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Abstract. Existing crowdsourcing database systems fail to support
complex, collaborative or responsive crowd work. These systems imple-
ment human computation as independent tasks published online, and
subsequently chosen by individual workers. Such pull model does not
support worker collaboration and its expertise matching relies on work-
ers’ subjective self-assessment. An extension to graph query languages
combined with an enhanced database system components can express
and facilitate social collaboration, sophisticated expert discovery and
low-latency crowd work. In this paper we present such an extension,
CRowdPQ, backed up by the database management system Crowdstore.
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1 Introduction

Crowd-powered hybrid databases have gained momentum in recent years
[8,16,17] due to their ability to combine human and machine computation. These
database engines allow the specification of human-computable predicates that
transform into Human Intelligence Tasks (HITs), which are posted online and
are expected to be picked up by workers. In spite of being cumbersome for work-
ers, as browsing HITs is time-consuming [10], such pull model has limitations
for collaborative and expert work. The better-suited push model requires the
crowd platform to support sophisticated worker discovery capabilities in order
to assign or recommend tasks to workers.

Plethora of tasks require synchronous collaboration [9,10]. Successful collab-
oration can be largely influenced by social relations between human workers.
Moreover, reusing teams that exhibited successful collaboration in the past can
greatly increase chances of success for new assignments.

Realtime crowdsourcing is based on the concept of flash crowds [10]: groups
of individuals who respond moments after a request and can work synchronously.
The benefits of realtime crowdsourcing have been shown in [2,3]: paying workers
a small wage to stay on call is enough to draw a crowd together within seconds.

In this paper we show how a graph query language can be extended to express
synchronous collaboration, social formations (teams) of crowd workers, sophis-
ticated worker discovery, as well as complex crowdsourcing patterns, such as
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iterative computation, control groups, ranking, etc. Also, we show how classical
database engine components, such as indexes, caches, and the buffer pool man-
ager, can be extended to improve worker discovery, team formation, and flash
crowds management.

2 Motivation

Consider following examples of crowdsourcing tasks:

1. Implement a web page, and create images for it. These two tasks require
distinct skill sets. Also, to improve collaboration, workers assigned to the
tasks should be socially related, or at least in close social vicinity.

2. You have a recorded melody fragment and want to know what song it belongs
to. You want only those workers to work on it who like rock music.

3. You need a set of hand-drawn paintings. You ask crowd workers to draw
and rate the paintings. To avoid biased ratings, workers rating the paintings
should not be socially related to workers drawing the paintings.

Existing crowdsourcing query languages fall short of expressing complex rela-
tions between crowd workers working on related tasks, e.g., in the first example.
Moreover, discovery of proper workers might be a crowdsourcing task itself,
e.g., in the second example. Finally, even trivial crowdsourcing patterns, as in
Example 3, are cumbersome to express in existing crowdsourcing query language
adaptations.

In the next section we review existing query languages employed for crowd-
sourcing database scenarios.

3 Related Work

Table 1 provides an overview of existing hybrid human-machine databases. We
analyze their ability to express complex crowdsourcing workflow patterns (such
as control groups and ranking), social formations between workers, and sophis-
ticated worker discovery. Also, we overview techniques they employ for query
optimizations, i.e., to minimize the number of generated HITs under cooper-
ative/collaborative scenarios, and approaches they utilize to enable realtime
crowdsourcing.

