
Identifying Relevant Resources and Relevant
Capabilities of Collaborations – A Case Study

C. Timurhan Sungur∗, Uwe Breitenbücher∗,
Oliver Kopp†, Frank Leymann∗, Mozi Song∗, Andreas Weiß∗

∗IAAS, †IPVS
University of Stuttgart, Germany

lastname@informatik.uni-stuttgart.de

Christoph Mayr-Dorn and Schahram Dustdar
Distributed Systems Group

Vienna University of Technology, Austria
{mayr-dorn,dustdar}@dsg.tuwien.ac.at

Abstract—Organizational processes involving collaborating re-
sources, such as development processes, innovation processes,
and decision-making processes, typically affect the performance
of many organizations. Moreover, including required but miss-
ing, resources and capabilities of collaborations can improve
the performance of corresponding processes drastically. In this
work, we demonstrate the extended Informal Process Execution
(InProXec) method for identifying resources and capabilities of
collaborations using a case study on the Apache jclouds project.

Index Terms—Organizational performance; resource discov-
ery; capability discovery; relevant resources; relevant capabili-
ties; informal processes; unstructured processes

I. FUNDAMENTALS: INPROXEC METHOD

Using the Informal Process Essentials (IPE) approach, busi-
ness experts can model business processes based on their
resources without necessarily specifying their activities. Thus,
the IPE approach is also suitable for processes involving unpre-
dictable activities during the modeling, i.e., informal processes.
Process models created following the IPE approach [1] rely on
autonomous agents, e.g., human resources, that are capable of
driving processes to success. The approach enables a certain
degree of automation by engaging the required interrelated re-
sources towards organizational intentions automatically. More-
over, it provides support for autonomous agents by including
the resources they require during the process execution such
as data resources and tools. Defining informal process models
starts with defining their main intentions. After specifying
main intentions of informal processes, business experts add
resource definitions describing the resources that achieve the
respective main intention such as a Java developer and a
Git repository. Resource definitions are the representations of
organizational resources available in modeling and execution
systems of informal processes. Business experts can specify
resource definitions indirectly using capabilities. An organiza-
tional capability is the ability to perform a productive task
repeatedly using one or more organizational resources. Dur-
ing informal process enactments, resource models containing
resource definitions and their relationships can be updated
dynamically during runtime by adding and removing resources
to meet emerging requirements. Thus, informal process in-
stances of the same process model contain typically different
resource models. Implementing the IPE approach in organiza-

tions requires the application of the InProXec method [2] with
different phases. The InProXec method enables modeling of
informal processes and automated provisioning of resources
modeled in these processes. The method is composed of three
main phases: Integrating Resources of Informal Processes (𝑃1),
Modeling Informal Processes (𝑃2), and Executing Informal
Processes (𝑃3). In this work, we subsume phases Informal
Process Model Compilation (𝑃3) and Model Deployment and
Runtime (𝑃4) presented in our previous work [2] as Executing
Informal Processes (𝑃3).

Integrating Resources of Informal Processes (𝑃1). The first
phase aims for creating the required infrastructure to enable
modeling and automated initialization of informal processes.
Thus, it is conducted before modeling and initializing informal
processes. An indispensable part of informal processes are
resources, as they drive processes to successful outcomes.
Thus, modeling tools of informal processes need to present
business experts all resource definitions important for informal
processes of the respective organization. To present different
resources provided by different services, technical experts de-
velop domain managers that convert domain-specific resource
definitions into actual resources working towards informal
process intentions. The conversion requires allocating the
defined resources. Therefore, technical experts develop exe-
cution environment integrators capable of allocating resource
definitions included in informal process models (𝑃1). After
completing this phase, business experts can create informal
process models (𝑃2) using the resources provided by domain
managers and initialize these models automatically (𝑃3) using
execution environment integrators.

Modeling Informal Processes (𝑃2). During this phase, busi-
ness experts create informal process models using the resource
definitions made available during 𝑃1. Firstly, business experts
create organizational intentions and organizational capabilities
provided by resources. Thereafter, they create strategies for
intentions. To implement strategies, business experts create
informal process models. After creating models, upon the pres-
ence of initial contexts, corresponding processes are initialized
as described in 𝑃3.

