
An Event View Model and DSL for Engineering an
Event-based SOA Monitoring Infrastructure

Emmanuel Mulo Uwe Zdun Schahram Dustdar

Distributed Systems Group, Institute of Information Systems
Vienna University of Technology, Vienna, Austria

{ lastname} @ infosys.tuwien.ac.at

ABSTRACT
An event-based solution that uses events to convey infor-
mation to a monitoring tool is well suited to implementing
a non-intrusive monitoring infrastructure. This enables an
SOA system’s stakeholders to observe the system aspects of
interest to them. However, implementation of SOA today,
let alone the monitoring infrastructure, is a complex task
due to the heterogeneous environment consisting of multi-
ple technologies, platforms and components. We propose
an approach for implementing such an event-based SOA
monitoring infrastructure, that introduces a dedicated event
view model and an eventing domain-specific language in a
model-driven framework. The event view model captures
SOA artifacts and links them with the event domain, while
the eventing domain-specific language enables a system de-
veloper to specify instances of the event view model. With
our model-driven approach, most of the runtime monitor-
ing infrastructure is generated. These two ingredients (view
model and domain-specific language) focus implementation
efforts on the concern of eventing, thereby helping to man-
age complexity. We apply and evaluate our approach in the
context of a case study.

Keywords
Event-based, service-oriented architecture, monitoring,
domain-specific language, model-driven software develop-
ment

1. INTRODUCTION
Service-oriented architecture (SOA) is defined as a

paradigm or architectural style for organizing and utilizing
distributed capabilities that may be under the control of
different ownership domains [14]. Like any other large-
scale distributed system, those implemented with the SOA
paradigm require monitoring and management mechanisms
[16, 11] that enable system developers, administrators,
enterprise managers and other system stakeholders to con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS ’10, July 12–15, 2010, Cambridge, UK
Copyright 2010 ACM 978-1-60558-927-5/10/07 ...$10.00.

stantly observe aspects of the system like its operating
status, functional correctness and the business value gener-
ated. Such monitoring and management mechanisms should
not, however, interfere with the functioning of the system.
An event-based mode of interaction has been proposed as
well-suited to implementing monitoring logic and compo-
nents in a distributed system because system components
that communicate with each other in an event-based fashion
are inherently decoupled and communicate asynchronously
[13, 2]. This implies that the monitoring and monitored
components do not have to be dependent on each other.
Moreover an asynchronous mode of communication allows
for monitoring activity to be carried out as and when
system resources are available. Therefore, engineering
eventing concepts into a SOA shall enable the monitoring
and management tasks.

However, a number of challenges in developing systems
that interact in an event-based mode still exist, among them,
the characterizing, specifying and implementing (the repre-
sentation of) events in such a system [9, 5]. Moreover the
specification of these events is targeted to different domains
like intrusion detection, accounting, and performance, there-
fore the notion of an event has so many different meanings
to different stakeholders within and across organizations. In
the specific case of distributed event-based systems, their
complex, heterogeneous architecture that comprises a col-
lection of technologies, platforms, and components, adds
to the challenge of developing such systems [3]. One type
of distributed system, where these development challenges
are clearly evident, is SOA implemented as Web services
through use of Internet technologies and protocols.

We propose an approach for implementing the event-based
monitoring infrastructure in an SOA. Our approach consti-
tutes the application of a dedicated event view model and
an eventing domain-specific language (DSL). A view model
is a representation of the SOA system from the perspective
of a related set of concerns [18], in this case the SOA ar-
tifacts and eventing concepts. The eventing DSL provides
a tool for system developers to specify an instance of this
event view model, that is, the eventing infrastructure for a
particular system. Having these two ingredients enables us
to use a model-driven approach to automatically generate
most of the eventing infrastructure (code). With this ap-
proach, we believe that a system developer is able to better
manage the complexity of implementing eventing infrastruc-
ture in an SOA, by focusing on the particular concerns of
eventing. Among the resulting benefits, we expect that such
an approach shall help in improving on the maintainabil-

62

Process
Integration

Adapter

Message Broker

Business
Application
Adapter A

Business
Application
Adapter B

Business Application A

Business Application B

Business Process Engine

S
er

vi
ce

 1

S
er

vi
ce

 2

S
er

vi
ce

 3

S
er

vi
ce

 4

S
er

vi
ce

 1

S
er

vi
ce

 2

S
er

vi
ce

 3

S
er

vi
ce

 4

S
er

vi
ce

 1

S
er

vi
ce

 2

S
er

vi
ce

 3

Figure 1: Illustrative small-scale SOA

ity, reusability and understandability of eventing concepts
in SOA systems. We evaluate our approach in the context
of a case study in the domain of advanced telecommunica-
tions services, in which we demonstrate the implementation
of an eventing infrastructure for the purpose of monitoring
an SOA.

In the rest of this paper, we give a background and scope
to the type of SOA around which we design our approach
(Section 2) and we discuss the development of such an SOA
using views to manage complexity. We then present our ap-
proach (Section 3), followed by a case study to demonstrate
our approach (Section 4). We discuss some lessons learnt
from this exercise together with the related works (Section
5) and finally conclusions (Section 6).

2. VIEW-BASED DEVELOPMENT OF
PROCESS-DRIVEN SOA SYSTEMS

SOAs are typically realized as layered architectures [8],
comprising, for example, a communication layer that ab-
stracts from platform and communication protocol details,
and a remoting layer that provides the typical functionalities
of distributed object frameworks, such as request handling,
request adaptation, and invocation. The layers realize fun-
damental service orientation principles like loose coupling,
abstraction, composability, autonomy and interoperability.
A process-driven SOA, in addition to the above, comprises a
service composition layer. This layer provides a process en-
gine (or workflow engine) that executes business processes
through invoking services to realize individual activities in
the process. The main goal of such process-driven SOAs is
to increase the productivity, efficiency, and flexibility of an
organization via process management.