Qurk [14,15] and hQuery [16] were among the first attempts on express-
ing crowdsourcing tasks as declarative queries. The SQL-based query language
in Qurk [14] exploits user-defined scalar and table functions (called TASK ) to
retrieve, join, sort and filter data from the crowd. Qurk also extends SQL with
a POSSIBLY clause to reduce the number of join candidates. Join optimiza-
tions in Qurk consider batching of items, thus minimizing the number of gener-
ated HITs. hQuery [16], a Datalog-like declarative model, features human-based
and algorithm-based predicates. Authors focus on presence of uncertainty in
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Table 1. Supported features in selected crowdsourcing databases

Workflow Query Worker Social Realtime
optimizations discovery formations crowdsourcing

Qurk [15] +/– +/– – – –

hQuery [16] +/– +/– – – –

CrowdDB [8] +/– – – – –

CrowdSPARQL [1] +/– – – – –

Deco [17] +/– – – – –

CrowdSearcher [4] +/– – – +/– –

Join optimizations N/A +/– – – –

[13,18,19]

the result set as well as optimization challenges, such as trade-offs between the
number of certain answers, time allocated and monetary cost.

CrowdDB [8] introduces extensions to the SQL data definition language to
define CROWD-enabled columns and tables, i.e., which should be fetched from
an underlying crowdsourcing platform. Also, it introduces CROWDEQUAL and
CROWDORDER extensions to the SQL data modification language.

CrowdSPARQL [1] introduces a hybrid query engine that allows executing
SPARQL queries as a combination of machine- and human-driven functionality.
Similar to CROWD-enabled columns and tables in CrowdDB, CrowdSPARQL
defines crowdsourced classes and properties in VoID (Vocabulary of Interlinked
Datasets). Also, CrowdSPARQL defines an ORDER BY CROWD operator.

The Deco [17] database semantics are defined based on the so-called Fetch-
Resolve-Join sequence, i.e., data is fetched using Fetch rules, then data inconsis-
tencies are resolved using Resolution rules and afterwards conceptual relations
are produced by outer-joining the resolved tables.

CrowdSearcher [4] allows putting constraints on crowd workers via a mapping
model, e.g., friends of a specific user, geo-localized people, workers on a selected
work platform. However, it is not possible to specify either relations between
workers, or social formations.

Neither of the query languages above allow specifying CROWD-enabled con-
straints on workers, nor relations between crowd workers themselves. Hence,
these query languages cannot support examples provided in the previous section.
Moreover, they lack capabilities to express complex workflows in a natural way.

Multiple papers discuss the problem of minimizing the number of HITs
required to resolve JOIN operations. We have grouped those papers in the table
under the “Join Optimizations” row. CrowdER [18] suggests using a hybrid
human-machine approximation approach to filter out non-matching join pairs
(with similarity ratio below certain threshold), aiming to minimize the num-
ber of HITs required to join entities. Wang et al. [19] discuss join optimization
based on transitive relations. Contrary, in [13] authors discuss selectivity esti-
mation performed by the crowd, which implies optimal join ordering. All these
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approaches focus on crowd-based and automatic join resolution, neglecting a
query writer, who can have better insight into selectivity of the data queried
and optimal join ordering.

While simple caching of results produced by HITs has been discussed (e.g.,
[15]), it has not been discussed how to cache successful workers and social for-
mations (teams). Also, to the best of our knowledge, no papers have suggested
application of classical database techniques and algorithms for realtime crowd-
sourcing.

4 Query Language

Efficient specification of social collaboration largely depends on the ability to
specify complex social formations of crowd workers. Social formations can be
intuitively represented as graph patterns [12], which makes graph query lan-
guages a natural choice for describing social collaboration. In this section we
show how Conjunctive Regular Path Queries, a formalism behind many graph
query languages [20], can be extended to overcome their shortcoming for incorpo-
rating free-text conditions and relations between data to be fetched and workers
who fetch the data.

4.1 Preliminaries

A database is defined as a directed graph K = (V,E) labeled over the finite
alphabet Σ. If there is a path between node a and node b labeled with
p1, p2, ..., pn we write a

p1p2...pn−−−−−−→ b. In the remainder of this section we give
definitions of (conjunctive) regular path queries, similar to other works, like [6].

Definition 1 (Regular Path Queries). A regular path query (RPQ) QR ← R
is defined by a regular expression R over Σ. The answer ans(QR,K) is the set
connected by a path that conforms to the regular language L(R) defined by R:

ans(QR,K) = {(a, b) ∈ V × V | a
p−→ b for p ∈ L(R)}.

