
Cost-Efficient and Application SLA-Aware Client Side Request Scheduling in an
Infrastructure-as-a-Service Cloud

Philipp Leitner, Waldemar Hummer, Benjamin Satzger, Christian Inzinger, Schahram Dustdar
Distributed Systems Group

Vienna University of Technology
Argentinierstrasse 8/184-1, 1040 Vienna, Austria

{lastname}@infosys.tuwien.ac.at

Abstract

Providers of applications deployed in an Infrastructure-
as-a-Service cloud permanently face the decision of
whether it is more cost-efficient to scale up (i.e., rent more
resources from the cloud) or to delay incoming requests,
even though doing so may lead to dissatisfied customers
and broken service level agreements. This decision is
further complicated by the fact that not all customers have
the same agreements, and not all requests require the same
amount of resources devoted to them. In this paper, we
present an approach for optimally scheduling incoming
requests to virtual computing resources in the cloud, so
that the sum of payments for resources and loss incurred
by service level agreement violations is minimized. We
discuss our approach based on an illustrative use case.
Furthermore, we present a numerical evaluation based on
real-life request data, which shows that our agreement-
aware algorithm improves upon earlier work, which does
not take service level agreements into account.

I. Introduction

Current research and practice of information systems

engineering is seeing substantial interest in the idea of

cloud computing [3], [5]. In cloud computing, resources,

such as CPU processing time or disk space, are rented

and released purely on demand. The advantages of this

model are manifold, including potential cost savings for

users, virtually limitless scalability, and greener IT because

of reduced energy consumption. One popular approach to

cloud computing is the Infrastructure-as-a-Service (IaaS)

model [10], where virtual computing resources (virtual

machines) are acquired and released on demand. This

idea has been made popular in recent years by widely

used implementations, such as Amazon’s Elastic Compute

Cloud1 or the Eucalyptus2 open source implementation.

Even though the IaaS model delivers considerably more

flexibility than previous server leasing models (e.g., renting

a dedicated server at a commercial computing center), a

certain level of planning remains necessary, as providers

need to take billing time units [9] (BTUs) into account,

the atomic measurement of billable computing resources.

Typically, the BTU is relatively large (e.g., one hour for

EC2) as compared to the time necessary to serve requests.

For applications deployed to IaaS clouds, service level

agreements [7] (SLAs) are becoming increasingly impor-

tant. SLAs are contractual agreements between application

providers and their customers. They are negotiated on

a per-customer basis (different customers typically have

different SLAs), and govern the minimum quality (e.g., re-

sponse time) that customers can expect. Violation of SLAs

is problematic for application providers, as SLA violations

incur direct or indirect financial losses for the provider.

SLA-bound application providers face an important trade-

off in IaaS settings. On the one hand, they want to

minimize cases of SLA violations, as to minimize penalty

payments and customer dissatisfaction, i.e., ultimately, to

save money. On the other hand, the typical way to provide

better QoS in an IaaS setting is to scale out [19], that is,

to acquire a larger number of virtual computing resources

from the cloud, which incurs costs as well. Alternatively, a

provider may try to schedule application requests smartly

among existing virtual computing resources, so as to fulfill

the largest percentage of SLAs without paying for more

resources. However, this decision is complicated by the

fact that not all requests are equal (some requests take up

more computing resources to complete), and neither are all

SLAs (some customer’s requests have tighter SLAs than

1http://aws.amazon.com/ec2/
2http://open.eucalyptus.com/

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.21

213

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.21

213

others, and some SLAs are more expensive to violate than

others).

In this paper we propose an approach for scheduling

application requests to IaaS virtual computing resources, so

that SLA-bound service providers can minimize their over-

all costs. We define the total costs as the sum of the costs of

SLA violations and IaaS virtual computing resources costs.