Figure 1 shows a small scale process-driven SOA as an il-
lustrative example. A single business process engine is used,
which uses service-based integration adapters to access a
service-based message broker, e.g., offered by an Enterprise
Service Bus (ESB) infrastructure. Service-based business
application adapters are used to access backends, such as
databases or legacy systems. The service adapter interface
is hence used to unify the interfaces of different kinds of
backends. A typical SOA in enterprise organizations today is
much larger than this illustrative example. That is, multiple
process engines – e.g., one per department – are deployed, in
addition to multiple instances of other components. These
are integrated using service-based interfaces, i.e., a process
engine can invoke business processes (as sub-processes) in
other engines via the service-oriented invocation interface of

the engines.
When taking into account the different technologies and

concepts required to realize such a SOA, the complexity of
the entire system becomes evident. The View-based ap-
proach [18] tackles this complexity by separately address-
ing the different concerns in development of SOAs. Each
concern is handled as a view, i.e., a (model) representation
of the system from the perspective of a related set of con-
cerns, thus focusing attention on one distinct set of concerns
at a time. Four model (view) manipulation activities are
identified in this approach: definition/design of a new archi-
tectural view on a system, extension of existing views with
more elements, integration of multiple views to provide a
richer view, and transformation of existing views in order to
generate executable code.

Service

CoreModel

Process

View
Element

name : String

NamedElement

view

element

*

*

* 1

1..*
provides

requires

pr
oc

es
s

se
rv

ic
e

*

Figure 2: VbMF Core Model

For engineering process driven SOAs, the View-based
Modeling Framework (VbMF) [17] defines and realizes some
basic concerns (views) as: a Flow view to model the control
flow of a business process, a Collaboration view that models
how a business process and its partners (other business
processes or services) interact, and an Information view
that models data objects that are passed around during the
flow of a business process. These views are related to each
other through a core view, shown in Fig. 2, that defines
basic constructs needed in such a view-based approach for

63

engineering process-driven SOAs.
The core view consists of the abstract classes View, Pro-

cess, and Service. Each of these needs to be extended de-
pending on the requirements of the view that one is design-
ing. At the heart of the core model is the View class that
captures the central view concept. An extension of this class
represents a single perspective on a process-driven SOA. The
Service class represents functionality that a corresponding
Process provides or requires. A View is also a container for
several Element instances, which represent objects that de-
scribe a process interior.

A view model for a specific concern of a business process is
mostly defined by extending the concepts of the core model.
As such, different view models are independent of each other
but are related to each other through the core model. We
capitalize on the concept of having separate views for dif-
ferent concerns, and in this work we focus on the concern
of event-based monitoring. We propose an approach for de-
signing and implementing the monitoring infrastructure for
a process-driven SOA. We present details of our approach
in Section 3.

3. SUPPORTING SOA MONITORING

3.1 Approach Overview
Our model-driven approach to support SOA monitoring

is realized through an event view and an eventing DSL. The
event view is a model that captures the concepts that, from
our perspective, link an SOA environment and the event-
ing domain. This enables us to implement the event-based
infrastructure to support monitoring in the SOA. Whereas
this event view model captures these concepts in an abstract
manner, we additionally develop an eventing DSL that pro-
vides a concrete syntax with which a system developer is
able to specify instances of the event view model, i.e., the
eventing infrastructure that supports the SOA monitoring.

In Figure 3, we illustrate our proposal to apply this ap-
proach to implement an eventing infrastructure in a SOA.

Before implementing any eventing infrastructure we need
to determine the information we are interested in monitor-
ing. The developer gets this information from the stake-
holders or derives it from business goals. With this infor-
mation we can use the eventing DSL to specify an event
view model instance; this includes specifying event types and
monitored artifacts along with their attributes. Concerning
the event types, we specify those that capture and convey
the information we would like to monitor, to a monitoring
tool. Ultimately, our goal is to generate executable system
components. Therefore, we need to specify code generation
templates. These templates are specific to the technology
of the monitored SOA artifacts. In order to define them, a
developer would require some experience with implement-
ing that particular artifact for which he/she wants to create
an eventing infrastructure. The final step is run the code
generation to create the necessary eventing infrastructure
that would support monitoring of the SOA artifacts. We
are thus able to deploy SOA artifacts (services, processes)
that are augmented with eventing code to emit events to a
monitoring tool.

In this overview we present these activities sequentially
but in practice one probably performs a number of itera-
tions (and in no fixed order) in order to develop a satisfac-
tory solution. Moreover, the monitoring needs change or are

upgraded regularly so the resulting eventing infrastructure
is expected to also change to match these needs.

In terms of technical implementations, our event view
model and the DSL are realized using Frag [19]. Frag is
a dynamic programming language designed, among other
things, to build (meta-)models and DSLs. These features
imply that Frag could also be dubbed a language workbench.
The language contains a modeling framework (libraries) that
enables specifying (meta-)models that capture concepts in a
domain. We use this modeling framework to specify our
event view model. The Frag syntax can be tailored to build
new language features or adapt existing ones to build a con-
crete DSL syntax based on an abstract model; this is how we
realize our eventing DSL. Our eventing DSL is classified as
an embedded one, that is, its syntax and underlying libraries
are based on that of Frag, which is its host language.

The event view model and eventing DSL focus only on the
concerns of eventing in the context of an SOA and in this
way, isolate a system developer from having to deal with
any other development concerns in parallel. Since we follow
a model-driven approach, the model and DSL provide a basis
from which we are able to generate an eventing infrastruc-
ture that would enable the SOA monitoring objective. In
the next sections we provide more details about the model,
DSL and generated eventing infrastructure.

Stakeholders

Documents

Determine monitoring
interests

Event view model
instantiation

Code Generation
Templates

Code generation &
deployment

Eventing DSL
specification

Conceptual monitoring issues

Runtime implementation issues

Figure 3: Approach Overview

3.2 Event View Model
The event view model captures and links the concepts of

the SOA and eventing domains, in an abstract manner. Im-
plementation of an SOA, requires one to have knowledge
of many different technologies, platforms and components.
However, the abstract concepts are relatively stable, there-
fore, representing them in an abstract manner enables us
to specify instances of such systems (or components) that
are not dependent on technology and can be easier adapted
even with rapidly changing technology [10]. Our event view
model is illustrated in Figure 4. The shaded classes indicate
a relationship between our view and the VbMF framework
discussed in Sect. 2.

