
Constructing Web Services out of generic

Component Compositions

Johann Oberleitner and Schahram Dustdar

Distributed Systems Group
Information Systems Institute

Vienna University of Technology Argentinierstrasse 8/E1841
A-1040 Wien, Austria

{joe,sd}@infosys.tuwien.ac.at

Abstract. Todays information systems are built using various com-
ponent models such as Enterprise Java Beans, JavaBeans, Microsoft
COM+, and CORBA distributed objects. In this paper we argue that it
is crucial for designers of information systems to interactively build and
test systems constructed from (a) components (enabling interoperabil-
ity across component models) and (b) Web services at the same time.
The contribution of this paper is threefold: Firstly, we introduce a vi-
sual tool the Component Workbench - for designing information systems
out of components from different component models (e.g. EJB, COM+,
CORBA) and combine them with Web services. Secondly, we show how
component compositions can be turned into Web services using SOAP
as a communications protocol. Thirdly, we show how to interactively test
compositions before creating the actual Web services out of components.

Keywords: composition, components, component models, interactive test-
ing

II

1 Introduction

Increasingly Web services [1] are gaining momentum for intra- and interorga-
nizational integration of information systems. Current systems are built using
various component models such as Enterprise Java Beans [2], JavaBeans [3], Mi-
crosoft COM+ [4], and CORBA distributed objects [5]. Furthermore, we may
safely expect that required application logic will continue to be developed using
those component models in the foreseeable future. Most of todays Web service
development systems are based on the idea that components (and legacy sys-
tems) used in organizations should be first developed using component models
and as a next step be equipped with Web services interfaces and communications
means (i.e. SOAP [6]). The argument of this paper is that it is crucial for design-
ers of information systems to interactively build and test systems constructed
from (a) components (enabling interoperability across component models) and
(b) Web services at the same time. In order to provide a proof-of-concept, we
introduce a prototype system - the Component Workbench based on our Vienna
Component Framework.

The contribution of this paper is threefold: firstly, we introduce a visual tool
the Component Workbench - for designing information systems out of compo-
nents from different component models (e.g. EJB, COM+, CORBA) and com-
bine them with Web services. Secondly, we show how component compositions
can be turned into Web services using SOAP as a communications protocol.
Thirdly, we show how to interactively test compositions before creating the ac-
tual Web services out of components.

The remainder of the paper is structured as follows. In section 2 we explain
background information about the Vienna Component Framework (VCF) we
have built to access different component models in a uniform way. How com-
ponent compositions can be built with VCF are illustrated in section 3. The
Component Workbench, our graphical tool, is illustrated in section 4. How such
compositions are turned into Web services is explained in section 5. Section 6 dis-
cusses related work. Section 7 concludes the paper and provides an brief overview
for our future research directions.

2 The Vienna Component Framework

We have built the Vienna Component Framework (VCF) [7] to support the inter-
operability and composability of components from different component models
such as Enterprise JavaBeans (EJB) [2] or Microsoft COM+ components [4].

VCF provides a Java API to reuse components that adhere to different com-
ponent models within one single application. VCF abstracts the internals of the
different component models, therefore simplifies the use of different component
models and reduces the difficulties inherent in these models.

VCF uses plugins to simplify the extension with new component models.
Currently, we have implemented plugins that provide uniform access for compo-
nents that adhere to either JavaBeans, Enterprise JavaBeans, Microsoft COM+,

III

CORBA distributed objects, and Web services that use SOAP as communication
medium.

Each plugin provides the functionality to access a component model’s meta-
data facility to find out about the operations, properties, and event callbacks a
component supports. For each of those features VCF defines an interface that
contains operations for accessing them. For instance, the interface for a compo-
nents method has operations invoking this method and query methods to find
out about the method parameters and its return values. The interface for call-
back events allows registration and unregistration of notification listeners for the
events. The plugin provides implementations of each of the interfaces to provide
uniform access for the corresponding component model.

Clients do not use plugin classes directly, but use a façade class to access
the features of components. This allows the integration of new functionality in
the façade class for all component models and all components, without changing
the syntactic or semantic structure of a plugin. Furthermore, this supports per-
instance modification of components on the external component interface.