Conjunctive regular path queries allow to create queries consisting of a con-
junction of RPQs, augmented with variables.

Definition 2 (Conjunctive Regular Path Queries). A conjunctive regular path
query (CRPQ) has the form

QC(x1, ..., xn) ← y1R1y2 ∧ ... ∧ y2m−1Rmy2m,

where x1, . . . , xn, y1, . . . , ym are node variables. The variables xi are a subset of
yi (i.e., {x1, . . . , xn} ⊆ {y1, . . . , ym}), and they are called distinguished variables.
The answer ans(QC ,K) for a CRPQ is the set of tuples (v1, ..., vn) of nodes in
K such that there is a total mapping σ to nodes, with σ(xi) = vi for every
distinguished variable, and (σ(yi), σ(yi+1)) ∈ ans(QR,K) for every RPQ QR

defined by the term yiRiyi+1.
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4.2 CRowdPQ

CRowdPQ is derived from CRPQ by extending the notion of RPQ with DRPQ
and RRPQ defined as follows.

Definition 3 (DRPQ). A descriptor regular path query (DRPQ) QDR ← DR
is a regular path query defined over the extended alphabet Σ

⋃
Γ , where Γ

is a human-interpretable infinite alphabet of labels. Essentially, the Descriptor
relations DR are free-text conditions that can be answered by human workers.
Kleene star in descriptor regular path queries corresponds to iterative human
computation.

Definition 4 (RRPQs). A resolver regular path query (RRPQ) QRR ← RR
is a regular path query over a predefined alphabet P = produce ∪ consume,
where the labels produce and consume correspond to dataflow producers and
consumers respectively. The left operand of a Resolver relation RR always has to
be a worker node supplied by an integrated crowdsourcing platform. Essentially,
the Resolver relations are dataflow constructs between the data to be fetched
and the workers working on the data. Note, Resolvers are not the only relations
that can be specified between a worker and the task at hand, i.e., RPQs can
be used to specify worker constraints. Kleene star and concatenation over the
produce relation represent higher-order selection of workers, e.g., workers find
workers who find workers who can fetch data.

4.3 Expressiveness

In this section we demonstrate the expressiveness of CRowdPQ by implementing
the three use cases from the motivating scenario. For this purpose we employ a
CRowdPQ-enhanced version of SPARQL 1.1: Descriptor (DRPQ) and Resolver
(RRPQ) relations are denoted using triangle and square brackets respectively.

Synchronous Collaboration. Implement a web page, and create images for
it. These two tasks require distinct skill sets. Also, to improve collaboration,
workers assigned to the tasks should be socially related, or at least in close
social vicinity (i.e., there exists a path between them of maximum length of 2).

SELECT ?webPage , ?pictures
WHERE
{

?webPage <‘‘Design a web page’’>.
?pictures <‘‘Draw pictures for the web page’’> ?webPage.
?webDesigner [produce] ?webPage.
?artist [produce] ?pictures.
?webDesigner friendOf[1, 2] ?artist.
?webDesigner [consume] ?pictures.
?artist [consume] ?webPage.

}

Worker Discovery. You have a recorded melody fragment and want to know
what song it belongs to. You want only those workers to work on it who like
rock music.
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SELECT ?melodyName
WHERE
{

?melodyName <‘‘Is similar to’’> @file.
?melodyName <‘‘Can you recognize the melody?’’>.
?musicFan [produce] ?melodyName.
?musicFan <‘‘Find a person passionate about rock music.’’>.
?indexWorker [produce] ?musicFan.

}

Note, that the specification of workers with no constraints is optional, i.e.,
?indexWorker can be omitted.

Workflow and Social Relations. You need a set of hand-drawn pictures.
You ask crowd workers to draw and rate the pictures. To avoid biased ratings,
workers rating the pictures should not be socially related to workers drawing the
pictures.