The model elements are aggregated under the EventView-

Model class. We define two main kinds of elements, SOAArti-
fact elements and SOAEventType elements. We can consider

64

Event View

Model

SOAEventTypeSOAArtifacts

wsdlURL : String

Service

interface : String

ServiceOperation

Process

type : String
mapToType : String

EventAttribute

operations
*

* *

*

*

ar
tif

ac
ts

ev
en

ts

superEventType

*

* 0..1

name : String

NamedElement

eventAttributes

eventsmonitoredArtifact

Service

(Core)

Process

(Core)

Element

(Core)

View

(Core)

Figure 4: Event View Model

these two elements in light of their role in monitoring. The
SOAArtifacts elements are the ones we are interested in ob-
serving, and the SOAEventType convey the information that
we use to perform this observation.

SOAArtifacts are further specialized into Service, Service-
Operation and Process elements, which are found in the SOA
domain. A Service element represents a web service for
which we want to generate the eventing infrastructure. Ser-

vice elements have a wsdl attribute that relates an instance
of these elements to a WSDL specification (either a file or a
URL). Having access to the WSDL specification presents the
possibility to automatically generate eventing infrastructure,
or to perform validation before the eventing infrastructure
is generated. A Service element is composed of (contains)
a number of ServiceOperation elements. Each ServiceOp-

eration element specifies a distinct operation that is found
within the interface (portType) definition of its containing
service’s WSDL specification. The interface attribute in
each element instance should correspond to an existing and
correct WSDL interface definition. Process elements repre-
sent a business process that orchestrates services to derive
some business value.

The SOAEventType class provides a template for defining
event types that enable monitoring in the SOA domain.
Event type definitions are related to a particular artifact,
say a Service element. Each type definition may comprise
a number of EventAttribute elements, some of which carry
data about the SOAArtifact that an event type definition is
related to. The EventAttribute elements have either a type

attribute or a mapToType attribute; the former defines a data
type whereas the latter maps the attribute to a type in the
monitored artifact. Event type specifications are setup in
a hierarchical manner, that is, each event type may have a
super (class) event type associated with it (through its su-

perEventType attribute). Event type definitions (instances),

therefore, inherit attributes from their super event type.
Having this hierarchical setup enables a developer to ex-
tend event definitions and specialize them as needed, while
still benefiting from the features of the super event types.

The event view model presented here captures the SOA
domain elements in an abstract manner. It (the model) acts
as a framework that we are able to incrementally extend
with other concepts depending on the monitoring context.
As an example, if we discover a special need to have process
activities as a prominent feature in SOA monitoring, we can
represent them in our event view model without disrupting
our development activities. In the next section we present
our eventing DSL.

3.3 Eventing DSL
Whereas the event view model captures the SOA and

eventing concepts in an abstract manner, we now present
an eventing DSL that provides a system developer with the
ability to concretely specify eventing infrastructure to enable
monitoring. This specification of the eventing infrastruc-
ture is actually an instantiation of the event view model.
The DSL syntax can be modified depending on what the
targeted technology is. We design our DSL with the as-
sumption that a system developer using it is familiar with
the basic concepts of web services based implementations of
SOA and perhaps has some experience implementing them.

The DSL concrete syntax consists of the elements defined
in the abstract model, that is, Service, ServiceOperation,

Process, SOAEventType, EventAttribute. We use a sample
of the DSL syntax, shown in Figure 5, to explain the DSL
semantics.

Service create watchMeService\

-wsdl "resources/watchMeService.wsdl"\

-events ServiceInvocationEvent

ServiceOperation create searchContent\

-name "SearchContent"\

-interface "watchMeService"\

-service watchMeService

SOAEventType create ServiceInvocationEvent\

-name "ServiceInvocationEvent"\

-superEventType ServiceEvent\

-eventAttributes\

[EventAttribute create\

-name "operation"\

-type "String"]\

-eventViewModel WatchMeEventViewModel

Figure 5: Eventing DSL

A create keyword, placed after an element, instantiates
the element. An instance name follows to identify a par-
ticular instance. The attributes or relationships defined for
an element are expressed like switches in a command line
syntax.

In order to define the eventing infrastructure we need to
make the definitions in two parts. In the first we specify
the instances of elements we are interested in observing. In
Figure 5, we create Service and ServiceOperation instances.

65

The watchMeService instance also identifies the WSDL spec-
ification file. The service instance name (watchMeService)
has to correspond to an existing service definition in the
WSDL; the same goes for the ServiceOperation instance.
Each SOAArtifact is able to define a relationship to a set
of events through the events switch. This means that the
event infrastructure that shall be generated for that artifact
emits that type of event; so in Figure 5 the watchMeService
event infrastructure emits ServiceInvocationEvent types.

After defining the elements we are interested in observing,
we define a series of SOAEventType elements that are related
to each monitored element through the monitoredArtifact

switch. Each event type definition has the possibility to
extend the definition of a another event type using the su-

perEventType switch. The event type definition inherits all
the attributes from the super event type and can, in addi-
tion, define extra attributes that one is interested in observ-
ing. In Figure 6, we model a hierarchy of events that we pro-
pose for monitoring a SOA. We have generic SOAEvent event
down to specific events like ProcessActivityStartEvent. This
model demonstrates the possibility for a user to extend the
event type definitions to create a more specific event that
monitors attributes not present in the more generic version
of the event. For example, we can see that the SOAEvent

has attributes name, type, and timestamp, which are ex-
pected to be present in all event types, whereas the Pro-

cessInstanceEvent type is a new type definition with an at-
tribute instanceID that is specific only to process events.
The ProcessInstanceEvent inherits all the attributes from the
former in addition to defining its own attribute. Therefore,
ProcessInstanceEvent instances would enable monitoring of
processes including instance level identification information.
Note that Figure 6 is actually a graphical representation of
the instantiation of parts of our event view model. The spec-
ification of this and other event view model instances is done
using the eventing DSL.