The proposed approach takes all the previously mentioned

intricacies into account. The main assumptions that are

implied in this paper are that (1) application requests are

stateless, i.e., requests can be scheduled to any computing

resource without consideration of where earlier requests

have been scheduled to, and that (2) the execution time

of requests can be reasonably precisely approximated in

advance by the application provider. Our approach does not

assume that providers have any information about future

requests.

The rest of this paper is structured as follows. Sec-

tion II introduces an illustrative case, which exemplifies

the setting of our approach. Section III contains the main

contribution of the paper, the description of the SLA-aware

request scheduling approach. We numerically evaluate our

approach in Section IV, and discuss some related scientific

work in Section V. Finally, Section VI concludes the paper,

and discusses some important future research directions.

II. Illustrative Use Case

In the rest of the paper, we will use the case of BIaaS

(pronounced bias), a Web-based business intelligence (BI)

application for small and medium-sized enterprises as

scenario. In essence, BIaaS allows smaller companies with

no access to complex analytics to upload raw data (e.g.,

sales data) in an anonymized form to BIaaS via a secured

Web service interface, in order to later on generate a

number of standard or customer-specific BI reports (e.g.,

a predictive analysis of sales trends). BIaaS is run by a

small startup company, which, by itself, does not own

the significant processing power and storage necessary to

generate these reports. Instead, BIaaS rents on demand

virtual machines at a public IaaS cloud. Similarly, the

necessary database cluster (to securely store the uploaded

customer data) is maintained via a rented cluster of cloud

data services.

This case is depicted in Figure 1. The BIaaS application

consists of an application frontend, which hosts the Web

services that customers use in order to interact with the

application. This frontend is hosted on a single large

EC2 cloud instance. The time-consuming process of report

generation is delegated to one of a number of instances

from a pool of workers. These workers are identical,

and can be scaled up and down on demand, depending

on current load. The actual customer data is stored in

Amazon EC2

B
Ia

aS
A

p
p

lic
at

io
n

 F
ro

n
te

n
d

RDS Cluster

Master

Slave 1 Slave 2

BI Worker Pool
(dynamically sized)

Customer 1

Customer 2

Customer 3

Figure 1. BIaaS Case Study Overview

an Amazon Relational Database Service3 (RDS) cluster,

consisting of one master node and two slaves. In the figure,

three example customers are depicted. Customer 1 has a

very tight SLA with BIaaS, i.e., requests from Customer 1

need to be handled as soon as possible, as this SLA does

not allow for much delay, and is very expensive to violate.

Customer 3 also has an SLA with BIaaS, but this SLA is

easier to maintain. Finally, Customer 2 does not have an

SLA at all, i.e., requests from Customer 2 are served on a

best effort basis.
The main challenge that we tackle in this paper is how

to cost-optimally size the pool of workers (i.e., when to

scale up and when to scale down), and how to optimally

assign incoming requests to workers, depending on the

current load of each worker and the SLAs and estimated

durations associated with each request. This allows BIaaS

to prevent over-provisioning, while at the same time main-

taining compliance with the SLAs that are most important

to the provider. Please note that we are illustrating the

BIaaS case using Amazon cloud services mostly because

of their high publicity. Our approach is in general not

limited to any specific IaaS provider.

III. SLA-Aware Request Scheduling

In this section, we describe the main contribution of

this paper, a cost-efficient and SLA-aware client side

request scheduling technique. This approach can be used

by cloud application developers to manage the pool of

virtual resources in a way that is cost-efficient for the

application provider.

A. Overview

In order to illustrate the decision problem tackled in this

paper, Figure 2 shows a simple scheduling scenario based

3http://aws.amazon.com/rds/

214214

on the BIaaS case.