SELECT ?picture , ?ranking
WHERE
{

?picture <‘‘Draw a funny sheep.’’>.
?talentedPainter [produce] ?picture.
?mercilessCritic [consume] ?picture.
?mercilessCritic [produce] ?ranking.
?ranking <‘‘How funny is this sheep?’’> ?picture.
FILTER NOT EXISTS { ?talentedPainter friendOf ?mercilessCritic }

}

Note, the example above can be easily changed to a control group (i.e., one worker
creates a picture and another one filters it) by replacing the ?rank variable with
the ?filteredPicture variable and adjusting descriptor relations appropriately.

5 Database Engine

In this section we show how classical database components can be extended to be
able to cope with human workers as schemaless, volatile and context-dependent
data sources.

5.1 Synchronous Collaboration: Social Formations and Caching

In Examples 1 and 3 of Sect. 4.3 we have shown the expressivity of our query
language with respect to specifying social formations.

In traditional RDBMS, the purpose of query caching is to speed up query
evaluation by reusing results from previous queries. While classical caching mech-
anisms of preserving query results are also applicable in Crowdstore, here we
consider a different kind of caching. Instead of caching results, we cache workers
and social formations of workers (teams) in case of synchronous collaboration.
If a worker has been answering recently a similar query to the query at hand,
she might be a good fit to the task. For example, if a worker has been searching
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recently through newspapers for information about charity events, she might be
able to quickly answer a query of searching recent newspapers for road incidents.

The key element for efficiency of such caches is the ability to identify sim-
ilarities between queries, which resorts to finding a similar subgraph in a list
of cached query graphs (subgraph isomorphism). Matching descriptors can be
achieved by finding similarity between texts (or extracting labels). Answering
subgraph isomorphism is a NP-complete problem, so when using exact match-
ing (isomorphism) the query cache will not scale. Moreover, for complex queries
expressing dense social formations, like cliques, it might be difficult to find an
exact match. To alleviate these two problems we can use approximate graph
matching, which, however, might not return the most suitable workers. Depend-
ing on the importance of the relations between workers, we can choose either
of the two heuristics: relax the input query graph by removing worker nodes
or data nodes in order to focus on worker experience (i.e., who worked success-
fully on what) or maximize social similarity respectively (i.e., what teams were
successful).

Such quality caches can be pre-built by running pre-labeled queries over gold
standard data (e.g., [5,7,11]) and caching workers and teams that have shown
good quality.

5.2 Crowd Indexes

In Example 2 of Sect. 4.3 we have shown how the discovery of crowd workers
can be crowdsourced itself. We call index workers those workers that select and
search for workers for a query at hand. The distinction to regular workers should
be driven by different reward mechanisms applied to index workers, i.e., index
workers should be rewarded depending on the work quality of the workers they
choose. The Crowdstore design incorporates two techniques for worker indexes:

– Routing indexes. In the most trivial case the system can ask an index worker
to simply enter a list of workers she thinks satisfy the descriptor relation(s),
or a list of index workers who can route further. Routing indexes represent
directed graphs, and Crowdstore needs to detect cycles.

– Zonemap indexes. If there are other relations in addition to descriptors that
are adjacent to a worker node in a query graph, then Crowdstore can efficiently
filter worker candidates. In such case, index workers can be presented with a
list of workers they can select from. However, such lists might be immerse, so
the system needs to group workers by available tags (e.g., by country, or age),
presenting several hierarchical lists to index workers. This approach enables
index workers to quickly filter the list of workers.

5.3 Query Optimization

One of the central aspects of query optimization is join ordering. Consider the fol-
lowing example: “Where was this picture taken? - this query should be answered
by workers living in London”. An extremely inefficient case of evaluating such
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query is sending the question to all the workers, and then filtering responses by
workers living in London. When joining descriptor and regular relations the join
order is predefined, as automated filtering is always more efficient than filtering
done by a crowd. However, join ordering for two crowd-produced relations can
be highly error-prone and inefficient as the cost of relations is not known before-
hand. Contrarily to existing crowd-powered approaches, in Crowdstore we take
a different approach by assuming that a query writer can have better insight
into predicate selectivity than a crowd. CRowdPQ, as shown in Example 3 in
Sect. 4.3, provides a query writer with the ability to specify join ordering by
using consume relations. If no consume relations are specified, then existing
joining techniques can be applied.

