastructure toolkits treat and

provision edge devices with limited compute resources (CPU,

memory, and power) as constrained nodes of a cluster. Service

discovery mechanisms can be leveraged by nodes to find each

other, and the services they provide. Such discovery can also

be achieved via device pairing. Once paired, devices trust each

other and start sharing data or trigger functionality over a

constrained network.

Containers’ compose-oriented3 technology enables us to

deploy composite applications, since they can orchestrate

multi-container IoT microservices. This mechanism expresses

the composite application topology along with its specification

in a declarative manner. The cluster manager can deploy and

orchestrate the composite application for us, according to

a service topology specification. This specification describes

the composite application, its micro-services and the inter-

relationships between them. The cluster manager, which hosts

nodes in the cluster, receives the applications’ specification

and runs services on each node accordingly.

For configuration purposes, distributed [key,value]
stores can be used. The distributed store, which does not rely

on a single node for storing its data prevents a single point

of failure. Besides, it enables the cluster to manage itself

3https://docs.docker.com/compose

not only upon node failures, but also upon cluster manager

failure. Nodes advertise their services and their state by putting

values into the store, others can retrieve the values/updates and

establish pairing in one go. This may mean that the values

change propagation time could be shortened in TTLs4 if the

nodes get notified of the changes and receive events, instead

of polling for updates.

E
d

g
e

cl
u

st
er

Node II

c
o

n
ta

in
e

r 1

Key/Value Storage

Cluster Manager/
Scheduler

c
o

n
ta

in
e

r 2

c
o

n
ta

in
e

r N

...
...

..

Node I

c
o

n
ta

in
e

r 1

Key/Value Storage

Cluster Manager/
Scheduler

c
o

n
ta

in
e

r 2

c
o

n
ta

in
e

r N

...
...

..

Node N

c
o

n
ta

in
e

r 1

Key/Value Storage

Cluster Manager/
Scheduler

c
o

n
ta

in
e

r 2

c
o

n
ta

in
e

r N

...
...

..

Fig. 3: Edge cluster orchestrator pattern sketch.

From getting the tooling up, we can monitor all of our

devices, check the health status of each device, monitor the

running services, run new services on all or certain nodes and

schedule tasks. When a new value is put into the distributed

[key,value] store by any node in the cluster, it will be

propagated and replicated to all nodes. Then nodes are notified

of the new value and discover the services and their state. They

then will re-configure themselves. So nodes can advertise the

services they provide, find each other or change configurations

upon discovery. Note the pattern sketch in Fig. 3 depicting the

built-in orchestration model in each node. A downside of this

pattern is that the cluster should remain synchronized, mean-

ing nodes should talk to each other periodically. Therefore,

network chattering occurs a lot, which is of significance if

networking is not economical.

VII. EDGE DIAMETER OF THINGS (DOT) PATTERN

♧ Problem: How can IoT service provider monitor and

meter the actual usage of IoT deployment units in real-time

or near-real-time, in order to monetize them? How the IoT

composite application resource usage, as well as the service

usage can be charged against a specific user balance?

♧ Context: From the provider’s perspective metering mech-

anisms can vary based on applied business models. These

mechanisms range from different usage patterns such as invo-

cation basis (event-based) and usage over time (time-based), to

subscription models such as prepaid and pay-per-use models.

This yields to the need for defining some metrics for service

and resource usage, which in turn, can be used to measure the

consumption of the service and to price it.

♧ Motivation Forces: Suppose you have provided an IoT

platform, which presumably consists of the hardware (device)

and composite IoT services, to your customer, and you would

4https://en.wikipedia.org/wiki/Time to live

280

Realm A

Sensor service
(CoAP)

RaspberryPi #1

temp

temp

Metering Agent
(CoAP)

RaspberryPi #2

Metering Agent
(CoAP)

Sensor service
(CoAP)

Token
Aggregator

Metering Proxy

RRDTool/
SQLite

CoAP Client

Subscribe/
Notify

Subscribe/
Notify

Resource
Control SrvCCC
RRRRRRRRRRRRRRRRRRReReReReReReReReReReReReReReReReReReeeeeesssssssssssssosooooooooooooooooooououuuuuuuuuuuuururrrrrcrcrcrcercercececececececececeeeeesource

