
Diameter of Things (DoT):
A Protocol for Real-Time Telemetry

of IoT Applications

Soheil Qanbari1(B), Samira Mahdizadeh1, Rabee Rahimzadeh2,
Negar Behinaein2, and Schahram Dustdar1

1 Vienna University of Technology, Vienna, Austria
{qanbari,dustdar}@dsg.tuwien.ac.at, e1329639@student.tuwien.ac.at

http://dsg.tuwien.ac.at
2 Baha’i Institute for Higher Education (BIHE), Tehran, Iran

{rabee.rahimzadeh,negar.behinaein}@bihe.org
http://www.bihe.org

Abstract. The Diameter of Things (DoT) protocol is intended to
provide a near real-time metering framework for IoT applications in
resource-constraint gateways. Respecting resource capacity constraints
on edge devices establishes a firm requirement for a lightweight proto-
col in support of fine-grained telemetry of IoT deployment units. Such
metering capability is needed when lack of resources among competing
applications dictates our schedule and credit allocation. In response to
these findings, the authors offer the DoT protocol that can be incor-
porated to implement real-time metering of IoT services for prepaid
subscribers as well as Pay-per-use economic models. The DoT employs
mechanisms to handle the IoT composite application resource usage units
consumed/charged against a single user balance. Such charging methods
come in two models of time-based and event-based patterns. The for-
mer is used for scenarios where the charged units are continuously con-
sumed while the latter is typically used when units are implicit invocation
events. The DoT-enabled platform performs a chained metering trans-
action on a graph of dependent IoT microservices, collects the emitted
usage data, then generates billable artifacts from the chain of metering
tokens. Finally it permits micropayments to take place in parallel.

Keywords: Diameter protocol · Service metering · Internet of things

1 Introduction

Utility computing [1] is an evolving facet of ubiquitous computing that aims
to converge with emerging Internet of Things (IoT) infrastructure and appli-
cations for sensor-equipped edge devices. The agility and flexibility to quickly
provision IoT services on such gateways requires an awareness of how underlying
resources as well as the IoT applications are being utilized as metered services.

c© Springer International Publishing Switzerland 2016
J. Altmann et al. (Eds.): GECON 2015, LNCS 9512, pp. 207–222, 2016.
DOI: 10.1007/978-3-319-43177-2 14

208 S. Qanbari et al.

Such awareness mechanisms enable IoT platforms to adjust the resource leveling
to not exceed the elasticity constraints such that stringent QoS is achievable.

The quest for telemetry of the client’s IoT application resource usage becomes
more challenging when the job is deployed and processed in a constrained envi-
ronment. Such applications collect data via sensors and control actuators for
more utilization in home automation, industrial control systems, smart cities
and other IoT deployments. In this context, telemetry enables a Pay-per-use
or utility-based pricing model through metered data to achieve more financial
transparency for resource-constrained applications.

Metering measures rates of resource utilization via metrics, such as number
of application invocations, data storage or memory usage consumed by the IoT
service subscribers. Metrics are statistical units that indicate how consumption
is measured and priced. Furthermore, metering is the process of measuring and
recording the usage of an entire IoT application topology, individual parts of
the topology, or specific services, tasks and resources. From the provider view,
the metering mechanisms for service usage differ widely, due to their offerings
which are influenced by their IoT business models. Such mechanisms range from
usage over time, invocation-basis to subscription models. Thus, IoT application
providers are encouraged to offer reasonable pricing models to monetize the
corresponding metering model.

To fulfill such requirements, we have incorporated and extended the Diameter
base protocol defined in RFC67331 to an IoT domain. There are several estab-
lished Diameter base protocol applications like Mobile IPv4 [2], Credit-Control
[3] and Session Initiation Protocol (SIP) [4] applications. However, none of them
completely conforms to the IoT application metering models.

The current accounting models specified in the Diameter base are not suf-
ficient for real-time resource usage control, where credit allocation is to be
determined prior to and after the service invocation. In this sense, the existing
Diameter base applications do not provide dynamic metering policy enforcement
in resource and credit allocations for prepaid IoT users. Diameter extensibility
allows us to define any protocol above the Diameter base protocol. Along with
this idea, in order to support real-time metering, credit control and resource allo-
cation, we have extended the Diameter to Diameter of Things (DoT) protocol
by adding four new types of servers in the AAA infrastructure: DoT provision-
ing server, DoT resource control server, DoT metering server and DoT payment
server. Further details regarding the aforementioned entities will be discussed in
a later section of DoT architecture models. In summary, our main contribution
is the specification of an extended Diameter base protocol to an IoT applica-
tion domain. This contributes to fully implementing a real-time policy-based
telemetry and resource control for a variety of IoT applications. Our protocol
supports both the prepaid and cloud pay-per-use economic models. However, in
this paper, we address the metering for the prepaid model.