EventModel :

EventViewModel

ServiceEvent :

SOAEventType

SOAEvent :

SOAEventType

ProcessEvent :

SOAEventType

ServiceQOSEvent :

SOAEventType

ServiceInvocationEvent

: SOAEventType

ProcessInstanceStartedEvent

Event : SOAEventType

ProcessCompletionEvent

Event : SOAEventType

ActivityExecStartEvent

Event : SOAEventType

ActivityExecEndEvent

Event : SOAEventType

name = “timeStamp”

type = “Long”

: EventAttribute

name = “operation”
type = “String”

: EventAttribute

name = “instanceID”
type=”String”

: EventAttribute

name = “source”
type = “String”

: EventAttribute

name = “qosValue”
type = “String”

: EventAttribute

name = “qosKey”
type = “String”

: EventAttribute

Figure 6: Event View Model Instantiation

As the eventing DSL is embedded into the Frag language,
any extensions to the event view model can be quickly re-
flected in the eventing DSL through the modeling framework

from Frag [19]. Hence, we would not require extra effort to
extend tools like parsers to understand the DSL extensions.

Ultimately, we would like to generate the eventing infras-
tructure code. In the next section we discuss how this is
achieved in a web services based SOA implementation.

3.4 Eventing in Web Services based SOA
In this section we describe how the event view model

and the eventing DSL are applied, using a model-driven ap-
proach, to generate the eventing infrastructure that enables
monitoring. In order to generate the eventing infrastructure
we need to define, in addition to the event view model and
the eventing DSL, the necessary code generation templates
that realize this infrastructure. The code generation tem-
plates address different aspects of the process driven SOA
that we wish to monitor, specifically, service invocations,
and process executions.

A service invocation, in the case of SOAP based web ser-
vices, constitutes processing a SOAP message that contains
all the necessary information regarding, for example, the
service operation invoked and the parameters passed. Web
service frameworks like Apache Axis21 and Apache CXF2

realize this SOAP processing model through a number of
processing steps known as Handlers (Axis2) or Interceptors
(CXF), each handler performing a specific processing action
on a SOAP message. It is possible to extend this process-
ing model with a customized processing step (handler). We
realize our service invocation eventing infrastructure by gen-
erating code for a customized eventing handler embedded in
the web services framework.

Workflow engines like ApacheODE3, jBPM4 and Windows
Workflow Foundation5 already emit events concerning the
different occurrences of interest during process executions.
They also provide the possibility to create a customized
event handling component which allows for handling events
that we might be interested in monitoring. Therefore, as far
as such workflow engines, we realize the eventing infrastruc-
ture through generating a customized event handler. In both
the case of service invocations and process executions, the
role of generated code is to extract information relevant for
an external monitoring tool, and forward this information
to such a tool.

Since we are dealing with implementations of different
technologies, we assume that a developer using our approach
is familiar with implementing and deploying web services.
This knowledge would be a prerequisite in order to cre-
ate the code generation templates we have discussed in this
section. For example, for our situation where we imple-
ment the technologies described, we propose to generate
an eventing infrastructure as illustrated in Figure 7. The
EventingInInterceptor and the EventListener both imple-
ment a AbstractEventMonitor interface. The sendEvent()

method, when implemented, sends the monitoring events to
a monitoring tool.

In Section 4, we present our case study and provide more
detailed scenarios of how we realize the eventing infrastruc-
ture. In our scenarios, we use the Apache CXF web services

1http://ws.apache.org/axis2/
2http://cxf.apache.org/
3http://ode.apache.org
4http://www.jboss.org/jbpm
5http://msdn.microsoft.com/en-
us/netframework/aa663328.aspx

66

onEvent(BpelEvt evt)

EventListener

sendEvent(SOAEvent event)

AbstractEventMonitor

handleMessage(Message message)

EventingInInterceptor

createEvent(String eventName)

AbstractSOAEventFactory

createEvent(String eventName)

ServiceEventFactory

createEvent(String eventName)

ProcessEventFactory

onEvent(BpelEvt evt)

BPELEventListener

handleMessage(Message message)

AbstractPhaseInterceptor

Figure 7: Eventing Infrastructure Class Diagram

framework and the ApacheODE workflow engine.

4. CASE STUDY
In this section, we apply our approach in the context of

a case study. Our case study addresses development of an
eventing infrastructure that enables monitoring of a process-
driven SOA. The SOA infrastructure for our case realizes a
business process, the multimedia streaming business pro-
cess, that is a scenario of advanced telecom services offered
by a Mobile Virtual Network Operator (MVNO). MVNOs
provide value-added services to users by accessing and ag-
gregating various facilities from other content providers. In
our scenario, multimedia streams from third-party providers
are offered to mobile phone users through a web service, the
WatchMe service. Through this service, a user is able to
perform searches for multimedia content they are interested
in. The user’s access rights to different media vary based
on licensing options (pay per use or time-based) they choose
when paying for stream access. After paying, a user has
access to a media stream for as long as their access rights
are in accordance with the license selected. The multime-
dia streaming business process is modeled in Figure 8. The
detailed flow of the business process is as follows;

1. The user contacts the WatchMe service to access a
media stream of interest.

2. The user submits search criteria to the WatchMe
service, which in turn contacts providers with whom
the MVNO has agreements – the service searches for
streams matching the user’s search criteria.

3. Search results from different providers are aggregated
and provided to the user.

4. The user selects a stream and is provided with more
details, e.g., a description and a preview, costs/price
and relevant license plan of accessing the stream.

Compile
Search results

Provide media +
payment details

Process
payment

Provide
Media
access

WatchMe
Process

Completed

Receive
search
criteria

Receive
media

selection

Receive
play stream

request

Payment and
license valid

No

Yes

WatchMe Process Services

WatchMe
Media

Providers

User

search
data

search
results

Media
selection

Stream
request

Stream
Access

URL

WatchMe
Payment
Systems

search
data

Search
Results

data

Payment data

Stream
Selection

URL

Figure 8: Multimedia stream access business process

5. The user selects a license plan and confirms payment.

6. Once payment is confirmed, the stream is available to
the user. Whenever the user accesses the stream, the
WatchMe service provides an access URL from a par-
ticular provider.

7. Each time the user accesses the stream, the combi-
nation of the user identification and the stream URL
is checked to ensure that license agreements are not
violated.