Co
esource

Co
esource

Co
esource

Co
esource

Co
esource

Co
esource

Co
esource

Co
source

Co
source

Co
source

Co
source

Co
source

Co
source

Co
source

Co
source

Co
source

Co
sourc

Co
sourc

Co
sourc

Co
sourc

Co
sourc

Co
sourc

Control Srv
ourc

Control Srv
our

Control Srv
our

Control Sr
our

Control Sr
our

Control Sr
ou

Control Sr
ou

Control Sr
u

Control SrControl SrControl SrControl SrControl SrControl SrControl SrControl SrControl SrControl SrControl Srontrol Srontrol Srontrol Srontrol Srontrol Srontrol Srontrol Srontrol Srontrol Sontrol Sontrol Sontrol Sontrol Sontrol Sontrol Sontrol Sontrol Sontrol Sontrol Sontrol Sontrol Sontrol Sontrol Sontrol Sontrol Sontrol ontrol ontrol ontrol ontrol ontrol ontrol ontrol ontrolontrolontrolontrolontrolontroontroontroontroontroontroontroontroontroontroontroontrontrontrontrontrntrntrntrntrntrntr rvrvrvrvrvrvrvrvrvrvrvrvvvvvvvvvvvvvvvvvvv

Payment Srv

Metering Server

Realm
Aggregator

Metering
Coordinator

TCP
TCP

TCP

UDP

UDP
Realm A

Sensor service
(CoAP)

RaspberryPi #1

temp

temp

Metering Agent
(CoAP)

RaspberryPi #2

Metering Agent
(CoAP)

Sensor service
(CoAP)

Token
Aggregator

Metering Proxy

RRDTool/
SQLite

CoAP Client

Subscribe/
Notify

UDP

UDP

Subscribe/
Notify

Fig. 4: IoT Diameter of Things (DoT) metering pattern sketch.

like to monetize it based on the real usage of the client, while

guaranteeing a fare transaction for both ends. To achieve this

goal you need to measure the rate of actual resource and

service utilization, as near real-time as possible.

You may provide your service in a prepaid model, where

you and the client agree on certain amount of credit to be

reserved prior to service delivery. In this subscription model,

you should ensure that the actual usage does not exceed the

reserved credit on one hand, and on the other hand, the service

delivery does not terminate while there are still some credits

remaining.

Furthermore, the IoT platform normally resides on the client

side and your access to the edge device is limited to an Internet

connection with a certain bandwidth. In this regard, you should

prevent overwhelming the network by transferring too many

monitoring messages back and forth, while still supporting the

near-real time monitoring of the usage.

♧ Solution Details: A light-weight metering protocol can be

utilized to support the telemetry of composite IoT applications

deployed on resource constrained devices.

The prerequisite to such a solution is to define a specific

agreement called metering plan, offered by the provider and

accepted by the client. The subscribed metering plan is an

indication of all assumptions that need to be considered for

a proper service delivery, continuous and near-real-time usage

metering, and the subsequent charging. The plan includes: i)

subscription type (i.e. pay-per-use model or prepaid model).

ii) list of constituent microservices provided to the client.

iii) usage pattern and measurement unit of each service. A

time unit is used for duration-based services and number of

invocations is used for the services with an event-based usage

pattern. iv) the price for each allocated service unit, v) the

price for underlying resource usage, vi) the resource Used Unit

Update (U3) rate for each service. vii) if prepaid subscription

type is selected, then the maximum allocated units to each

service is also included in the plan. viii) subscription-fee for

prepaid model, and subscription time for a bounded pay-per-

use model.

The U3 rate is one of the main factors defining the real-

time characteristics of monitoring underlying services. Nev-

ertheless, it exerts an impact on network congestion rate.

Consequently, it is crucial for the service provider to assign

an appropriate value to it to balance the trade-off between

generated network traffic and real time update.

To realize the metering infrastructure, two main components

are introduced: (i) the metering server, which is a central

component, is responsible for telemetry coordination. (ii) the

metering agent, which is a distributed component residing on

the edge device and assigned to a microservice, is responsible

for collecting usage information and sending it to the metering

server. As soon as an IoT application is instantiated for a

specific user, the metering server receives a copy of the

metering plan. It then parses the plan and calculates the U3

rate for each constituent service in the plan. Together with the

calculated U3 value, it then sends the request to start metering

each service to its newly assigned metering agent. At each U3

interval, each agent will send the actual service usage, as well

as the resource usage to the metering server.

As the usage update summary is received by the metering

server, it is used to calculate the charge accordingly. Fig.

