
Service-Oriented Computing:
Service Foundations

Marco Aiello and Schahram Dustdar

TUWien
{aiellom,dustdar}@infosys.tuwien.ac.at

Participating in the discussion: Paco Curbera, Flavio De Paoli, Wolfgang
Kellerer, Dominik Kuropka, Frank Leymann, Michal Zaremba

1 Service Foundations

The foundations of Service-Oriented Computing are concerned with the precise
definition of a service. This is not only about providing a verbal explanation
of what a service is, what can be and what cannot be considered a service,
but rather it is about identifying the appropriate service model. Defining what
service properties, requirements, and behaviors are relevant and possible for any
generic service.

Any task based on services has to then take into account the service model,
in fact, it is shaped by the service model chosen. Think of service composition.
In whichever way one wants to consider composition (static ad design-time,
dynamic at execution time, etc.) one has to consider what are the basic blocks
to build the composition out of. One has to know which properties and behaviors
of the service are available to guarantee certain properties and behaviors of the
composition.

The remainder of this document is organized as follows. Section 1.1 identifies
the architectural peculiarities of the service model. Section 1.2 presents the con-
tainer model. Section 2 enumerates a number of challenges and open research
issues on service foundations. The paper is concluded by Section 3 which is the
proposal for a book part on service foundations within a book dealing with state
of the art and open issues in Service-Oriented Computing.

1.1 Architectural Principles

A number of basic properties and characteristics define services and must, there-
fore, be taken into consideration when defining the service model. Let us consider
the architectural principles which are the common basis for all services.

Loose coupling Interacting services are loosely coupled by nature. They run
on different platforms, are implemented independently and have different
owners. The model has to consider the loose coupling of services with respect
to one another.

Dagstuhl Seminar Proceedings 05462
Service Oriented Computing (SOC)
http://drops.dagstuhl.de/opus/volltexte/2006/528



Message based interaction The service based interaction is message based.
Furthermore, the messages are usually exchanged asynchronously and have
a rich document style content. RPC is seldom used for service.

Dynamic discovery Services are programs available over a network, it is thus
paramount to have the possibility to find which services are available at any
given moment and what the service is able to do. Dynamic service discov-
ery must be supported by the service model. A scenario which highlights
the necessity for dynamic discovery is that of mobile service requesters and
providers (see Figure 1). In this scenario, there is not full knowledge of avail-
able service implementation nor total reachability of all implementations.
So services need to be discovered dynamically and on the basis of the given
requester’s context.

Fig. 1. Mobility scenario for dynamic discovery.

Late binding Services are invoked dynamically after the discovery process by
a service requestor. That is, the binding of a service provider to the requester
occurs at run time at the latest possible instant providing for an extremely
dynamic and flexible architecture.

Implementation neutrality and independency Services are defined inde-
pendently of their implementation and behave neutrally with respect to it.

Policy based behavior Properties such as transactions, security, and context
should not be tightly bound to service implementations but rather defined
using policies, rules and other declarative forms.

Configurability Services are defined abstractly and are deployed at a later
stage. The configuration of the services is dynamic and can occur at any
time of the service’s life. The deployment of services must thus account for
the highest possible flexibility.

Autonomicity Autonomic deployment of services in large-scale environments
may provide for greater ease of service management. Self-healing capabilities
are possible and desirable of a service.

Portability Service implementation should be independent from concrete im-
plementation as possible. Portability is a basic characteristic of services (cf.
WS-Basic Profile). Today service implementations are portable but concrete
deployment is not (service deployed at runtime A cannot be deployed at

2



runtime B without changing deployment descriptors etc.). To make an anal-
ogy, this is similar to the migration of EJB implementations between various
servers (e.g., IBM, BEA).

Granularity The granularity of a service defines the complexity and number
of functionalities defined by an individual service and is thus part of the
service model. An appropriate balance between coarse and fine grained ser-
vices depends on the way services are modeled. For too fine grained services,
problems arise when there are frequent and rapid changes.

1.2 The Container Model

One model that is emerging as appropriate and successful for the Service-Oriented
Paradigm is the Container Model. In this model, there is a ‘container’ for the
service implementation taking care of exposing the service functionalities to the
external world via the network. Figure 2 provides a schematization of the con-
tainer model, where SD stands for the service description interface for functional
(e.g., WSDL) and non-functional features (e.g., WS-Security).

Fig. 2. The container model.

The basic (core) functions of the container are the following six,

1. Connectivity and MEPs (e.g., ESB, Event-brokers, P/S)
2. (Extensible Architecture) Mechanisms to support and provision require-

ments such as Transactions, Security, Performance metrics etc
3. Support for Dynamic Configuration
4. Monitoring of internal behavior and state to management systems (services)
5. Data and Protocol Adaptation
6. Discovery

3



Notice that the model does not assume to be server based, as other deployment
and implementation paradigms are possible.

Let us now consider how the container model addresses the architectural
peculiarities identified in Section 1.1

Loose coupling Containers are independent one another and loosely coupled.
Message based interaction Messages are exchanged between the container

and the service consumers (SD), on the one hand, and service directories
(6), on the other hand.

Dynamic discovery The container exposes service descriptions and publishes
them to service registries (SD).

Late binding Binding via the container interface can happen as late as execu-
tion time (SD).

Implementation neutrality and independency The container is defined in-
dependently of the service implementation.

Policy based behavior Policies and rules are internal to the container and
drive its behavior (2,3,4).

Configurability Configuration is considered as being part of the container’s
characteristics (3).

Autonomicity Autonomicity is considered as being part of the container’s
characteristics (4).

Portability The container can be moved, providing the same service and need-
ing, at most, only reconfiguration (3).

Granularity Containers can carry implementations of services at different gran-
ularity levels.

2 Open Research Issues

As we are in the early days of Service-Oriented Computing, the precise definition
of service foundation can be merely considered an open research issues itself.
However, it is not the only one. A number of related open questions sprout from
the discussion. Most notably:

1. The identification of the requirements for the foundations/container. What
is the optimal architecture for SOC? Can/should SOC become an exten-
sion of a the operating system? How does the service model depend on the
specific consumers-providers peculiarities (scope, underlying HW/SW infras-
tructure, execution context)?

2. How to create the extensible architecture “mechanisms” for an extensible
infrastructure. In particular, one needs a plug-in architecture to deal with
extensible set of QoS properties. How does one deal with mechanisms in the
various topics, such as policies for security, for transactions, for pricing, etc?

3. There is a need to support for agreements between service requester and con-
sumer raising issues of negotiation, enforcement, and dynamic provisioning
for compliance.

4



4. There is the need for new enabling technologies and architectures for existing
IT infrastructures. What are these? (e.g. ESB, hardware appliances, Personal
service bus?)

5. How can we achieve accuracy at the border of the container for the require-
ments of discovery? What should be the scope of service search? How deep
should the search go into the container (scope)?

6. How to does the messaging mechanism satisfy the SOC desiderata?

5