B
Ia

aS
A

p
p

lic
at

io
n

 F
ro

n
te

n
d

B
I W

o
rk

er
 P

o
o

l

t

r1

r1r2

r2
r3 - r6

r3
-

r6

r7

r7

Virtual Resources

Key: Resource Running

Resource Provisioning

Incoming Request

Executing Request

Figure 2. Scheduling Requests

In the figure, requests (r1 to r7) are arriving irregu-

larly over time, and requests have individually different

durations. Whenever a request is received by the BIaaS

application frontend, it faces the decision of either instan-

tiating a new virtual computing resource (and scheduling

the request there), or scheduling the request to any of

the existing virtual resources. r1, r2 and r7 trigger the

allocation of new resources in the example. As indicated

by the dashed start in the lifeline of each resource, during

startup, there is a brief period of time when the resource

is provisioned (i.e., the resource already exists, but is yet

unable to process requests). The requests r3 to r6 are

scheduled to existing resources. Note that requests can also

be scheduled to resources which are currently busy, adding

the request to any position in this resource’s waiting list.

B. Assumptions

Our approach is based on some background assump-

tions. Most importantly, we assume that requests can

be scheduled independently from each other. Essentially,

this means that we require the individual requests to be

stateless. State between requests may be maintained by the

application, but this state needs to be stored in a way that is

accessible by all virtual resources (e.g., in the RDS cluster

in the BIaaS case). Additionally, in order to allow for

meaningful scheduling, the application provider needs to

be able to generate reasonable predictions of the duration

of each request. Furthermore, we assume that requests,

once started, should not be interrupted. Similarly, requests

cannot be moved to a different virtual resource, once they

have been scheduled. Note that these assumptions are

in line with related earlier research work [9]. However,

as compared to this earlier paper, we have relaxed the

assumptions to the end that we do not consider virtual

resources to be available instantly (i.e., we take the provi-

sioning time of virtual resources into account).

C. Definitions

In order to formally describe our scheduling technique,

we first need to define a number of relevant concepts.

Firstly, a request r ∈ R is issued by a customer. Requests

have request durations dr ∈ R, which incorporate the times

between when a request is received by the provider and the

time the final result is delivered back. dr consists of two

important components, the waiting time wr ∈ R (the time

between receiving the request and starting to execute it)

and the execution time er ∈ R (the time that it takes to

actually carry out the request). The request duration is the

sum of these components (dr = wr + er).

Requests have SLAs associated, which we refer to as

SLAr ∈ SLA. In our model, SLAs are functions that map

request durations dr to numerical costs, i.e., SLAr : R→
R.

 t1 t2

100

300

500

700

Request Duration

SL
A

Co
sts

Figure 3. Example SLA Function

SLA functions come in many different shapes and

forms [16]. In this paper, we generally assume a linear

penalty function with two point discontinuities, similar to

the example depicted in Figure 3. These SLA functions

typically exhibit two important properties. Firstly, they are

monotonically increasing, i.e., ∀ SLAr ∈ SLA ∀d1, d2 ∈
R : (d1 < d2) =⇒ (SLAr(d1) ≤ SLAr(d2)).
This means that the penalty for a higher degree of SLA

violation should never be smaller than the penalty for

a “lesser” violation. Secondly, SLA functions have two

special points, referred to as t1 and t2. Up to and including

t1 the penalty is 0 (no violation has occurred). Beyond this

point, a penalty has to be paid which depends linearly on

how much the request has been delayed, up to a second

point discontinuity t2. Starting with t2, the customer and

provider have essentially given up on the request. The

request is cancelled, and a fixed penalty is charged.

However, SLAs are not the only cost factor that ap-

plication providers need to keep in mind. Renting virtual

resources also incurs significant costs. We refer to the

virtual resources rented by an application provider as

the set of H , consisting of concrete resources h ∈ H .