With this motivation in mind, the paper continues in Sect. 2, with a brief
review on how the Diameter base protocol functions. Next, we introduce the

1 https://tools.ietf.org/html/rfc6733.

https://tools.ietf.org/html/rfc6733

Diameter of Things (DoT): A Protocol for Real-Time Telemetry 209

terms and preliminaries defined in this study at Sect. 3. With some definitive
clues on the Diameter architecture, we propose Diameter of Things (DoT), an
extension to the Diameter on how IoT applications are to be metered and mone-
tized. The DoT framework layered architecture together with its interacting enti-
ties are detailed in Sect. 4. In support of our model, we have defined a DoT-based
IoT application topology and its associated hybrid metering policies in Sect. 5.
This lets the application telemetry policies vary independently from clients as
well as applications that use it. To enable this, DoT performs several interroga-
tions which are detailed in Sect. 6. DoT commands are then described in Sect. 7.
Next, in Sect. 8, we express formally the DoT application transaction models to
achieve better telemetry control over computing resources. Subsequently, Sect. 9
surveys related work. Finally, Sect. 10 concludes the paper and presents an out-
look on future research directions.

2 The Utility of Diameter

The Remote Authentication Dial In User Service (RADIUS) [5] as per RFC2865
is a simple but most deployed protocol which provides network access control
using client/server Authentication, Authorization and Accounting (AAA) model.
The IETF2 has standardized the Diameter base protocol [6] as an enhanced ver-
sion of RADIUS providing a flexible peer-to-peer operation model. It is featur-
ing intermediary agents (Relay, Proxy, Redirect and Translation) and capabil-
ities negotiation among servers. It enables reliable transport layer using TCP
or SCTP connection. The Diameter peer connections are ensured using a Keep-
alive mechanism. It also supports the dynamic peer discovery and configurations
in a valid session. Such specifications are achieved using set of commands and
Attribute-Value-Pairs (AVPs) by collaborating and negotiating peers. Diameter
has the concept of “applications”, which is entirely missing in RADIUS. The
protocol is enriched with a globally unique application ID. These applications
benefit from the general capabilities of the Diameter base protocol while defining
their own extensions on top of the base.

Some of the main features offered by Diameter are dynamic routing based on
Realm, session management, accounting, agent support. It is based on Peer-To-
Peer architecture as illustrated in Fig. 1, in a way that each Diameter node can
behave as either a client or server based on the current deployment model. Diam-
eter nodes can be of the type of Diameter client, Diameter server and Diame-
ter agent. Diameter client is the node that receives the user connection request.
Diameter server is the one serving the request e.g. performing user authentica-
tion based on provided information. Diameter agents themselves divide into four
types of Relay, Proxy, Redirect and Translate agents. A relay agent is used to for-
ward messages to other Diameter nodes based on the information provided in the
message. Proxy agent can also act like a relay agent with the extra functionality
of policy enforcement implementation via message content modification. Redirect

2 Internet Engineering Task Force (https://www.ietf.org).

https://www.ietf.org

210 S. Qanbari et al.

Fig. 1. Diameter base protocol architecture

agents act as a centralized configuration repository by returning information nec-
essary for Diameter agents to communicate directly with another node. Transla-
tion agents provide translation between two distinct AAA protocols.

3 DoT Preliminaries and Terms

In this section we present basic conventions, terms together with their definitions
considered in the DoT protocol:

– Diameter of Things (DoT): DoT implements a mechanism to provision
IoT deployment units, control resource elasticity, meter usage, and charge the
user credit for the rendered IoT applications.

– IoT Microservice: A fine-grained atomic task performed by an IoT service
on a device.

– IoT Application Topology: It contains the composition of hybrid collabo-
rating IoT microservices to meet the user’s request. The topology is packages
with the elasticity requirements and constraints (hardware or software) which
will dictate our schedule and credit allocation within the runtime environment.

– Metering Server: A DoT metering server performs real-time metering and
rating of IoT applications deployment.

– Metering Agent: The agent transfers the metered values to the metering
server via tiny tokens.

– Provisioning Server: Provisioning server refers to initial configuration,
deployment and management of IoT applications for subscribers. It also deals
with ensuring the underlying IoT device layer is available to serve.