4 provides a schematic view on architecting DoTs metering

collaborating components. Our DoT protocol[12]5 is currently

in development and the ongoing draft is available in IETF as

an Internet-Draft submission.

VIII. RELATED WORK

Most of the current proposed patterns are focused from

a cloud perspective. Few are designed with an edge-based

focus in mind. Hashizume, Yoshioka, and Fernandez[18][19]

build a catalog of misuse patterns like Resource Usage

Monitoring and Malicious VM Creation. The Amazon Web

Services (AWS) cloud patterns[20] documents design princi-

ples for applications hosted in the Amazon cloud. Microsoft

proposed a set of Azure cloud design patterns[21] claim-

ing to be usable for native cloud applications. The cloud

architecture patterns[22] introduces 11 architectural patterns

5https://datatracker.ietf.org/doc/draft-tuwien-dsg-diameterofthings

281

utilizing cloud-platform services. Erl et al.[23][24] present

cloud design patterns very briefly. The only article written by

Michael Koster[25], entitled “Design Patterns for an Internet

of Things”, just defines some basic IoT concepts in a couple

of sentences. No pattern format is supported.

In contrast to all the noted related work, we took further

steps towards identifying reusable edge applications design

constructs. Our presented IoT patterns are still in develop-

ment, and we are taking the iterative review approach of

Harrison[26], “the language of shepherding” , to improve the

robustness of patterns. The authors (sheep) of the patterns all

aspire to receiving feedbacks from edge architects (shepherds)

on the proposed constructs effectively.

IX. CONCLUSION

So far, we have defined four design patterns enabling IoT

architects to construct edge applications. As an outlook, our

future work includes further extension to the design patterns

to support more diverse applications, as well as refining

and updating existing ones. We will focus more on patterns

to be used for elasticity, resiliency and Software Defined

Networking (SDN) patterns for edge computing. This will

study the behavior of impacting players, such as competing

applications, in making decisions on the allocation of limited

resources amongst infrastructure forces of supply and demand.

Just as evolving IoT offerings target a large diversity of

systems, we envision that such design patterns may leverage

the performance and scalability of edge applications as well

as to gaining acceptance as a de facto design standard to give

adequate foresight to edge engineers in IoT.

ACKNOWLEDGMENT

The research leading to these results is sponsored by the

Doctoral College of Adaptive Distributed Systems6 at the

Vienna University of Technology.

REFERENCES

[1] Fielden, G.D.R, Engineering Design, ser. London: HMSO, 1975.
[2] D. Bandyopadhyay and J. Sen, “Internet of things: Applications

and challenges in technology and standardization,” Wireless Personal
Communications, vol. 58, no. 1, pp. 49–69, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s11277-011-0288-5

[3] T. Xu, J. B. Wendt, and M. Potkonjak, “Security of iot systems:
Design challenges and opportunities,” in Proceedings of the 2014
IEEE/ACM International Conference on Computer-Aided Design, ser.
ICCAD ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 417–423.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2691365.2691450

[4] D. Fuller, “System design challenges for next generation wireless and
embedded systems,” in Proceedings of the Conference on Design,
Automation & Test in Europe, ser. DATE ’14. 3001 Leuven, Belgium,
Belgium: European Design and Automation Association, 2014, pp.
1:1–1:1. [Online]. Available: http://dl.acm.org/citation.cfm?id=2616606.
2616608

[5] S. C. Mukhopadhyay, Internet of Things: Challenges and Opportunities.
Springer Publishing Company, Incorporated, 2014.

[6] H. Lamaazi, N. Benamar, A. Jara, L. Ladid, and D. El Ouadghiri,
“Challenges of the internet of things: Ipv6 and network management,”
in Innovative Mobile and Internet Services in Ubiquitous Computing
(IMIS), 2014 Eighth International Conference on, July 2014, pp. 328–
333.