215215

60 1 2 3 4 5

100

300

500

700

Hours Rented

Vir
tu

al
Re

so
ur

ce
 C

os
ts BTU

Costs / BTU

Figure 4. Virtual Resource Cost Function

Each resource has a request queue Qh ∈ Q (whenever a

request is finished, the first request on Qh is processed

next). We use index terminology to refer to requests at

specific positions in the queue, e.g., Qh[1] refers to the

first (the currently executing) request in the request queue

of h. The function a : Q → R denotes the time that

a currently executing request (by definition at the first

index of the queue) is already executing. Furthermore, |Qh|
denotes the queue length of the resource. The function

t : H → R captures the total time that a resource was

running. Obviously, the costs of renting a given virtual

resource h (referred to as cvm(t(h))) are a function of

that total run time t(h) (cvm : R → R). In general, we

assume cvm to be a piecewise linear step function, with a

structure similar to the one depicted in Figure 4. This type

of function has two important parameters: (1) the length of

the billing time unit btu, which is the granularity of billing

for the resource (e.g., for Amazon EC2, virtual resources

are billed by the hour, that is, btu is one hour); (2) the costs

for a single virtual resource per BTU (cbtu). The function

f : H → R denotes the “free” time of a host, i.e., the time

that we need to pay anyway, but for which currently no

request is scheduled. Essentially, the free time is time that

the host would be online but idle.

Finally, we need to keep in mind that virtual resources

do not immediatly become available when they are rented.

Much more, there is a startup phase, during which the

resource is provisioned and booted. In our formal model,

we use the constant p to refer to this provisioning time.

p is defined as the time between requesting a new virtual

resource from the cloud provider, and the time when the

first request can be served by the resource. We assume

that p is of comparable size for every virtual resource.

Note that, in general, p is relatively large as compared to

the execution time er for most r ∈ R. This means that

launching a virtual resource on demand, to serve a given

request, will often increase the total duration dr of this

request by orders of magnitude, as compared to using an

idle existing virtual resource.

D. Request Scheduling

Based on the formal model described in Section III-C,

we are now able to define an SLA-aware decision proce-

dure for optimally scheduling incoming requests to virtual

resources. In short, we aim to minimize the overall costs

for the provider of the cloud application. We define the

overall costs as in Equation 1. This equation can essentially

be reduced to two vital components: reducing the sum

of SLA violations for all requests, while at the same

time keeping the operational costs for the virtual cloud

resources minimal.

OC =
∑
r∈R

SLAr(dr) +
∑
h∈H

cvm (t(h))→ min! (1)

As indicated in Section III-A, for every request,

scheduling can decide to either instantiate a new virtual

computing resource or use an existing one. For each exist-

ing resource, we can insert the new request at any position

in this resource’s request queue. Consequently, for each re-

quest, we have to consider 1+
∑

h∈H (|Qh|+ 1) different

scheduling decisions. We can represent each scheduling

decision as a 3-tuple z =< r, h, i >, with r being the

request to schedule, h being the host to execute this request

on, and i being the index of this host’s queue that we want

to place the request on. We propose the following simple

greedy approach for deciding between these decisions: for

a request r, select the scheduling decision where the costs

cr(r, h, i) are minimal. For decisions to start a new virtual

resource, the costs are as defined in Equation 2.

cr(r, h, i) = SLAr(p+ er) + cvm(p+ er) (2)

Calculating the costs of scheduling to an existing host

is more complex. Primitively, the costs in this case are

the sum of three components (Equation 3), the SLA costs

of this request, the potentially increased SLA costs of

other requests affected by this decision, and the potentially

increased cloud costs that this decision leads to.

c(r, h, i) = cSLA +ΔcSLA
+Δcvm (3)

cSLA can be defined straight-forward as the SLA

penalty that has to be paid, under the assumption that

the duration of the request is going to be the sum of

the execution times of all requests scheduled before this

one, plus the execution time of this request, minus the

past execution time of the currently executing request

(Equation 4).

cSLA = SLAr

⎛
⎝i−1∑

j=1

(eQh[j]) + er − a(Qh)

⎞
⎠ (4)

216216

The increased cloud costs Δcvm
are defined as in

Equation 5. If the host will be running idle for longer

than what it takes to execute the request, the request can

essentially be handled for free. Otherwise, we need to

factor in the costs of renting this resource for one or even

more additional BTUs.