A client creates an instance of a component by using a factory method that
is aware of all plugin classes. This factory method takes as parameters data
to identify a component’s model and the corresponding plugin class and plugin-
specific information for instantiating the component. The factory method returns
an instance of the façade class that contains an instance of the appropriate plugin
and a component-model dependent reference to the instance of the component.
During this instantiation step the plugin creates instances of the implementation
classes for each feature found with the metadata facility. For each operation
found, an instance of the implementation class that implements the interface
IMethod will be created and stored in a feature container (see figure 1). The
same happens for properties and event-sets.

...

+name()
+qualifier()
+attributes()
+compareTo()

«interface»
IFeature

«interface»
ILifecycle

+queryFor()
+getFeature()
+addFeature()
+removeFeature()

«interface»
IFeatureContainer

1 *

«interface»
IMethod

«interface»
IProperty

Fig. 1. Features and Feature Containers

The façade class provides a flexible mechanism to make queries for features,
such as a component’s operations. The queries return the feature interfaces that
provide mechanisms to access a component instance’s functionality.

IV

The set of feature interfaces allows to use different components in a reflec-
tive programming style, similar to Java reflection or CORBA Dynamic Interface
Invocation. This programming style is well supported by graphical composition
environments such as the Component Workbench (section 4) or when compo-
nents are added at runtime but is tedious to use by programmers, since even
the simplest calls get complicated. Hence, we allow the generation of wrappers
around the feature interfaces. This is more convenient for programmers, allows
a programming style similar to use regular Java classes, and is statically typed.

Table 1 shows the component models supported by VCF, the metadata facil-
ities used for each model, and how dynamic calls are built. Although the existing
plugins all rely on such built-in metadata facilities other plugins could use data
provided by component clients. This can be used to build plugins for legacy
systems that do not adhere to a particular component model.

Component Model Metadata Dynamic Calls

COM+ Type Library IDispatch interface
CORBA Interface Repository Dynamic Invocation Interface (DII)

EJB Java Reflection Java Reflection
JavaBeans Java Reflection Java Reflection

Web services (SOAP) WSDL Dynamic SOAP calls (WSIF)
Table 1. VCF plugins

3 Component Composition

One of the primary goals of VCF was to allow the use of components built for
different component models in the same client application. VCF supports the
design and implementation of such applications with one unified programming
model for component models that can be accessed with a plugin.

Using Java, VCF resembles the use of JavaBeans or any regular Java classes.
Furthermore, VCF supports component composition with connectors that link
components with predefined communication semantics. This allowed us to sup-
port different communication primitives in different connector types such as
building a connector for component method calls or component callbacks.

Similar to building component model plugins, connectors use a similar plu-
gin architecture. Each connector plugin has to provide an implementation for
the IConnectorControl interface. As shown in figure 2 this interface defines a
method for making a connecting, and another one for canceling a connection.

In addition each connector supports a number of roles. These roles represent
the end-points of a connector (see figure 3).

We do not restrict ourselves to binary connectors, but allow an arbitrary
number of roles, allowing virtually any kind of connection among an arbitrary
number of components. The connector plugin has to provide implementation

V

public interface IConnectorContro l {

public void connect () throws Exception ;
public void d i sconnec t () throws Exception ;

}

Fig. 2. Interface Declaration for IConnectorControl

ConnectorComponent

target rolesource role

Component

emits event calls method

Fig. 3. Connector, Roles, and Bindings

classes for roles. Figure 4 shows the interface that has to be implemented for
one particular role. It has only one method that links a connector’s role, i.e. a
connector’s end-point, to a component binding.

public interface IRole {

public void l inksTo (IBind ing b ind ing) throws Exception ;
}

Fig. 4. Interface Declaration for IRole

A binding is an encapsulation of a concrete component plus an executable
part of a component. A typical example of connectors are event connectors that
model component callbacks. Such callbacks are realized by VCF’s event set fea-
ture. This feature allows clients to register notification listeners that implement
a particular Java interface.

The source role of this connector will be linked to a particular component’s
event set feature while the target role will be linked to one or more method
feature. The corresponding bindings contain also all arguments necessary to
call the bound feature. For instance, in case of the event connector the target
binding will bind a method and all argument values for calling this method.
These argument values in turn can be retrieved by bindings to other components,
hence allowing for recursively resolved structures.