In the scenario, an MVNO is interested in monitoring the
multimedia streaming process to identify the kind of con-
tent users are searching for and accessing, adherence to the
user licenses, as well as detection (and reporting) of viola-
tions and anomalous events. The test implementation for
the business process is known as the WatchMe service. The
service provides an interface to the workflow engine that
executes the business process; it exposes two operations,
searchContent and streamContent.

With our approach we create an eventing infrastructure
to support monitoring of the WatchMe service. Our event-
ing infrastructure plays the role of capturing the data that
the MVNO is interested in monitoring, viz. the types of
user searches that are invoked on the service, the content
they select for viewing, and the details concerning the pro-
cess execution when a search is performed, or when content
is accessed for viewing. After capturing this data our in-
frastructure it to a monitoring tool that would perform the
necessary processing to identify events of interest. In the
following sections we describe how we realize this monitor-
ing infrastructure with our event view model and eventing
DSL.

67

4.1 Event Infrastructure for Services
In the first part of the scenario we would like to real-

ize the eventing infrastructure for individual web services,
in this case the WatchMe service. For our approach we as-
sume that all the necessary service business logic has already
been implemented. We are only interested in generating
the eventing infrastructure to support monitoring. The in-
frastructure emits events at runtime, containing information
conveyed to a monitoring tool. From the use case scenario,
we have identified user searches, and accesses to stream con-
tent as candidates for monitoring. Therefore, we monitor the
operations searchContent and streamContent every time they
are invoked on the WatchMeService.

Using the eventing DSL, we specify services, service oper-
ations, and event types (cf. Fig. 5). Only services whose op-
erations are to be monitored are specified. The relationships
between the different events and services is implicit through
service operations. For each event attribute we map the at-
tribute to a type in the service description where possible.
At the very least, we should be able to derive this informa-
tion from an existing concrete type. From the hierarchy of
events presented in Figure 6, we have a ServiceInvocation-

Event type that has an operation attribute. This particular
attribute represents name of the operation to be monitored
and is represented here simply as a string.

Besides expressing the desired event infrastructure in the
DSL, we also need to create the code generation templates
for the event emitting code. Defining these templates would
require a developer to have some experience with implement-
ing and deploying web services. The developer would have
to make an exact choice concerning how he/she would like
to implement and emit the events. Typically events are im-
plemented as an immutable object, i.e., capturing state of
the monitored component at a point in time. Therefore,
the template for generating events would require that the
values for all the monitored attributes are initialised at the
time the event is created. As far as emitting events in the
case of services that we are monitoring, one of the possible
solutions, that we chose for our scenario, is to generate an
interceptor that extends handler chains as discussed in sec-
tion 3.4. In Figure 7 we already showed the structure for
the event infrastructure that we generate.

We illustrate the code generation templates for our event
factories in Figure 9. The template generates an event cre-
ation factory based on the events specified. The interceptor
code shown in Figure 10 requests a factory for the event
based on the operation that was invoked, and then sends
the event to a monitoring tool.

We run the code generation to generate the necessary
eventing infrastructure that would support monitoring of
services. Ideally, the generated code should be integrated
with the rest of the services infrastructure during develop-
ment time, such that the service code can simply be deployed
after generating and compiling all the sources including the
monitoring infrastructure. However, we do not do this at the
moment and so we manually deploy the monitoring code for
the services with the event-based monitoring infrastructure.

4.2 Event Infrastructure for Processes
In the second part of our scenario, we realize the eventing

infrastructure that shall enable observing of events related
to a business process execution. Again we assume that the
process execution logic is implemented separately. We only

public class <~ $factoryName ~>Factory implements

SOAEventFactory {

 public enum EventType {

<~ self applyForeach event $events {

<~ $event name ~>Event,

}

~>

 }

 public SOAEvent createEvent(String qName) {

EventType eventType = getEventType(qName);

switch(eventType){

<~ self applyForeach event $events {

case <~ $event name ~>Event :

 return new <~ $event name ~>Event();

}

~>

}

 }

 public EventType getEventType(String qName){

EventType type = EventType.ServiceInvocationEvent;

<~ self applyForeach event $events {

if(qName.equals("<~ $event name ~>"))

 type = EventType.<~ $event name ~>Event;

}

~>

return type;

 }

}

Figure 9: Event Factory Code Generation Tem-
plates

public class EventingInInterceptor extends

AbstractPhaseInterceptor<Message> implements

AbstractEventMonitor {

 public EventingInInterceptor() {

super(Phase.USER_LOGICAL);

 }

 public void handleMessage(Message message)

throws Fault {

 QName name = (QName)

message.get(Message.WSDL_OPERATION);

 SOAEvent event = (new

ServiceEventFactory()).

 createEvent(name.getLocalPart());

 this.sendEvent(event);

 }

 public void sendEvent(SOAEvent event) {}

}

Figure 10: Eventing Interceptor

68

aim to generate code related to the monitoring. In our sce-
nario, we use the sample implementation for the WatchMe
search content business process, a sub-process from our mul-
timedia streaming business process. This process consists of
the three steps involved in searching for user content, i.e.,
verify the user identify, contact the service providers and
search for the content requested, and lastly provide the user
with feedback.

The implementation of the event infrastructure for work-
flow execution engines is considerably different from how we
implement the services’ event infrastructure, in that they
(engines) typically have a facility to emit events, and more-
over they already have a number of predefined event types.
In the case of the event infrastructure for processes, there-
fore, we specify which of the engine’s predefined events we
are interested in transmitting to a monitoring tool and what
information we wish to extract from these events.

Process create searchContentProcess\

-events [list build\

ProcessInstanceStartedEvent\

ActivityExecStartEvent\

ProcessCompletionEvent]

SOAEventType create ProcessInstanceStartedEvent\

-name "ProcessInstanceStartedEvent"\

-superEventType ProcessInstanceEvent\

-eventViewModel WatchMeEventViewModel

SOAEventType create ActivityExecStartEvent\

-name "ActivityExecStartEvent"\

-superEventType ProcessInstanceEvent\

-eventViewModel WatchMeEventViewModel

SOAEventType create ProcessCompletionEvent\

-name "ProcessCompletionEvent"\

-superEventType ProcessInstanceEvent\

-eventViewModel WatchMeEventViewModel

Figure 11: Process Eventing Specification

We use the eventing DSL to specify the processes and the
process related event types for the content search business
process. The attributes that we specify in the process related
event types should exist in the event types that are offered
by the workflow engine. For our implementation we use the
Apache ODE workflow engine. We show the specification of
the processes and process related event types in Figure 11.