Δcvm
=

{ ∣∣∣ er−f(h)
btu · cbtu

∣∣∣ if er > f(h)

0 if er ≤ f(h)
(5)

Finally, the sum of all changes to the SLA costs of

other requests scheduled to the same host is defined in

Equation 6. For simplicity, we use dr to refer to the

originally predicted duration of an existing request here.

Essentially, this equation signifies that, for each request

which is going to move backwards one slot in the queue,

we need to calculate and sum up the new SLA costs minus

the original SLA costs prior to the change.

ΔcSLA
=

|Qh|∑
j=i

(
SLAQh[j] (dQh

+ er)−
SLAQh[j] (dQh

)

)
(6)

If two or more decisions are associated with the same

costs, we need an additional tie breaking criterion. To this

end, we may either select one of these decisions at random,

or use a principle that we refer to as “minimal reduction

of possibilities”. This principle prefers decisions, which

use the shortest idle times that are still suitable to handle

the request. That is, costs being equal, we prefer to use

the smallest block of resources available, so that larger

blocks of idle time remain available to handle possible

future requests.

E. Releasing Virtual Computing Resources

Besides these scheduling decisions, the application

frontend in the overview in Figure 2 also needs to de-

cide when to release unused existing resources. However,

without information about future requests, resource release

decisions are trivial. In this case, the cost-optimal strategy

for the provider is to never release resources until the

end of the next BTU (i.e., if the BTU is one hour, never

release resources until another full hour has passed, as this

remaining time needs to be paid anyway), and to always

release resources which are not in use at the end of a BTU.

With more information about the request distribution,

it is possible to construct release heuristics, which im-

prove upon this trivial strategy (for instance, leave one

or more unused “spare” resource available to prepare

for upcoming load peaks), but the performance of such

heuristics depends strongly on the costs of keeping virtual

computing resources online versus the provisioning time p

of new resource, i.e., in tendency, keeping spare resources

becomes more attractive if resources are cheap and p
is large. We leave further discussion of resource release

heuristics to future research.

IV. Evaluation

In this section, we numerically evaluate the SLA-aware

scheduling approach. Therefore, we have implemented the

approach, as well as a number of other scheduling algo-

rithms, using a test harness based on the Groovy4 scripting

language. We compare scheduling algorithms based on

a real-life request log, courtesy of the Grid Workloads

Archive [11], which we have associated with generated

SLA data.

A. Comparison Algorithms

In order to illustrate the usefulness of our approach, we

will compare our SLA-aware greedy scheduling strategy

with some established algorithms, as surveyed in [9].

More concretely, we have implemented the comparison

algorithms summarized in Table I.

Comparison Algorithm Reasoning
1VM4All Provides a lower bound on cloud costs

1VMPerReq Maximum parallelization of requests
BinPacking Maximizes utilization of resources

Table I. Summary of Comparison Algorithms

The 1VM4All scheduling algorithm uses only a single

virtual resource to handle all requests. All incoming re-

quests are appended to the end of the queue of this single

resource. 1VMPerReq is the other extreme. This algorithm

does not enqueue any requests. Instead, if an idle running

resource is found, this idle resource is used. If no idle

virtual resource is available, a new one is requested and

used. Finally, we also use a classic heuristic for online bin

packing [6], best fit bin packing. Essentially, this heuristic

schedules a request to the running machine whose free

time best matches the execution time of the request. This

algorithm aims at maximizing the utilization of virtual

resources.

B. Experimental Setup

For a fair comparison of the algorithms, we have used

a sample of a real-life data set collected by the Grid

Workloads Archive. More concretely, we have used the

AuverGrid workload trace with the identifier Gwa-t-45.