Diameter of Things (DoT): A Protocol for Real-Time Telemetry 211

– Payment Server: The micropayment transaction charges subscribers upon
relatively small amounts for a unit of usage. It basically transfers a certain
amount of trade in the payWord or microMint micropayment schemes [7].
In the payWord scheme a payment order consists of two parts, a digitally
signed payment authority and a separate payment token which determines
the amount. A chained hash function, is used to authenticate the token. The
server then calculates a chain of payment tokens or paychain. Payments are
made by revealing successive paychain tokens.

– Rating: The process of giving price to an IoT application usage events. This
applies to service usage as well as underlying resource usage.

– Resource-Control Server: Resource control server implements a mechanism
that interacts in real-time with a resource and credit allocation to an account
as well as the IoT application. It controls the charges related to the specific
IoT application usage.

– One-Cycle Event: It indicates a single-request-response message exchange
pattern which one specific service is invoked by one consumer at a time while
no session state is maintained. One message is exchanged in each direction
between requesting and responding DoT nodes.

4 DoT Architecture Models

Figure 2 illustrates a schematic view on collaborating components of our pro-
posed DoT architecture. It contains of a DoT client, Provisioning server,
Resource control server, Metering server, and a Payment server.

Fig. 2. Typical diameter of things (DoT) application architecture.

212 S. Qanbari et al.

As the end user defines and composes an IoT application, the request is for-
warded to the DoT client. The DoT client submits the composed application to
the DoT infrastructure which determines possible charges, verifies user accounts,
controls the resource allocation to the application, meters the usage, and finally
generates a bill and deducts the corresponding credit from the end user’s account
balance.

DoT client contacts the AAA server with the AA protocol to authenticate
and authorize the end user. When the end user submits the IoT application
topology graph, the DoT client contacts the provisioning server to submit an
application topology. Afterwards, the provisioning server contacts the resource
control server with information of required resource units. The resource control
server reserves the resources that need to be allocated to the service. When user’s
credit is locked for the application provisioning, the DoT client receives the grant
resource message and informs the end user that the request has been granted. As
soon as the IoT application is deployed and instantiated, the submitted topology
is registered to the metering server for telemetry and credit control purposes.

Fig. 3. Typical DoT metering token structure.

The metering server is responsible to perform the metering transaction
according to the submitted topology and meter the services by calling metering
the tasks of each service in the chain. Metering transactions will remain running
until the termination request is sent from DoT client to the provisioning server.
After receiving a termination request, the resource control server releases the
resource and sends the billable artifacts related to the user usage to the pay-
ment server. The payment server, then, invokes the payment transaction and
deducts credit from the end user’s account and refunds unused reserved credit
to the user’s account.

In DoT application architecture, metered values are transfered via tokens.
The metering token message attributes as shown in Fig. 3 must be supported

Diameter of Things (DoT): A Protocol for Real-Time Telemetry 213

by all DoT implementations that conform to this specification. The CBOR3

message format is considered for the metering tokens transmission as it can
decrease payload size compared to other data formats.

5 DoT-Based IoT Application Overview

The DoT application defined in this specification implements flexible metering
policy as well as the definition and constraints of the application topology.

5.1 DoT-Based Application Topology

The main responsibility of the provisioning server is the actual provision of the
requested IoT application package. It contains the composition of collaborating
IoT microservices to meet the user’s request. Each IoT microservice is prede-
fined with a detailed specification such as its ID, constraints and various usage
patterns and policies. For instance, as defined in Listing 1.1 they can be adver-
tised with diverse pricing models due to the event-based or time-based patterns
for specific subscribers. The IoT microservices elasticity requirements and con-
straints (hardware or software resources) are also defined in the topology which
will dictate our schedule and credit allocation within the runtime environment.
The end user’s request can be received in the form of a JSON object. It con-
tains user information as well as the user requirements in terms of IoT composite
application topology and its specification, to realize the intended behavior. After
receiving the request, a provisioning server generates a dependency graph of the
application topology complying with its specification.