For the code generation, we take as a base the BPELEventLis-

tener from the ApacheODE implementation. This class is
designed to be extended for customized event processing
duties. The code for the customized event listener is shown
in Figure 12.

4.3 Extending the Event Infrastructure
In the last part of our scenario, we consider a situation

where we already implemented our event infrastructure and
discover the need to monitor new information; for example,
we might want to observe the search terms that users submit
whenever searching for media content from our WatchMe
service. In order to do this we need to extend our existing
event view model instance using the eventing DSL, to reflect
this new monitoring information. We would need to identify
the source of this information in order to make a decision

public class EventingListener implements

BpelEventListener, AbstractEventMonitor{

 public void onEvent(BpelEvent bpelEvt) {

 String name =

bpelEvt.getType().getClass().

toString();

 SOAEvent event = (new

ProcessEventFactory()).

 createEvent(name);

 this.sendEvent(event);

 }

 public void sendEvent(SOAEvent event) {}

}

Figure 12: Process Eventing Specification

on the extensions to make to the event view model.
From our WatchMe service, we observe that we can ex-

tract this information (detailed user search terms) from the
searchContent operation, therefore, we create a more spe-
cialised event (extend our model instance) that is specifi-
cally dedicated to capturing search terms. In our event view
model instance shown in Figure 6, the most generic event is
the SOAEvent. Therefore, in the case where we are creating
a more specialised event it should at the very least have the
SOAEvent type as its parent. For this case, however, we are
interested in monitoring a particular aspect (search terms)
of a specific (searchContent) service invocation, so we create
a specialised event type definition SearchContentEvent that
has as its super event type the ServiceInvocationEvent.

The SearchContentEvent type captures information that
could not be previously observed by the existing monitoring
infrastructure, therefore, we need to specify its attributes
that shall capture that information. We define an attribute,
searchTerms, which stores the information we want to mon-
itor. We illustrate the extension of the event view model
instance, using our eventing DSL, in Figure 13.

SOAEventType create SearchContentEvent\

-name "SearchContentEvent"\

-superEventType ServiceInvocationEvent\

-monitoredArtifact searchContent\

-eventAttributes\

[EventAttribute create\

-name "searchTerms"\

-type "String"]\

-eventViewModel WatchMeEventViewModel

Figure 13: DSL Event Specifications for SearchCon-

tentEvent

Once we have extended the model instance, we need to up-
date our code generation templates. For example, we may
need to update the templates to reflect how the new informa-
tion to be monitored shall be extracted from the monitored
artifacts and inserted into the event. Finally we regenerate
and compile the executable code.

69

5. DISCUSSION AND RELATED WORK
We argue in our paper that implementing an event-based

monitoring infrastructure in an SOA is a difficult task with
challenges like handling the complexity of a typical SOA im-
plementation that requires knowledge of a number of tech-
nologies, platforms and components. In addition develop-
ment of an event-based monitoring component faces a num-
ber of challenges including specification and implementation
of the representation of events. In this section we present
a discussion concerning some of the advantages and limi-
tations of our approach while attempting to address these
challenges. We also present related works.

5.1 Discussion
In terms of complexity while developing an SOA, there are

a number of issues that arise that we believe are addressed
by our approach. In the first instance, during development
of an SOA, there are a number of requirements, functional
and non-functional, that need to be addressed. By using a
focused development approach that addresses a single related
set of concerns at a time, we are better able to manage that
complexity of implementing the monitoring infrastructure.
With projects where deadline pressure results in focusing on
the core functional requirements, an approach that eases the
development of non-core requirements like monitoring could
help ensure that these requirements are also fulfilled.

For the case of an SOA implementation, multiple tech-
nologies, platforms and components are required. If we con-
sider a process-driven SOA that we address in our work, we
have web service frameworks, web service interface specifica-
tions, workflow execution engines, configuration files, legacy
applications, and middleware components to contend with.
However, we have to implement a monitoring infrastruc-
ture for the entire system. Having an abstract, technology-
agnostic specification of the eventing infrastructure frees us
from dealing with details of the different technologies while
specifying our eventing infrastructure. We are able to focus
attention on the eventing concepts without thinking about
the different implementation technologies.

We see that the specification of the event infrastructure
using our approach enables integration of development ef-
forts and assets for different kinds of event-based system
implementations. Consider the case where we had to im-
plement infrastructure for a process versus for a service. In
the case of processes, we found that the workflow execution
engines already provide the facilities to emit events. In this
case, instead of emitting the events, our infrastructure for-
wards the events to the monitoring tool. However, can also
perform a simple type-based filtering and selection of only
the events we are interested in. Although this is also possi-
ble using the configuration of the workflow engine. Another
use that we did not implement could be to (re)generate the
parts of configuration files that pertain to events.

Having an extensible model for our eventing infrastruc-
ture implies that we are able to incrementally implement the
eventing concepts within the SOA. As we specify the nec-
essary concepts in an abstract manner, we are not obliged
to immediately instantiate them or generate code for them,
therefore, we can iteratively represent concepts and gener-
ate their code. This also fits naturally into the nature of
a monitoring tool where monitoring needs evolve and new
requirements arise all the time.

In terms of the resulting runtime components, an advan-

tage in this approach is that the executable code can be
(re)generated. This implies that for a large scale system,
there are productivity and efficiency gains, in terms of writ-
ing and reusability of code, as more and more components
are added, because the code generation templates might not
need to be changed a lot. Such an approach can be thought
of as a step in the direction of generalizing and reusing event-
based components in different systems.