Executing Informal Processes (𝑃3). During this phase, exe-
cution environments integrators built in 𝑃1 initialize informal
process models created in 𝑃2 by allocating the resource defini-

978-1-4673-9933-3/16/$31.00 ©2016 IEEE

352

Figure 1. Extended InProXec method

tions contained in informal process models automatically. Af-
ter allocating resources defined in an informal process model,
execution environment integrators associate additional instance
data such as instance location with resource definitions to
create resource instances. Resource instances and resource
definitions are representations of organizational resources in-
side of modeling and execution systems of informal processes.
Resource instances represent allocated and engaged resources
for specified intentions whereas resource definitions represent
available organizational resources. An organizational resource
defined by a resource definition may actually exist or may be
firstly created during process initialization. Informal process
models and instances are artifacts contained in informal pro-
cess modeling and execution systems.

II. EXTENDED INPROXEC METHOD

As shown in Section I, we extend 𝑃1 of the InProXec
method and add a new phase to the end to enable discovery of
relevant resources and capabilities. 𝑃2 and 𝑃3 stay unchanged.
The extended method uses involved resources as a basis. Thus,
we start by describing the term “involved resources” more
precisely to support the comprehension of the extensions.
As business experts update resources of informal process
instances based on emerging requirements dynamically, the
resource instances contained in different process instances of
the same model can vary. Thus, involved resources of an infor-
mal process model are not only the resources captured in the
respective model, but all resources contained in instances of
the model. For instance, participants of a process instance can
add an additional Git repository during the process execution.
In this case, the additional resource is also an involved resource
although it is originally not contained in the informal process
model.

During the accomplishment of intentions specified in an
informal process, involved resources interact with other re-
sources. Interactions can occur in different environments, e.g.,
physical or digital, resulting in different kinds of interaction
contents. Interactions provide resourceful information for find-
ing relevant resources in the context of informal processes
models. We consider each resource instance interacting with an
involved resource directly or indirectly as relevant. Indirectly
means that resources communicating with relevant resources
are also considered relevant. For instance, consider that an in-
volved resource edits a Wiki document, which is also updated

by another person who is not involved in the respective process.
In this case, the Wiki document and this second person
are considered as relevant resources due to the interactions
between (i) the involved resource and the Wiki resource and
(ii) a relevant resource (the Wiki resource) and the second
person. Neither informal process models nor informal process
instances contain relevant resources, although containment will
likely increase the performance of the process execution due
to their participation in the process instances. The concept
of relevant capabilities is built on top of relevant resources.
A relevant capability is a capability that is possessed by an
involved or a relevant resource. Moreover, a relevant capability
is not contained in respective informal process instances or
models. For instance, in case a developer updates a Wiki page,
then a “knowledge storage” capability is a relevant capability
as it is a capability of a relevant resource being the Wiki
service.

Integrating Resources of Informal Processes (𝑃 ∗1). In addi-
tion to the steps described previously for 𝑃1, in this phase,
the following activities are conducted. Identifying relevant
resources and capabilities requires analyzing interactions of
organizational resources and, thus, an infrastructure capable
of collecting resource interactions. During the first phase,
technical experts develop services capable of (i) collecting
resource interactions and (ii) deriving relevant resources and
capabilities out of these interactions. Considering an informal
process instance containing a Git repository, technical experts
build services capable of (i) crawling interactions between
contributors and this Git repository and (ii) deriving relevant
human resources based on these interactions. Business experts
update informal process models using relevant resources and
capabilities identified manually. To automate addition of these,
technical experts additionally develop services in this phase
that are capable of creating new informal process models by
adding relevant resources and capabilities to a source informal
process model. At the end of 𝑃 ∗1 , an infrastructure capable
of generating relevant resources, relevant capabilities, and
informal process model recommendations is ready.

Generate Informal Process Recommendations (𝑃4). Dur-
ing 𝑃4, the services developed in 𝑃 ∗1 analyze interactions
involving resource instances of informal process instances.
First, services developed in 𝑃 ∗1 collect interactions of in-
volved resources and relevant resources. Based on analyzed
interactions of involved resources, appropriate resources and

353

Figure 2. Scenarios used in the application

capabilities for certain jobs may be found. For example,
if a certain code reviewer is identified as relevant, it is a
valid recommendation to suggest this reviewer to the business
expert of an informal software development process. Deciding
whether recommendation fits the desired needs is up to the
business expert, but nevertheless may provide a means to
support them in creating new models or to give hints. The
overall goal is, thus, providing a recommendation technique
that suggests business experts during 𝑃2 concrete resources,
capabilities, and new informal process models. For example,
software components developed in 𝑃 ∗1 analyze an included
Git resource for its commit messages, and, then, interpret
these to create a relevant resources, relevant capabilities, and
informal process model recommendations. As a result of 𝑃4,
(i) relationships containing relevant resources and relevant
capabilities, i.e., relevance relationships, or (ii) an informal
process model recommendation based on an initial informal
process model and relevance relationships are presented to the
business expert.