The Dependency graph displays dependencies between different microservices
which are requested to be in topology. In the DoT protocol, this dependency
graph is used in forming the transaction model for metering the IoT deploy-
ment unit. The dependency graph is a directional graph where each node of the
graph represents an available microservice in the service package registry. Simi-
larly, each edge of the graph shows dependencies between two microservices (two
nodes). The edge has a direction that shows the execution order of microservices
involved in this edge. Additionally, each edge has a label which shows the pol-
icy to be in effect for this connection. The Resource control server realizes such
metering policies using a predefined incident matrix. This incident matrix repre-
sents the metering policies for our directed acyclic graph (DAG) of IoT services.
The metering policy incident matrix Pt is a n∗m matrix of Pij policies, where n
is the number of nodes (vertices) and m is number of lines (Edges). In the cell of
Ni and Vj , the Pij indicates the rate of call per granted unit (time &events). It
enables each service to invoke its neighbor with the attached policy. Therefore,
when a client sends a request containing a tailored IoT application topology,
the Resource control server is able to rate the request based on the enforced
metering policies of time (duration) and event-based usage patterns.

3 The Concise Binary Object Representation: http://cbor.io.

http://cbor.io

214 S. Qanbari et al.

5.2 DoT-Based Metering Plans

The metering plans define the allocation mechanism for granting the required
resource units to an IoT application/constituent microservices. It is an indication
that the following assumptions underlying our IoT telemetry solution has been
considered for the proper positioning of DoT protocol. The IoT applications are
advertised with an associated charging plans. In case of cloud-based model, there
may be a subscription fee for pay-per-use plans. The cost of obtaining such plans
is known as the plan’s “premium” which is the price that is calculated and offered
in the subscription phase by the provider. The estimation of the plan’s premium
is out of the scope of the DoT protocol. The plan indicates the composed services
pricing schema and comes in two models of predefined as well as customized. The
plan will be built to be consistent with the composed application topology in
the rate setting.

The subscribed metering plan indicates: (i) the price of granted units for
every IoT application constituent microservice. For instance, 5 h for Humidity
sensor and 10 invocations for Chiller On/Off actuator. (ii) the resource Used
Unit Update (U3) frequency for all associated units which are defined in the
provider’s plan. (iii) the manual/automatic payment configuration. So that the
provider can handle the payment transactions automatically while informing the
user. (iv) container instance fee, which is the fee that user pays for underlying
resource usage. Instance usage can be time based or underlying resource-usage
based which is defined by the provider’s policy. (v) finally, subscription time for
pay-per-use model and subscription fee for prepaid model.

Listing 1.1. Excerpt of an IoT application spec and policy in a JSON object.

{ ” microse rv i ce ID ” : ”01” ,
”microserviceName” : ”getTemperature ” ,
” u r i ” : ” getTemperature . py” ,
” execute ” : ”python getTemperature . py” ,
” c on s t r a i n t s ” :{ ” runtime” : ”python 2 .7 ” , ”memory” : ” . . . ”}
” p o l i c i e s ” : [{ ” po l i cyID ” : ”PL 01 01” ,

” co s t ” : ”$2/week” ,
” desc ” : ” time mode − $2 per week” } ,

{” po l i cyID ” : ”PL 01 02” ,
” co s t ” : ” 0 .01 cent / invoke ” ,
” desc ” : ” event mode − 0 .01 cent per invoke ” } ,

{” po l i cyID ” : ”PL 01 03” ,
” co s t ” : ”$1” ,
” desc ” : ” s ub s c r i p t i on f e e ”}

] }

6 DoT Interrogations

For a Hybrid DoT, four main interrogations are performed for a well-functioning
protocol. The first interrogation is called Initial Identification (II) which

Diameter of Things (DoT): A Protocol for Real-Time Telemetry 215

basically deals with clients’ identification, for instance the user authentication
and authorization processes. The second interrogation is Request Realization
(RR) that aims to provision the clients’ IoT applications as well as schedul-
ing their resource allocation upon agreed terms and subscribed plan. The third
interrogation is called Telemetry Transmission (TT) that deals with metering the
running services as well as the granted units usage data transmission for charg-
ing purposes. The final interrogation, entitled Value Verification (VV), ensures
value generation and delivery to the interested stakeholders. The hybrid meter-
ing is carried out in main DoT sessions which hold globally unique and constant
Session-IDs. The whole DoT-based metering life-cycle including the II, RR, TT,
and VV interrogations are presented in Fig. 4.

6.1 Initial Identification (II)

The end user subscribes the application as well as the chosen plan to the DoT
client. The DoT client submits the IoT deployment units to the Provisioning
server to ask for the required resource units it needs to run. In this case, the
Provisioning server queries for resources (including underlying resources and
credit allocation) from Resource control server. The Resource control server is
responsible for the device resource reservation. It also keeps track of user credit
fluctuations.