Regarding some of the drawbacks that we can identify, the
first issue would be concerning the fact that the developer
has to learn the syntax of such an eventing DSL. We feel that
a developer would not have such great difficulty because the
concepts are kept to a minimum. However, we make the
assumption that the developer using our approach has some
experience in implementing and deploying web services and
workflow engines. This knowledge would be needed in or-
der to define the code generation templates for creating the
runtime code. Nevertheless, aside from the code-generation
templates, we believe a less experienced developer would be
able to specify, generate and deploy the eventing infrastruc-
ture because of the small number of concepts he/she would
need to learn. The developer would need to understand the
syntax statements that define event types, their attributes
and their relationships to SOA artifacts. In addition we
have to spend some effort on the maintenance of the event-
ing DSL.

In Sect. 3.4, we refer to the execution model of services,
comprising handler chains. We propose extending these han-
dler chains, in order to intercept data and emit it as an event
to our monitors. In this work, we considered the case where
we are monitoring service invocations. However, a monitor-
ing solution may be required to concurrently monitor many
more concerns, e.g., quality of service, license agreements,
and network performance. Using our approach would re-
quire that we emit an event for each of these concerns, or
provide an option where a single event encapsulates multi-
ple events representing the different concerns. Either way,
the amount of processing at the point where events are emit-
ted could increase with the number of monitoring concerns.
Additionally, as far as the proposed approach to intercept
events from process execution engines, we are limited by
how the event emission facilities of the process execution
engine are implemented. If the engine does not incorporate
a mechanism to extend its event model, one would have to
do (possibly a lot of) adaptation work to emit events / data
that is relevant for one’s monitoring concerns. We are not
sure how these issues could affect the performance of such
solutions or the feasibility of this approach.

Although event-based systems evaluations typically con-
sist of a runtime aspect, in this particular case, we do not
do any runtime evaluation because it is difficult to prove
that the code that we generate is the most optimal imple-
mentation of an event-based monitoring architecture. We
do, however, believe that our approach allows for the gen-
eration of whatever code could be considered optimal and
therefore, the efficiencies gained in terms of reusability of
the code generation templates for system development and
extension is in itself a bonus.

5.2 Related Work
We now discuss some related works and contrast them

with our approach.
The WS-Eventing [1] and WS-BaseNotification [15] stan-

70

dards address issues concerning event-based interaction in
web services based SOA implementations. WS-Eventing de-
fines a protocol that enables a (sink) web service to subscribe
to another (source) web service such that the former is in-
formed of any particular events of interest that occur in the
latter. This specification, however, focuses on the subscrip-
tion mechanism. The event-based infrastructure we propose
to generate can be said to create SOA components that fulfill
the roles of NotificationProducer in the WS-BaseNotification
standard.

Fenkam et al. [7] discuss some requirements for a method-
ology for developing correct event-based systems. Among
the general requirements are that the methodology should be
scalable to large systems and should quickly produce high-
quality, maintainable software at a low cost. In our dis-
cussion we do not address the scalability of our approach,
however, we believe that having automated code generation
does address the cost, quality and time issues. Delgado et
al. [4] perform a survey of up to 30 runtime software fault
monitoring tools. They present a taxonomy and catalog of
these tools. Included in the taxonomy, is the concept of
a specification language that is used to define monitoring
directives. For the majority of the tools, the specification
language did not provide constructs to support expression of
domain-based system properties in the monitoring tool. The
authors argue that as systems become more complex, this
ability to capture domain-based properties becomes more
critical. Although our DSL falls in the category of techni-
cal DSLs [10], it does capture domain-based knowledge for
a developer who works in a technical domain.

Edwards et al. [6], Chowdhary et al. [3], and more recent
work like Momm et al. [12] propose a model-driven approach
in developing SOA related components. Edwards et al. [6]
use a model driven approach to automate middleware ser-
vice configuration and deployment tasks. They create a lan-
guage EQAL that models configurations for CORBA–based
publish/subscribe services. They are then able to validate
instances of the models and generate the corresponding con-
figuration code. They also generate metadata necessary for
service deployment. In our approach, we model and gen-
erate the eventing infrastructure that transmits data to a
monitoring tool. Chowdhary et al. [3] present a model-
driven approach to implement business performance mon-
itoring (BPM). The authors abstract a BPM solution to the
level of models and using an MDD framework to generate
a monitoring and control component. The generated moni-
toring component gathers monitoring information from real-
time business events, aggregates information to calculate
metrics, recognizes situations warranting business actions,
and invokes those actions. Their solutioon differs from ours
in that they focus on the role of processing events from other
sources. Their framework does not generates the infrastruc-
ture to emit the events that they process. Momm et al.
[12] use a model-driven approach to generate monitorable
web service compositions. They provide meta-models that
enable specification of elements to be monitored, as well as
organization-specific indicators that should be monitored,
and they generate instrumented BPEL code along with con-
figurations for the types of events to be monitored for. This
approach is very similar to ours except that the authors fo-
cus their work on generating an infrastructure for process
monitoring, that is, workflow engine monitoring. We also
include web services monitoring. In all cases where model-

driven approach is applied, there is consensus on the code
reusability and developer productivity gains from using a
model-driven approach.

6. CONCLUSIONS
In this paper we have presented an approach for im-

plementing the event-based monitoring infrastructure in
an SOA. Our approach constitutes the application of a
dedicated event view model and an eventing DSL. The view
model captures the SOA artifacts and eventing concepts
while the eventing DSL provides a tool for system develop-
ers to specify an instance of this event view model. Having
these two ingredients enables us to use a model-driven
approach to automatically generate most of the eventing
infrastructure (code). With this approach, we believe that
a system developer is able to better manage the complexity
of implementing eventing infrastructure in an SOA, by fo-
cusing on the particular concerns of eventing. Consequently
we expect that such an approach shall help in improving
on the maintainability, reusability and understandability
of eventing concepts in SOA systems. We evaluated our
approach in the context of a case study where we implement
an SOA monitoring infrastructure for a telecommunications
services provider. We conclude that our approach has a
number of advantages; it helps have a focused development
approach, abstract away from specific technologies, allow
for incremental implementation/evolution of an eventing
infrastructure, and last but not least demonstrates pro-
ductivity and efficiency gains in terms of the development
efforts.