III. CASE STUDY ON THE APACHE JCLOUDS PROJECT

In this section, we present the application of the extended
InProXec method to the Apache jclouds project. Initially, we
developed a core system which is capable of executing 𝑃4

using the services developed in 𝑃 ∗1 . We provide the imple-
mentation of the whole case study in a GitLab repository1. In
our case study, we focus on Git projects and human resources
as these are the most relevant resources at first sight. Thus,
possible involved resources of informal process models are hu-
man resources and resources representing Git repositories. The
interactions serving for the respective organizational intentions
are code commits, pull requests, pull request reviews, watches,
and issues. To collect these interactions using the GitHub API2,
we developed one service supporting human resource instances
and one supporting Git resource instances. We collected inter-
actions of these resource instances using the Events API3 of
GitHub, which delivers events of the last 90 days. The services
collecting interactions of human resources uses 17 repositories
found in the jclouds organization (https://github.com/jclouds)

1https://gitlab.com/timur87/informal-process-recommender/
2https://developer.github.com/v3/
3https://developer.github.com/v3/activity/events/

as interaction mediums to collect interaction of involved
resources. After developing services collecting interactions, we
created services for identifying relevant human resources, Git
resources, and a set of predefined relevant capabilities.

After conducting 𝑃 ∗1 , we validated the system with the
data from Apache jclouds project. In our application, we
assume the jclouds project is in 𝑃3, that is, informal process
models and instances already exist. Therefore, we created an
informal process model targeting the resolution of a reported
bug in the jclouds project and its informal process instances
(𝑝𝑖) containing different type of resource instances based
on the possible execution scenarios happened in the actual
project, as shown in Section II. The files containing the
model and instances can be found in the GitLab repository4.
Based on our experience, we selected 10 process instances
illustrating the work. Moreover, to investigate the effects of
analyzing multiple process instances at once, we use the
process instances 𝑝1, 𝑝5, 𝑝6, 𝑝8, and 𝑝9 at the same time
during the scenario 𝑐15689. To design the list of involved
resources in different scenarios, we used the listed members of
the organization (https://github.com/orgs/jclouds/people). The
average execution time of 𝑃4 for the scenarios presented
in Section II is 17 minutes. Detailed results collected are
presented in an online spreadsheet5. This spreadsheet pro-
vides an overview of the results such as collected relevant
resources and capabilities, the number of interactions, ex-
ecution times, and involved resources. These results have
been calculated using the algorithms provided in the GitLab
repository with the input data spanning 90 days and collected
on 2016-04-01. After creating the the process instances based
on the project data, we executed 𝑃4 and in the following
we describe the results of these. 𝑝1 presents the scenario
including a single Git repository, i.e., the jclouds reposi-
tory (https://github.com/jclouds/jclouds). According the results
of 𝑝1, the most relevant Git resource and human resource
are jclouds-labs and nacx (https://github.com/nacx) with the
degrees of relevance 0.272 and 0.208, respectively. In the
following, we refer to human resources using their GitHub
user names and Git resources by their repository names. The
scenarios 𝑝2, 𝑝3, and 𝑝5 contain human resource instances
with different numbers only. In 𝑝2 and 𝑝5, jclouds-labs was
the most relevant resource with slightly different degrees
of relevance, i.e., 0.508 and 0.490, respectively. Moreover,
in scenario 𝑝3, jclouds-site was the most relevant resource,
because, in 𝑝3, the involved human resource demobox was
added, who was more active in this repository. In 𝑝6, 𝑝7, 𝑝8,
and 𝑝9, we have the jclouds repository with different number
of human resource instances. Consequently, both the number
of relevant resources and the order of their relevance change.
For instance, jclouds-labs is the most relevant resource for
𝑝6, 𝑝8, and 𝑝9. Moreover, the repository jclouds-site is the
most relevant resource for 𝑝7 with the degrees of relevance

4https://gitlab.com/timur87/informal-process-recommender/tree/master/src/
test/resources