In this phase, the end user requirements are modeled into an application
topology using a directed acyclic graph. This graph can connect various IoT
microservices available in diverse usage units. The deployment of such hybrid
applications will result in one global constant Session-ID followed by related sub-
session-IDs as well as transaction-IDs. Note that the IoT application might send
a (re)authorization request to the AAA server to establish or maintain a valid
DoT session. However, this process does not influence the credit allocation that
is streaming between the DoT client and provisioning server, as it has already
been authorized for the whole transaction before.

6.2 Request Realization (RR)

The Resource control server analyzes the IoT service and allocates resources
to the requested service. It also considers the subscription time/fee in order to
notify user when this value elapses.

When the new usage update arrives at the Resource control server, it charges
the credit based on the usage summary received from the Metering server. It also
validates subscription by checking the status of credit (as in prepaid model) or
elapsed time (in pay-per-use model) against a certain threshold. Upon reaching
the threshold, the Resource control server sends an update notification request
to the user. DoT protocol makes it possible to define a default action for this
purpose. This default action can be to perform update automatically or to ask
user to take the desired action.

216 S. Qanbari et al.

Payment SrvAAA ServerEnd User DoT Client Provisioning Srv Resource Ctrl Srv Metering Srv

3.1.1.1.1.2:
summarize

usage

4.2.1: end user
session

4.2: user logoff

4.1.1.1.2.1.1: terminate metering

4.1.1.1.2.1:
metering ack.

4.1.1.1.2.2.2: update client credit

4.1.1.1.2.2.1: payment
transaction

4.1.1.1.2.2: send for payment

4.1.1.1.2: aggregated
usage value

4.1.1.1.1:
commit and
aggregate

4.1.1.1: measure
usage quata

4.1.1: release
resource and bill

4.1: render service4: service
termination

3.1.1.1.1.1:
metering

transaction

3.1.1: meter IoT App
3.1: deploy service3: start service

2.1.1.3.1.1:
request

authorized

2.1.1.3.1: request granted
2.1.1.3: granted

resource

2.1.1.2: reserve
resource and

lock credit

2.1.1.1: resource
scheduling

2.1.1: negotiate to
allocate resources

2.1: provision IoT App &
subscription plan

2: IoT App & Plan
submission

1.1.1.1: credential
authorized

1.1.1: AA answer

1.1: AA request
1: authentication

3.1.1.1.1.3.2: check
credit threshold

3.1.1.1.1.3.4:
update & lock

credit

3.1.1.1.1.3.1:
charge credit

3.1.1.1.1.3: send
usage update

3.1.1.1.1: granted
units + plan

3.1.1.1.1.3.3.1.1:
notify user

3.1.1.1.1.3.3.1: credit
update required

3.1.1.1.1.3.3: credit
update notification

3.1.1.1: ask for
granted units + plan

Fig. 4. The sequence of DoT interrogations to enable hybrid metering.

6.3 Telemetry Transmission (TT)

As soon as the end user sends the Start service request to the DoT client, the DoT
Client asks the Provisioning server to initiate the service and start monitoring
and metering processes. In this regard, the Provisioning server submits the IoT
application to the Metering server and asks to establish a metering mechanism
for the newly opened session.

Having an IoT application deployed, the metering server monitors the real
usage of each service element including service usage and resource usage at a cer-
tain frequency rate called Unit Usage Update (U3). The U3 frequency determines

Diameter of Things (DoT): A Protocol for Real-Time Telemetry 217

the rate of sending updates regarding unit usage of each service. It is indepen-
dent of the type of service. For example, the U3 set to 25 %, implies that for a
time-based microservice with granted units of 100 min, the usage update should
be provided every 25 min; and for an event-based microservice with granted units
of 100 invocations, the usage update will be sent after every 25 invocations.

To make it more clear, after identification of an IoT application to the Meter-
ing server, the Metering server sends a request to the Resource control server
asking for the amount of granted units as well as the plan, which includes the
U3 value for each microservice as defined by the provider. The U3 values are
then provided to the Metering agents, as the metering server starts the metering
transaction.

During deployment of an IoT application, each Metering agent meters the
actual resource and service usage of its associated/assigned microservice. If the
actual service usage value reaches an integer multiples of U3, the Metering agent
will send a notification message to the Metering server. The Metering server
then uses these feedbacks to gain a realistic perception of the usage of each
microservice and to charge the user credit accordingly. Next, if the application
usage of a microservice reaches the threshold value, the Metering Server informs
the Resource control server issuing a resource-update request for the service.
For instance, when the actual usage of a certain microservice reaches a certain
threshold, e.g. more than 70 %, metering server informs the resource control
server. This contributes to a continuous and consistent service delivery. The
detailed flow of TT phase is presented in Fig. 5.