4http://groovy.codehaus.org/
5http://gwa.ewi.tudelft.nl/pmwiki/pmwiki.php?n=Workloads.Gwa-t-4

217217

From this trace, we have skipped the first 1000 requests (as

these seem to present a relatively uninteresting bootstrap

phase of low activity), and used the next 2000 requests

with a processing time between 10 and 60000 seconds.

From these requests, we extracted their duration as well

as the delay between requests, and associated randomly

generated SLA functions of the form depicted in Figure 3.

In this way, we have extracted two different data sets, one

with rather lenient SLAs (i.e., the SLAs are defined with

significant leeway for delays) and one with stricter SLA

definitions. For the lenient data set, the average violation

threshold (t1 in Figure 3) is set to 2.5 · er, while t1 for

the strict set is in average only 1.5 · er. We provide both

experimental base data sets online6, to allow for scientific

validation of our results.

C. Results

In the following, we will compare the SLA and cloud

costs accruing for the application provider when schedul-

ing requests based on the different algorithms. However,

before looking at final costs, we present some important

insights into the runtime of our experiments, which exem-

plify better what is going on during each experiment run.

The following plots depict runs against the data set with

more lenient SLAs, however, the general insights described

below are equally valid for the other data set. Furthermore,

we have omitted 1VM4All in these plots, as the special

nature of this algorithm leaves plotting the number of hosts

and requests uninteresting.

 0

 50

 100

 150

 200

 250

 300

 350

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

S
ch

ed
ul

ed
 R

eq
ue

st
s

Experiment Runtime [ms]

SLA-Aware Scheduling
1VMPerJob
BinPacking

Figure 5. Scheduled Requests

Firstly, Figure 5 depicts the number of currently sched-

uled (i.e., executing or enqueued) requests at each point in

time during the experiment. Waiting times are minimal for

1VMPerJob (requests are per definition only waiting while

6http://www.infosys.tuwien.ac.at/prototypes/VRESCo/cloud12/data

new virtual resources are provisioned). As BinPacking

aims at making the most out of already paid resources,

some requests are delayed longer in order to maximize uti-

lization. Our SLA-aware scheduling approach is positioned

in the middle, as it aims at enqueuing requests with more

lax SLAs, and tries to handle expensive SLAs directly.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
ct

iv
e

V
irt

ua
l R

es
ou

rc
es

Experiment Runtime [ms]

SLA-Aware Scheduling
1VMPerJob
BinPacking

Figure 6. Active Virtual Resources

Even more interesting is Figure 6, which provides a

view at the number of currently active virtual resources

at each point in time. Evidently, our SLA-aware approach

is more “stable” in its resource usage, while the number

of active resources fluctuates more drastically using both

1VMPerJob and BinPacking with current load. As the

provisioning time p of resources is typically significant

as compared to the execution time er of requests, we

consider this relative stability to be a useful property of

the approach.

Algorithm SLA Costs Cloud Costs Overall Costs (OC)
SLA-Aware 883 255400 256283

1VM4All 1756684 230600 1987284
1VMPerJob 0 321000 321000
BinPacking 3171 305100 308271

Table II. Experimental Results (Lenient SLAs)

Obviously, the most interesting question is whether

our SLA-aware approach is able to reduce the overall

costs OC as compared to other algorithms. Hence, final

costs (summed up over all requests in the data sets) for

all algorithms and both data sets are listed in Table II

and Table III. As we can see, our SLA-aware approach

leads to the least overall cost for both data sets. As

expected, 1VMPerJob minimizes SLA costs, but does so

by overpaying on cloud resources. 1VM4All minimizes

cloud costs, but SLA payments are larger by orders of

magnitude than with all other competitors (in fact, many

requests even exceed t2, and, hence, are in fact cancelled).

218218

BinPacking provides a middle ground between SLA and

cloud costs, but overall costs are still higher than using our

SLA-aware approach.