5https://docs.google.com/spreadsheets/d/1myLLwFxWIDrDGwwUSmjTH
P6lpbrHAG6t-QDxEEvj58k/

354

Figure 3. Relevant resources found and their relation with involved resources and interactions

of 0.636. The change from jclouds-labs (𝑝6) to jclouds-site
(𝑝7) is a result of changing nacx with demobox. Replacing
nacx in scneario 𝑝6 with demobox in scenario 𝑝7 increases
the relevance of jclouds-site. Moreover, removing nacx from
the the list of resource instances in 𝑝7 makes him the most
relevant human resource with the degree of relevance of 0.208.
The combined scenario 𝑐15689 also provides consistent results
as 𝑝1, 𝑝5, 𝑝6, 𝑝8, and 𝑝9, the most relevant resource is the
jclouds-labs repository. We additionally include the jclouds-
labs repository, which is the second most active repository
in the organization based on the number of commits, in the
informal process instance of scenario 𝑝10. As presented in
Section III, following this inclusion in 𝑝10, we identified the
highest number of interactions. The jclouds-site repository is
the most relevant Git resource and devcsrj as the most relevant
human resource.

The number of interactions typically increases based on
the number and the type of involved resources. Moreover,
a higher number of interactions typically results in a higher
number of relevant resources, as shown in Section III. There
are also other interesting results leading to other conclusions.
For instance, scenarios 𝑝2 and 𝑝3 contain one human resource
instance although the analysis result of 𝑝2 provides a higher
number of relevant resources (47 vs. 15) due to containing a
more communicative resource. Moreover, although 𝑝4 contains
a higher number of involved resources than scenario 𝑝1, the
number of interactions and relevance relationships identified in
𝑝4 is less than scenario 𝑝1. The reason of this decrease is that in
scenario 𝑝4 16 Git repositories were analyzed (𝐷2), whereas in
𝑝1 17 Git repositories. Only in scenario 𝑝4, a smaller number
(16) of repositories were analyzed. Thus, we conclude that
the set of involved resources and the number of interaction
services analyzed for collecting interactions play an important
role and they are correlated with the number of resulting
interactions and relevance relationships. All relevant resources
are generated including their respective degrees of relevance5.
Using a dynamically calculated threshold eliminating 90% of
the least relevant resources and capabilities, we enabled auto-
mated generation of informal process model recommendations.
In our implementation, we created different capabilities (𝑃2 of

the InProXec method) such as a project coordination capability,
a code development capability, a code hosting capability, a bug
fixing capability, and a project management capability based
on the interactions available. Among these, code development,
code hosting, and bug fixing are the most relevant capabilities
identified in different of the scenarios. Due to the limited space,
we have to exclude the discussion of the relevant capabilities.
For further details of the case study, we refer readers to the
online spreadsheet provided5.

The discovered resources, e.g., jclouds-labs and nacx,
are key resources during the development of these libraries
and certainly are required for the implementation of the
respective process. Thus, the provided results prove that
the method built on these concepts is valid and works as
claimed. The selected types of interactions play a critical
role and have a huge impact on the results presented. Each
organization needs to determine the interactions and their
impact carefully to have valid results at the end. For instance,
changing the impact of a pull request message changes
results dramatically. Moreover, the presented results vary
from the top committers presented under GitHub statistics
(https://github.com/jclouds/jclouds/graphs/contributors), e.g.,
the top committer is not nacx within last 90 days, as our
implementation considers (i) multiple Git repositories and (ii)
different types of interactions and is not limited to commits.
Future directions: Firstly, we will evaluate our findings from
this work through surveys. Secondly, we will detail the steps
required to complete 𝑃 ∗1 and 𝑃4 successfully.

Acknowledgments: This work has been partially supported
by Graduate School of Excellence advanced Manufacturing
Engineering (GSaME)6, German DFG within the Cluster of
Excellence (EXC310/2) SimTech, SitOPT (Research Grant
610872, DFG), SmartOrchestra (01MD16001F, BMWi), and
EU FP7 Smart-Society project (Research Grant 600854).

REFERENCES

[1] C. T. Sungur, T. Binz, U. Breitenbücher, and F. Leymann, “Informal
Process Essentials,” in EDOC 2014. IEEE Computer Society, 2014.

[2] C. T. Sungur, U. Breitenbücher, F. Leymann, and J. Wettinger, “Executing
informal processes,” in iiWAS ’15. ACM, 2015.

6http://www.gsame.uni-stuttgart.de/

355