In the DoT credit allocation model, the provisioning server asks the resource
control server to reserve resources and to lock a suitable amount of the user’s
credit. Then it returns the corresponding amount of credit resources in the
form of service specific usage units (e.g., number of invocations, duration) to
be metered. The granted and allocated unit type(s) should not be changed dur-
ing an ongoing DoT session.

6.4 Value Verification (VV)

When the end user terminates the service session, the DoT client must send a
final service rendering request to the Provisioning server. The Provisioning server
should ask the Resource Control server to release all the allocated resources to
an IoT application and perform payment transaction. As such, the Resource
control server deallocates the granted resources and asks the Metering server to
commit the measured metering tokens and report the quota value to it. Then
the Resource Control server sends the billable artifacts to the Payment Server
to charge the client account respectively. Finally, the Payment server sends the
updated client credit to the Resource control server. Meanwhile, the DoT Client
drops the user session via AAA server.

Upon each deduction from user credit, the DoT protocol verifies the credit
value. As soon as the credit value drops below a certain threshold, it informs
the user to perform credit update automatically or to take the desired action
manually.

218 S. Qanbari et al.

Provision Srv Payment SrvResource Ctrl Srv Metering Srv (Coord) Metering Agent (Cohort - RPi2)

9.1.2: update client credit

9.1.1: start
payment

transaction

9.1: send for
payment

9: aggregated usage
value

8: summarize &
aggregate tokens

7: commit metering
transaction

2: release
resource & bill

6: token from agent B

5: token from agent A
4.1: commit/retry

2.1.1.1: publish vote (yes/no)

1.1.4: write token

1.1.3: meter IoT App
& resource usage

1.1.2: create token

1.1.1: wake up
metering agent

1.1: request to meter + send
U3 freq.

1: meter IoT
App

4: vote from agent B

3: vote from agent A

2.1.1: request to commit (meter &
commit token)

2.1: measure usage quota

1.1.5: send token at U3 intervals

Fig. 5. DoT hybrid metering - 2PC transaction model.

7 DoT Command Messages

The DoT messages contain commands and Attribute Value Pairs (AVP) to
enable metering and payment transactions for DoT-based applications. The mes-
saging structure should be supported by all the collaborating peers in the domain
architecture. Four main commands are explained here in more details.

7.1 Provision-Application-Topology-Request/Answer

The SATR command is a message between DoT client and Provisioning server.
Via this command, the DoT client submits the IoT App (defined by the Client)
to the Provisioning server and inquiry resources needed for the application
delivery in II or RR interrogations. Following the request, the PATA response
with an acknowledgment of resources reserved for the client’s IoT App request.

Diameter of Things (DoT): A Protocol for Real-Time Telemetry 219

For instance, the PATR message format is: [<Session-Id>, <Client-Id>,
<Request-action>, <Dest-Realm>, <User-Name>, <IoT-App-Id>, <AVPs>]. In
return, the PATA response will contain the <Granted-Service-Units> attribute
in addition to the original request.

7.2 App-Resource-Allocation-Request/Answer

The CAMR command is used in RR interrogation. As soon as the Provision-
ing server receives Terminate-IoT-App-Request command, it sends a Commit-
App-Metering-Request command message to the Metering server asking resource
usage quota measurement for a specific user. Another use case is to ask for
resource usage during service delivery. In return, the Commit-App-Metering-
Answer command is used to report the measured quota value for the requested
user and the metered IoT application.

7.3 Commit-App-Metering-Request/Answer

The SMR command is used in RR interrogation. As soon as the Provisioning
server receives Terminate-Service-Request command, it sends a Start-Metering-
Request command message to the Metering server asking resource usage quota
measurement for a specific user. Another use case is to ask for resource usage
during service delivery. In return, the Start-Metering-Answer command is used
to report the measured quota value for the requested user and a metered IoT
application.

7.4 Start-Bill-Payment-Request/Answer

The Start-Bill-Payment-Request command which should be invoked in VV inter-
rogation, is used between the Resource control server and the Payment server to
establish a payment mechanism and initiate a fund transfer. In response to the
request, the Start-Bill-Payment-Answer command contains the state of payment
transaction and the updated user credit information.