Bindings are evaluated either at connect time of the connector, or at run-time
when a certain communication between roles happens. In case of the event con-
nector the source role binding calls the register listener method of the event set

VI

feature. This happens when the connector is made concrete, with the IConnector
Control interface. On the target role side, a particular method is called, and
arguments are forwarded. This is done only when an event occurs.

Since VCF can be enhanced with new connector types and bindings many
different compositions among components are possible.

Two other VCF characteristics ease the construction of compositions. First,
since no client addresses components directly but always uses a façade class for
accessing a component’s feature, it is easily possible to instrument this façade
class for modifying the behavior of one particular component’s feature. For in-
stance, it is possible to inform other components or other clients when a partic-
ular method has been called by clients. This facility exists, even when a different
component model will be used later.

Second, VCF allows the arrangement of components, connectors, or both in
composite components. This allows the construction of hierarchical composition
structures. Nevertheless, it is possible to expose a subset of those composition
elements to clients that reside on other levels, also allowing conversational com-
position.

4 The Component Workbench

EJB
Beans

CORBA
Objects

COM+
Components

SOAP
Web-Services

EJB
PlugIn

CORBA
PlugIn COM+PlugIn SOAP

PlugIn

Uniform component access
Feature Interfaces & Facade component

Component
Administration

Connection
Wizards

Application
Composition

Language

Component Workbench

Fig. 5. Architecture of the Component Workbench

VII

This section briefly introduces the CWB [8] which is a graphical composition
environment developed in [9]. It allows developers to construct compositions out
of existing components in a graphical and interactive way. Figure 5 shows the
architecture of the CWB. It uses VCF to allow the use of arbitrary component
models and it also supports the connector mechanism described in section 3.
Component instances can be arranged within other components, so-called com-
posite components, hence building a hierarchical structure of components. Inter-
nally a composite component consists of instances of child components that are
linked by connectors. A composite component is represented either by an entire
window to allow modification of its child components or it can be represented by
a graphical icon in its parent component. This allows to link together composite
components to other components.

Once, a component instance has been put onto a CWB window they are fully
functional. This means it is possible to change a component instances’ state or
call an instances’ operation directly within the CWB.

A wizard allows the user to define the roles and its bindings within the CWB
by drawing connections. A connection can be visualized by a class provided by
the connector plugin. For binary connections, by far the most common, this
means that an arrow will be drawn from the source-role to the target-role. How-
ever, the visualization is not limited to this kind of representation.

A composition built with the CWB can be stored to an XML file that de-
scribes the arrangement of components and connectors [10]. Later this file can
be reloaded to work on a composition again. The set of available components is
stored in a different type of XML file that describes the necessary parameters to
instantiate a component and the component model to which it adheres. Another
type of XML file is available that describes connector types, its roles, the classes
that implement the connector and the required wizard dialogs. New components
or connectors can be added to the CWB by adding a new file that describes a
component or a connector to the appropriate directory.

5 Web service Construction

A primary contribution of this paper is to show how a component composition
built with VCF can be turned into a Web service that uses SOAP as commu-
nication protocol. This section explains how a composition that has been built
with the Component Workbench can be converted into a Web service.

We propose a tool-supported approach that relies on several steps. Each
of these steps corresponds to a Component Workbench wizard. Initially the
developer invokes the Web-Service Designer (section 5.1) to create a new Web
service. This allows for defining static properties of a service, such as its service
name. The Message Designer (section 5.2) enables the definition of messages
used within services. These messages can be linked to components as described
in section 5.3. Figure 6 shows a composition of the components C1, C2, C3.
The tasks of the Message Designer and the Component Link wizard are to let
ingoing operations map to invocations of appropriate components. A service

VIII

modeled with CWB can be used to create Java source code (section 5.5) and the
corresponding description information. The CWB also allows interactive testing
of Web services built out of components (section 5.4).

5.1 Web service Designer

The developer has to select one of CWB’s composite components to be converted
to a Web service or a fresh composite component can be created if the developer
wants to design a new composition. The developer als can propose a name and
a namespace for the service.