Algorithm SLA Costs Cloud Costs Overall Costs (OC)
SLA-Aware 32023 253400 285423

1VM4All 12480685 230500 12711185
1VMPerJob 8338 320600 328938
BinPacking 46285 304700 350985

Table III. Experimental Results (Strict SLAs)

V. Related Work

In recent years, cloud computing [3], [5] has become

a proliferating research area, with many important results

being generated around the globe. Generally speaking,

many current cloud computing research approaches are

cost-aware [17], [24], in the sense that they take the costs

of renting virtual resources into account. Typically, the

base assumption is that an externally fixed number of

requests needs to be handled within a fixed time frame,

with the only variable being the cloud deployment and

scheduling. This is unlike our work, which allows to find

the best tradeoff between request execution performance

and costs for the cloud.

Our main vehicle for bringing application performance

and cloud hosts into comparable dimensions are service

level agreements (SLAs). SLAs are an active research

topic within the services computing area, leading to

specifications, such as WSLA [7] or WS-Agreement [2].

Many approaches exist for managing SLAs in service-

based environments (e.g., [23]), including approaches that

also take costs of adaptation and SLA violations into

account [15]. The latter paper is particularly interesting

for us, as the formalization that we have used to model

the execution duration / infrastructure cost tradeoff in

Section III is based on this earlier work. In the area of

cloud computing research, [1] provided some ground work

on SLAs in clouds, including a conceptual framework and

some typical service level objectives. Unfortunately, [1]

does not take application and customer-specific SLAs into

account, which makes it less relevant for the purposes of

the current paper. The short paper presented in [20] is more

relevant, starting from a similar idea as the contribution of

the current paper. However, instead of finding the optimal

tradeoff between SLA violations and cloud costs, [20] aims

for the best middle ground between SLA violations and

revenue generated by the cloud application.

Conceptually, the current paper is based on the ideas

first presented in [9]. This paper introduced various simple

algorithms for scheduling requests to virtual computing

resources. We extend upon this idea by including the

notion of SLAs, and present a novel, SLA-aware decision

procedure. The evaluation, that we have presented in

Section IV, mostly compares the results of our decision

procedure to these earlier results. However, [9] was not

the first paper to discuss request scheduling in the cloud.

Other contributions in this area include [18], which works

based on queueing theory, [21], which applies the notion

of gang scheduling (a scheduling approach stemming from

Grid job scheduling), and [13], which introduces a new

algorithm called DPSA (dynamic priority scheduling algo-

rithm). These papers mainly focus on the scheduling prob-

lem that the cloud operator faces (for instance, scheduling

virtual computing resources to physical hosts). Approaches

that aim at scheduling at client-side, as we do, are currently

harder to come by. One interesting approach is discussed

in [4], where client-side scheduling onto a combination

of in-house and cloud resources has been researched.

Additionally, [9] as described above, also covers client-side

cloud scheduling. Unlike our contribution, these papers do

not explicitly cover SLAs of application providers.

Finally, some interesting work orthogonal to the contri-

butions of this paper needs to be discussed. [12] presents

a GNU Octave based implementation of performance pre-

dictions in a grid or cloud. In the context of our work, this

is particularly relevant, as it allows application providers

to generate the necessary predictions of request execution

times, which we have excluded in Section III. Note that

other approaches, such as artificial neural networks [14] or

finish time prediction [8] may also be suitable to generate

projections of execution times. [22] is interesting, as it

provides a cloud-based middleware, which automatically

adapts to incoming load to improve performance. How-

ever, this paper does not consider SLAs or the costs of

scaling up and down. Similarly, [16] presents CloudScale,

another cloud computing middleware that transparently

handles scaling for the application provider. The approach

discussed in the current paper has been designed to be

easily usable in the scope of CloudScale.

VI. Conclusions

We have presented an application SLA-aware approach

for scheduling requests to virtual computing resources in

an IaaS cloud. Essentially, our work resolves the request

execution time / infrastructure costs trade-off described

in [9] by breaking down both factors to costs for the

provider, hence allowing us to find an optimal solution

to this scheduling problem. We presented an easy-to-

implement cost-based decision procedure, and evaluated

our approach based on a real-life request data set from

the scientific computing domain. We have numerically

compared our decision procedure with a set of algorithms

published earlier, and found that our approach leads to

219219

better results (i.e., lower costs for the application provider)

than any of these.