6http://www.big.tuwien.ac.at/adaptive/program.html

[7] R. S. Hanmer, “Pattern mining patterns,” in Proceedings of the
19th Conference on Pattern Languages of Programs, ser. PLoP ’12.
USA: The Hillside Group, 2012, pp. 23:1–23:10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2821679.2831293

[8] T. Wellhausen and A. Fiesser, “How to write a pattern?: A rough guide
for first-time pattern authors,” in Proceedings of the 16th European
Conference on Pattern Languages of Programs, ser. EuroPLoP ’11.
New York, NY, USA: ACM, 2012, pp. 5:1–5:9. [Online]. Available:
http://doi.acm.org/10.1145/2396716.2396721

[9] G. Meszaros and J. Doble, “Pattern languages of program design 3,”
R. C. Martin, D. Riehle, and F. Buschmann, Eds. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1997, ch. A
Pattern Language for Pattern Writing, pp. 529–574. [Online]. Available:
http://dl.acm.org/citation.cfm?id=273448.273487

[10] B. Di Martino, “Applications portability and services interoperability
among multiple clouds,” Cloud Computing, IEEE, vol. 1, no. 1, pp.
74–77, May 2014.

[11] R. Lea and M. Blackstock, “City hub: A cloud-based iot platform for
smart cities,” in Cloud Computing Technology and Science (CloudCom),
2014 IEEE 6th International Conference on, Dec 2014, pp. 799–804.

[12] S. Qanbari, S. Mahdizadeh, R. Rahimzadeh, N. Behinaein, and
S. Dustdar, “Diameter of Things (DoT): A Protocol for Real-
time Telemetry of IoT Applications,” http://www.gecon-conference.
org/gecon2015/images/papers/qanbari paper 25.pdf, 2015, [Online; ac-
cessed 19-October-2015].

[13] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-oriented Software Architecture: A System of Patterns. New
York, NY, USA: John Wiley & Sons, Inc., 1996.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[15] R. Hanmer, Patterns for Fault Tolerant Software. Wiley Publishing,
2007.

[16] V.-P. Eloranta and M. Leppänen, “Patterns for distributed machine
control systems,” in Proceedings of the 18th European Conference
on Pattern Languages of Program, ser. EuroPLoP ’13. New
York, NY, USA: ACM, 2015, pp. 6:1–6:15. [Online]. Available:
http://doi.acm.org/10.1145/2739011.2739017

[17] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud
Computing Patterns: Fundamentals to Design, Build, and Manage Cloud
Applications. Springer Publishing Company, Incorporated, 2014.

[18] K. Hashizume, N. Yoshioka, and E. B. Fernandez, “Misuse patterns
for cloud computing,” in Proceedings of the 2Nd Asian Conference
on Pattern Languages of Programs, ser. AsianPLoP ’11. New
York, NY, USA: ACM, 2011, pp. 12:1–12:6. [Online]. Available:
http://doi.acm.org/10.1145/2524629.2524644

[19] K. Hashizume, E. B. Fernandez, M. M. Larrondo-Petrie, and E. B.
Fernandez, “Cloud service model patterns,” in Proceedings of the
19th Conference on Pattern Languages of Programs, ser. PLoP ’12.
USA: The Hillside Group, 2012, pp. 10:1–10:14. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2821679.2831280

[20] K. Tamagawa, “AWS cloud design patterns,” http://en.
clouddesignpattern.org, 2008, [Online; accessed 19-October-2015].

[21] L. B. M. N. T. S. Alex Homer, John Sharp, “Cloud Design Patterns: Pre-
scriptive Architecture Guidance for Cloud Applications,” https://msdn.
microsoft.com/en-us/library/dn568099.aspx, 2014, [Online; accessed 19-
October-2015].

[22] B. Wilder, “Cloud Architecture Patterns,” http://oreil.ly/cloud
architecture patterns, 2012, [Online; accessed 19-October-2015].

[23] “Cloud computing concepts, technology and architecture by thomas erl,
zaigham mahmood and ricardo puttini,” SIGSOFT Softw. Eng. Notes,
vol. 39, no. 4, pp. 37–38, Aug. 2014, reviewer-Gvero, Igor. [Online].
Available: http://doi.acm.org/10.1145/2632434.2632462

[24] A. N. R. P. Thomas Erl, Zaigham Mahmood, “Cloud Computing
Concepts, Technology and Architecture,” http://cloudpatterns.org, 2013,
[Online; accessed 19-October-2015].

[25] M. Koster, “Design Patterns for an Internet of Things,”
http://community.arm.com/groups/internet-of-things/blog/2014/05/
27/design-patterns-for-an-internet-of-things, 2014, [Online; accessed
19-October-2015].

[26] N. B. Harrison, “The Language of Shepherding: A Pattern Language
for Shepherds and Sheep,” 1999. [Online]. Available: http://www.
hillside.net/language-of-shepherding.pdf

282