C1

C3

C2

Operation A

Operation B

Fig. 6. Web service boundaries

5.2 Message Designer

The message designer allows users to define new messages for operations used
in Web services. In the CWB this message designer is implemented as a dialog
that allows the user to compose messages out of existing data types.

Since SOAP messages rely on XML Schema declarations the result of this
designer is an XML Schema declaration. Furthermore, the user can provide data
to fill the types declared in the wizard for both, documentation and testing

IX

purposes. Since VCF uses Java as implementation language, Java classes will be
created automatically that match the newly created Schema types.

To support users in defining new messages the designer allows browsing of
existing components, and Web service definitions to take SOAP message part
types and part names from.

5.3 Message-Component Links

Links from components to messages and links from messages to components
are defined with the Message-Component Link wizard. This wizard provides
mappings from messages to methods. An ingoing message can lead to the in-
vocation of one or more methods. Different parts of an ingoing message can be
distributed to the parameters of the components’ methods being called. The
methods can be called synchronously or asynchronously. If one of the methods
is called synchronously, the whole Web service supports synchronous communi-
cation semantics. Otherwise the Web service supports asynchronous interaction
semantics. Return messages are mapped similar to the ingoing messages.

When the user has designed messages that use part types and part names that
identically map to types and names of components then the message-component
link wizard automatically proposes standard mappings.

Furthermore, it is possible to add filters on ingoing and outgoing messages
for parameter conversion. The actions that are invoked when a message occurs
are shown visually.

Figure 7 shows a simplified representation of the wizard. On the left an in-
put message for a student grading web service is displayed. Each row shows the
parts of this message with its part type and part name. On the right part compo-
nent invocation boxes are shown. These invocations are initiated when the input
message arrives. The figure shows that the parts of the message have a different
natural order than the arguments of the gradeDB’s storeGrade method. Hence,
the wizard shows this reordering with arrows that start in the parts and end
in the arguments. Furthermore, the input message’s instructor part does not
match the type of the instructor argument of the storeGrade method. Hence,
an additional call that makes a lookup for an id of the instructor in an instructor
database has been added. This call is shown as another invocation box. The box
has an arrow on its right side that leads to the instruction parameter of the
storeGrade method.

5.4 Interactive Testing

When a Web service has been declared, and its messages and the links to com-
ponents completed this composition can already be tested within the CWB. It
is possible to open another window, instantiate the designed Web service, con-
nect CWB provided components that allow entering of ingoing message parts,
and displaying return value parts. Although the Web service is not created at
this time, it is possible to test the composition as if it were a Web service. In
addition, later when the Web service has been created it is possible to use the

X

Student-ID
xsl:integer

Invoke: gradeWeb.addID

invoke: gradeDB.storeGrade

int studentID

String studentName

String grade

String course

int instructor

Student
xsl:string

Grade
xsl:string

Course
xsl:string

Instructor
xsl:string

int studentID

String grade

Invoke
InstructorDB.lookup

String instructor

Fig. 7. Message Component Link Wizard

same test case. Instead of the designed Web service, the concrete Web service is
used.

The CWB provides components to enter and display message arguments,
directly on the screen. These components use VCF to find out about the method
parameters, and provides an input mask for entering and displaying message
parts.

Fig. 8. Interactive testing

Figure 8 shows how a student grading Web service is connected to an input
component that allows entering the part values of the message and an output

XI

component that displays the acknowledgment message. The communication is
started when the user presses the ok button.

5.5 Exporting the Web service

Once the messages, and the links to the corresponding components has been de-
fined, the source code for a Web service can be generated. We currently support
the generation of source code that uses the Apache SOAP engine. For each Web
service operation, a method is generated that uses VCF to call the correspond-
ing components. The Component Workbench uses an XML format for storing
component compositions [10]. We apply an XSLT style sheet to convert such a
composition into the source code for the Java Web service. We plan to support
different target environments in the future.

In addition to the generation of the source code the Web service description
is created. The information gained from the user in the Web service designer,
and the message designer is used to create this file.

6 Related Work

Recently, initiatives have been started to provide transparent SOAP access for
Enterprise JavaBeans [11] and CORBA objects [12]. Similarly, Microsoft sup-
ports the access of COM+ objects via SOAP in a recent release of the Internet
Information Server (IIS). However, most of these initiatives are currently only
specifications and implementations are rare.