8 DoT Transaction Model

The runtime of a DoT application is carried out in four “nested chained” trans-
actions. In this respect, the DoT transaction model preserves consistency by
defining conflict serializability. In order to prevent the conflict between oper-
ations in the DoT transaction model, a schedule pattern is defined to force
the logical temporal order in transactions execution. In this case, recoverability
is an argument in favor of transaction processing with a rollback mechanism.
In the DoT model there exists four transactions prone to inconsistency: (T1)
Identification, (T2) Provisioning, (T3) Metering and (T4) Payment transaction.
The Identification transaction embeds two sub-transactions of Authorization and
Authentication. As such, the Payment transaction has also two sub-transactions

220 S. Qanbari et al.

Table 1. The scheduled chronological execution sequence of DoT transactions.

T1: Identification T2: Provisioning T3: Metering T4: Payment

: : : :

Lock-S (credit) Lock-X (credit) Lock-X (credit) Lock-X (credit)

Read (credit) Read (credit) Read (credit) Read (credit)

Authenticate and authorize Reserve (premium) Calculate (credit) Paychain (credit/debit)

Unlock (credit) Deploy (IoT appID) Write (credit) Write (credit)

: Write (credit) Commit Commit

Commit Unlock (credit) Unlock (credit)

Unlock (credit) : :

:

of Credit and Debit. Here is the schedule of conflict serializability for read(),
write(), and commit() operations on the credit resource object of the client.

We use the following notation: Let Ti be a transaction and credit be a relation
or a data resource of a relation. Assuming Oij ∈ R(credit),W (credit) be an
atomic read/write operation of Ti on data item credit. Then the two operations
Oij and Oik on the same credit data resource are in conflict if at least one of
them is a write operation. To avoid such conflicts, we have come up with the
DoT transaction schedule in Table 1.

9 Related Work

In relation to our work, there is some commendable research regarding the cloud
service usage metering. Elmsroth et al. [8] proposed a loosely coupled architec-
ture solution for an accounting and billing system for use in the RESERVOIR [9]
project. There are some alternatives that propose billing and metering solutions,
Narayan et al. [10]. Petersson [11] describes cloud metering and billing solution.
Naik et al. [12] proposed a solution for metering of services delivered from mul-
tiple cloud providers. They incorporate the cloud service broker together with a
metering control system to report metered data at configurable intervals. Mean-
while, there are some prominent studies on capturing pricing models for IoT
domains. Aazam and Huh [13] provided a resource prediction, resource price
estimation and reservation for the Fog which resides between underlying IoTs
and the cloud. Their proposed model does not support the real-time session and
event-based metering models.

Mazhelis et al. [14] studies the applicability of the Constrained Applica-
tion Protocol (CoAP), a lightweight transfer protocol under development by
IETF, for efficiently retrieving monitoring and accounting data from constrained
devices. Their results indicate that CoAP is suited for efficiently transferring
monitoring and accounting data, both due to a small energy footprint and a
memory-wise compact implementation. This work relies on using the account-
ing and monitoring infrastructure produced by the Accounting and Monitoring

Diameter of Things (DoT): A Protocol for Real-Time Telemetry 221

of Authentication and Authorization Infrastructure Services (AMAAIS) project
[15]. Our work elevates the metering to an IoT domain by proposing an extended
Diameter protocol that enables IoT infrastructures to incorporate the DoT pro-
tocol in their deployment models. This contributes to a real-time resource uti-
lization awareness by constructing and allocating flexible metering models to
IoT deployment units.

10 Conclusion

In this study, we have presented a metering protocol, called the Diameter of
Things (DoT), that enables real-time telemetry and automatic resource alloca-
tion control of IoT applications. The DoT is designed to enhance the resource
utilization by extending the Diameter base protocol. The authors offered the
DoT architecture, its interrogations as well as its transaction model for account-
ing for the resource usage of constrained devices. The DoT offers considerable
benefits, such as granular metering of lightweight applications, real-time trans-
parency over resource usage in edge devices and transporting and exchanging
application-specific metering policies in an IoT domain. As an outlook, our
future work includes the DoT implementation together with an evaluation of
the proposed DoT architecture in terms of scalability, performance and session
management. A concise evaluation of the requirements4 for the Diameter-based
protocols is proposed that will be considered for the DoT implementation as well
as evaluation purposes. We envision the DoT protocol to gaining acceptance as
a de facto metering standard in IoT.

Acknowledgments. The research leading to these results is sponsored by the Doc-
toral College of Adaptive Distributed Systems (ADSys) (http://www.big.tuwien.ac.at/
adaptive) at the Vienna University of Technology.