Another approach CRowdPQ provides is “denormalized” (“collaborative”)
joins: instead of asking crowd workers to work independently on two sepa-
rate relations, Crowdstore can ask workers to collaborate and produce already
matched and joined results. The benefit of “collaborative” join is that the worker
produced data can be ambiguous and, without direct contact with the data pro-
ducer, difficult to match. Moreover, creative tasks require collaboration, as shown
in Example 1 in Sect. 4.3. If a single worker node in a query is connected with a
produce relation to multiple nodes, then “denormalization” will result in send-
ing a single HIT to a crowd worker asking to provide data for the whole query
graph. When working on “collaborative” joins, crowd workers will need to use
synchronous collaboration software.

Joining two crowd-produced relations without predefined join ordering allows
two approaches. The first approach consists of two sets of workers producing data
for relations independently and in parallel, and then a third set of workers joins
the two produced relations. The second approach is inherent to relational DBMS,
i.e., data is produced for one relation and then is used to filter in-place data for
another relation.

5.4 Crowd Pool

In [2,3] the authors show that paying workers a small wage to stay on call is
enough to draw a crowd together two to three seconds later. The problem here
is which workers to keep on payroll based on variable query patterns, e.g., what
subset of workers satisfy most queries given the budget constraints. If a worker
becomes less active, it is better to replace the worker with another one. Basi-
cally, an efficient system needs to maintain a limited set of useful/active workers
and efficiently replace ineffective workers with new ones. This scenario resem-
bles problems addressed by the buffer pool manager in traditional RDBMs, i.e.,
limited working set, replacement of least recently used database pages. Hence-
forth, we draw here correspondence between crowd workers and database pages:
similarly as how a crowd worker can generate/provide data, a database page can
provide table records. The central part of the buffer pool manager in RDBMs is
the clock algorithm, which evicts least-recently-used pages (LRU). The Crowd
pool component in Crowdstore similarly evicts least-recently-active (LRA) work-
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ers. The Crowdstore adaptation of the clock algorithm, however, incorporates
the following adjustments:

– Tracking slow-performing workers. The purpose of keeping a page in-memory
in RDBMs is the ability to fetch results faster. Similarly, keeping a worker on
payroll leads to the expectation of fast results. If a worker responds slower
than other payroll (and non-payroll) workers, then Crowd pool can evict such
worker.

– Delayed enrollment on payroll. In RDBMs when reading records from a data-
base page it is necessary to fetch the page in memory (page-in). In Crowdstore,
however, there is no such restriction, i.e., even if some query required workers
with a skill set disjoint with skill sets in Crowd pool, such skill set might not
be needed again. So, apart of counting how useful is a payroll worker, Crowd
pool needs to count how useful a non-payroll worker is.

6 Future Work, Discussion and Conclusion

In this paper we present the hybrid human-machine database Crowdstore, pow-
ered by the graph query extension CRowdPQ. Contrarily to existing crowd-
sourcing query languages, CRowdPQ can express social collaborations between
crowd workers, sophisticated worker discovery and complex crowdsourcing work-
flow patterns. Incorporation of dataflow constructs makes CRPQs slightly less
declarative, since a query writer can directly influence execution plans. However,
mispredictions in query evaluation performed by the crowd possess considerable
cost overhead, rendering explicit join ordering critical. Crowdstore serves as a
holistic design concept of a new generation crowdsourcing database, featuring
extended indexes, caches and buffer pool manager. A more detailed description
and evaluation of each of these components will be provided in our future work.
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