In addition to the case study presented in this work, we
have also done preliminary work in two other cases, an ICT
security case study and a business process adaptation case
study. A part of the ICT security case study implements a
loan process for a bank that involves customer verification
and credit ranking before they are awarded loans. We at-
tempt to use event-based monitoring for this business pro-
cess. One of the major issues that comes up in this case
study is the fact that the event-based monitoring can pose
a security threat itself, depending on how much information
gets included in events. In the business process adaptation
case study, we attempt to combine our approach with com-
plex event processing for monitoring and possibly adapta-
tion of a business process as it executes. For this case, we
are considering the necessity of combining the eventing view
with a mechanism that specifies such complex event process-
ing rules, and the actions to take when complex events are
detected.

Overall, this work provides an implementation of a
domain-specific language that enables engineering event-
based infrastructure. In the case we have presented, we
apply the problem to engineering monitoring infrastructure,
however, event-based infrastructure can be applied to many
more problems. We intend to extend our domain-specific
language. As a follow up, we would like to incrementally
extend the event view model and eventing DSL to address
other aspects of engineering event-based SOAs and not just
the monitoring aspects.

Acknowledgments
This work was supported by funds from the European
Commission (contract No. 215175 for the FP7-ICT-2007-1

71

project COMPAS). The authors would also like to thank
Anton Michlmayr for his reviews.

7. REFERENCES
[1] D. Box, L. F. Cabrera, C. Critchley, F. Curbera,

D. Ferguson, S. Graham, D. Hull, G. Kakivaya,
A. Lewis, B. Lovering, P. Niblett, D. Orchard,
S. Samdarshi, J. Schlimmer, I. Sedukhin, J. Shewchuk,
S. Weerawarana, and D. Wortendyke. Web Services
Eventing (WS-Eventing).
http://www.w3.org/Submission/WS-Eventing/.
[accessed in Feb 2010].

[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.
Design and evaluation of a wide-area event
notification service. ACM Trans. Comput. Syst.,
19(3):332–383, 2001.

[3] P. Chowdhary, K. Bhaskaran, N. S. Caswell,
H. Chang, T. Chao, S.-K. Chen, M. J. Dikun, H. Lei,
J.-J. Jeng, S. Kapoor, C. A. Lang, G. A. Mihaila,
I. Stanoi, and L. Zeng. Model driven development for
business performance management. IBM Systems
Journal, 45(3):587–606, 2006.

[4] N. Delgado, A. Q. Gates, and S. Roach. A Taxonomy
and Catalog of Runtime Software-Fault Monitoring
Tools. IEEE Trans. Software Eng., 30(12):859–872,
2004.

[5] P. Dini. Industrial Challenges in Working with Events.
In Third Intl. Workshop on Distributed Event-based
Systems (DEBS’04), pages 1–2, Edinburgh, Scotland,
UK, 2004.

[6] G. T. Edwards, G. Deng, D. C. Schmidt, A. S.
Gokhale, and B. Natarajan. Model-driven
configuration and deployment of component
middleware publish/subscribe services. In G. Karsai
and E. Visser, editors, GPCE, volume 3286 of Lecture
Notes in Computer Science, pages 337–360. Springer,
2004.

[7] P. Fenkam, M. Jazayeri, and G. Reif. On
methodologies for constructing correct event-based
applications. In DEBS ’04: Proceedings of the 3rd
International workshop on Distributed event-based
systems, pages 38–43. IEEE Computer Society, 2004.

[8] C. Hentrich and U. Zdun. Patterns for
process-oriented integration in service-oriented
architectures. In Proceedings of 11th European
Conference on Pattern Languages of Programs
(EuroPLoP 2006), Irsee, Germany, July 2006.

[9] A. Hinze, K. Sachs, and A. Buchmann. Event-based
applications and enabling technologies. In DEBS ’09:
Proceedings of the Third ACM International
Conference on Distributed Event-Based Systems, pages
1–15, New York, NY, USA, 2009. ACM.

[10] A. Kleppe. Software Language Engineering: Creating
Domain-Specific Languages Using Metamodels.
Addison-Wesley Professional, Reading, MA, 2008.

[11] G. A. Lewis, D. B. Smith, K. Kontogiannis, S. R.
Tilley, M. Kajko-Mattsson, and N. Chapin. A research
agenda for maintenance & evolution of soa-based
systems. In ICSM, pages 481–484. IEEE, 2007.

[12] C. Momm, M. Gebhart, and S. Abeck. A model-driven
approach for monitoring business performance in web
service compositions. In M. Perry, H. Sasaki,

M. Ehmann, G. O. Bellot, and O. Dini, editors, ICIW,
pages 343–350. IEEE Computer Society, 2009.

[13] G. Mühl, L. Fiege, and P. Pietzuch. Distributed
Event-Based Systems. Springer, July 2006.

[14] Organization for the Advancement of Structured
Information Standards. Reference model for service
oriented architecture 1.0. http:
//docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf.
[accessed in Jan 2010].

[15] Organization for the Advancement of Structured
Information Standards. Web Services Base
Notification 1.3 (WS-BaseNotification).
http://docs.oasis-open.org/wsn/wsn-ws_base_

notification-1.3-spec-os.pdf. [accessed in Feb
2010].

[16] M. P. Papazoglou, P. Traverso, S. Dustdar, and
F. Leymann. Service-oriented computing: State of the
art and research challenges. Computer, 40(11):38–45,
2007.

[17] H. Tran. View-based and Model-driven Approach for
Process-driven, Service-Oriented Architectures. PhD in
software engineering, Vienna University of Technology,
Distributed Systems Group, Information Systems
Institute, Argentinier Str. 8/184-1, Vienna A-1040,
Austria, Dec. 2009.

[18] H. Tran, U. Zdun, and S. Dustdar. View-based and
Model-driven Approach for Reducing the Development
Complexity in Process-Driven SOA. In
W. Abramowicz and L. A. Maciaszek, editors,
International Conference on Business Process and
Services Computing (BPSC), volume 116 of LNI,
pages 105–124. GI, 2007.

[19] U. Zdun. A DSL toolkit for deferring architectural
decisions in DSL-based software design. Information
and Software Technology, 52(7):733 – 748, 2010.

72