Graphical composition environments have gained some attention by the re-
search community in the last years [13]. The CWB is specific with respect
to the support of arbitrary component models. VCF supports interoperability
across component models. Microsoft’s .NET framework supports transparent
kind of functionality for COM+ components, .NET classes, and SOAP Web
services [14]. However, support for applications that rely on Sun’s JDK cannot
transparently integrated into .NET easily. IBM’s Web service invocation frame-
work (WSIF) [15] has similarities to VCF. Like VCF it is primarily used on the
client, and provides transparent access to different providers such as SOAP Web
services. A recent addition was a provider that supports Enterprise JavaBeans.

Some commercial application servers that support Web services provide tools
to define workflow applications. These tools can be compared to our extensions
of the Component Workbench for exporting component compositions. Usually
these tools are restricted to Web services itself and don’t support the use of
multiple component models.

7 Conclusions and Future Work

This paper presented a graphical composition environment for integrating arbi-
trary component models as well as Web services and enabling interoperability

XII

across them. Today, most tools in the Web services domain are focused (and
restricted) solely to composition of Web services. In our paper we demonstrated
a prototype system allowing the use of a combination of multiple component
models and Web services within one system. We think that such an open and
integrated approach will foster the Service-oriented computing approach and
demonstrate its viability. Our future work includes increased attention towards
interactive testing of Web services, which becomes more and more challenging,
while Web services providers are distributed on the Internet and Quality-of-
Service issues become more relevant [16].

References

1. Benatallah, B., Casati, F., Toumani, F., Hamadi, R.: Conceptual modeling of
web service conversations. In: Proceedings of 15th International Conference on
Advanced Information Systems Engineering (CAiSE’03), Springer (2003)

2. DeMichiel, L.G., Yal cinalp, L.Ü., Krishnan, S.: Enterprise JavaBeans Specification,
Version 2.0. Sun Microsystems. (2001)

3. Hamilton, G., ed.: JavaBeans. Sun Microsystems, http://java.sun.com/beans/
(1997)

4. Kirtland, M.: Designing Component-Based Applications. Microsoft Press (1999)
5. Siegel, J.: CORBA 3: Fundamentals and Programming. Second edn. John Wiley

& Sons, Inc. (2000)
6. W3C: SOAP - Simple Object Access Protocol. (2001)
7. Oberleitner, J., Gschwind, T., Jazayeri, M.: The Vienna Component Framework:

Enabling composition across component models. In: Proceedings of the 25th In-
ternational Conference on Software Engineering (ICSE), IEEE Press (2003)

8. Oberleitner, J., Gschwind, T.: Component distributed components with the com-
ponent workbench. In: Proceedings of the 3rd International Workshop on Software
Engineering in Middleware 2002 (SEM), LNCS 2596, Springer (2002)

9. Oberleitner, J.: The Component Workbench: A Flexible Component Composition
Environment. Master’s thesis, Technische Universität Wien (2001)

10. Oberleitner, J., Gschwind, T.: Transforming application compositions with xslts.
In Assmann, U., Pulvermueller, E., Borne, I., Bouraqadi, N., Cointe, P., eds.: Elec-
tronic Notes in Theoretical Computer Science. Volume 82., Elsevier Science Pub-
lishers (2003)

11. Sun Microsystems: Enterprise JavaBeans Specification, Version 2.1 - proposed final
draft. (2002)

12. OMG: CORBA-WSDL/SOAP Interworking. (2003)
13. Lüer, C., van der Hoek, A.: Composition environments for deployable software

components. Technical Report UCI-ICS-02-18, Department of Information and
Computer Science, University of California, Irvine (2002)

14. Richter, J.: Applied Microsoft .NET Framework Programming. Microsoft Press
(2002)

15. Duftler, M.J., Mukhi, N.K., Slominski, A., Weerawarana, S.: Web Services Invo-
cation Framework (WSIF), http://ws.apache.org/wsif/references.html. (2001)

16. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven
web services composition. In: Proceedings of the 12th International World Wide
Web Conference 2003 (WWW), ACM (2003)