References

1. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging it platforms: vision, hype, and reality for delivering computing as
the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)

2. Calhoun, P., Johansson, T., Perkins, C., Hiller, T., Mccann, P.: Diameter mobile
IPv4 application. In: IETF, RFC 4004, August 2005

3. Hakala, H., Mattila, L., Koskinen, J.-P., Stura, M., Loughney, J.: Diameter credit-
control application. In: IETF, RFC 4006, August 2005

4. Garcia-Martin, M.: Diameter session initiation protocol (SIP) application. In:
IETF, RFC 4740, April 2006

5. Rigney, C., Rubens, A., Simpson, W., Willens, S.: Remote authentication dial in
user service (RADIUS). In: IETF, RFC 2138, June 2000

6. Calhoun, P., Loughney, J., Guttman, E., Zorn, G., Arkko, J.: Diameter base pro-
tocol. In: IETF, RFC 3588, September 2003

4 https://tools.ietf.org/html/draft-zander-ipfix-diameter-eval-00.

http://www.big.tuwien.ac.at/adaptive
http://www.big.tuwien.ac.at/adaptive
https://tools.ietf.org/html/draft-zander-ipfix-diameter-eval-00

222 S. Qanbari et al.

7. Rivest, R.L., Shamir, A.: PayWord and MicroMint: two simple micropayment
schemes. In: Lomas, M. (ed.) Proceedings of the International Workshop on Secu-
rity Protocols, pp. 69–87. Springer, London (1997)

8. Elmroth, E., Marquez, F.G., Henriksson, D., Ferrera, D.P.: Accounting and billing
for federated cloud infrastructures. In: Proceedings of the 2009 Eighth International
Conference on Grid and Cooperative Computing, GCC 2009, Washington, DC,
USA, pp. 268–275. IEEE Computer Society (2009)

9. Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin, K., Llorente, I.M.,
Montero, R., Wolfsthal, Y., Elmroth, E., Cáceres, J., Ben-Yehuda, M., Emmerich,
W., Galán, F.: The reservoir model and architecture for open federated cloud com-
puting. IBM J. Res. Dev. 53(4), 535–545 (2009)

10. Narayan, A., Rao, S., Ranjan, G., Dheenadayalan, K.: Smart metering of cloud
services. In: 2012 IEEE International Systems Conference (SysCon), pp. 1–7, March
2012

11. Petersson, J.: Cloud metering and billing. http://www.ibm.com/developerworks/
cloud/library/cl-cloudmetering. Accessed 08 Aug 2011

12. Naik, V.K., Beaty, K., Kundu, A.: Service usage metering in hybrid cloud environ-
ments. In: 2014 IEEE International Conference on Cloud Engineering (IC2E), pp.
253–260, March 2014

13. Aazam, M., Huh, E.-N.: Fog computing micro datacenter based dynamic resource
estimation and pricing model for IoT. In: 2015 IEEE 29th International Confer-
ence on Advanced Information Networking and Applications (AINA), pp. 687–694,
March 2015

14. Mazhelis, O., Waldburger, M., Machado, G.S., Stiller, B., Tyrväinen, P.: Retrieving
monitoring and accounting information from constrained devices in internet-of-
things applications. In: Doyen, G., Waldburger, M., Čeleda, P., Sperotto, A., Stiller,
B. (eds.) AIMS 2013. LNCS, vol. 7943, pp. 136–147. Springer, Heidelberg (2013)

15. Stiller, B.: Accounting and monitoring of AAI services. Switch J. 2010(2), 12–13
(2010). IETF

http://www.ibm.com/developerworks/cloud/library/cl-cloudmetering
http://www.ibm.com/developerworks/cloud/library/cl-cloudmetering

	Diameter of Things (DoT): A Protocol for Real-Time Telemetry of IoT Applications
	1 Introduction
	2 The Utility of Diameter
	3 DoT Preliminaries and Terms
	4 DoT Architecture Models
	5 DoT-Based IoT Application Overview
	5.1 DoT-Based Application Topology
	5.2 DoT-Based Metering Plans

	6 DoT Interrogations
	6.1 Initial Identification (II)
	6.2 Request Realization (RR)
	6.3 Telemetry Transmission (TT)
	6.4 Value Verification (VV)

	7 DoT Command Messages
	7.1 Provision-Application-Topology-Request/Answer
	7.2 App-Resource-Allocation-Request/Answer
	7.3 Commit-App-Metering-Request/Answer
	7.4 Start-Bill-Payment-Request/Answer

	8 DoT Transaction Model
	9 Related Work
	10 Conclusion
	References