A. Future Research Directions

In this paper, the main focus was on the solution

of the SLA-aware scheduling problem itself, abstracting

away from some important technical issues. In earlier

work, we have presented the CloudScale framework [16]

for transparently scaling applications in the cloud. As

next steps, we plan to integrate the scheduling approach

discussed here into CloudScale, and, consequently, to

evaluate our ideas using a more extensive case study, which

features a real running cloud application. Furthermore,

we plan to relax some of the assumptions of the current

iteration of our work. More concretely, we will investi-

gate possibilities to pause and migrate executing requests

within CloudScale, allowing us to “update” assignments of

requests to virtual computing resources later on, even after

a request has started to execute. We plan to investigate the

usage of machine learning based prediction technqiues to

implement concrete tools for projecting the execution time

er of requests in advance, as required by our scheduling

approach. In earlier work, we have already applied artificial

neural networks for conceptually similar problems [14].

Finally, as already indicated in Section III-E, a more

detailed investigation of resource release heuristics, which

incorporate predictions about future request distributions,

will also be part of our future work.

Acknowledgement

The research leading to these results has received

funding from the European Community’s Seventh Frame-

work Programme [FP7/2007-2013] under grant agreements

215483 (S-Cube) and 257483 (Indenica).

References

[1] M. Alhamad, T. Dillon, and E. Chang, “Conceptual SLA Framework
for Cloud Computing,” in 4th IEEE International Conference on
Digital Ecosystems and Technologies (DEST), 2010.

[2] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig,
T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu, “Web Ser-
vices Agreement Specification (WS-Agreement),” Open Grid Forum
(OGF), Tech. Rep., 2006, http://www.gridforum.org/documents/
GFD.107.pdf, Last Visited: 2012-01-29.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwin-
ski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A
View of Cloud Computing,” Communications of the ACM, vol. 53,
no. 4, pp. 50–58, 2010.

[4] M. D. Assunção, A. Costanzo, and R. Buyya, “A Cost-Benefit
Analysis of Using Cloud Computing to Extend the Capacity of
Clusters,” Cluster Computing, vol. 13, pp. 335–347, 2010.

[5] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
Computing and Emerging IT Platforms: Vision, Hype, and Reality
for Delivering Computing as the 5th Utility,” Future Generation
Computing Systems, vol. 25, pp. 599–616, 2009.

[6] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, Approximation
Algorithms for Bin Packing: a Survey. PWS Publishing Co., 1997,
pp. 46–93.

[7] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler,
H. Ludwig, M. Polan, M. Spreitzer, and A. Youssef, “Web Services
on Demand: WSLA-Driven Automated Management,” IBM Systems
Journal, vol. 43, no. 1, pp. 136–158, 2004.

[8] B. F. Dongen, R. A. Crooy, and W. M. Aalst, “Cycle Time
Prediction: When Will This Case Finally Be Finished?” in OTM
Confederated International Conferences, 2008, pp. 319–336.

[9] S. Genaud and J. Gossa, “Cost-wait Trade-offs in Client-side Re-
source Provisioning with Elastic Clouds,” in 4th IEEE International
Conference on Cloud Computing (CLOUD 2011), 2011.

[10] D. Hilley, “Cloud Computing: A Taxonomy of Platform and
Infrastructure-Level Offerings,” 2009.

[11] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and
D. H. J. Epema, “The Grid Workloads Archive,” Future Generation
Computer Systems, vol. 24, pp. 672–686, 2008.

[12] G. Kousiouris, D. Kyriazis, K. Konstanteli, S. Gogouvitis, G. Kat-
saros, and T. Varvarigou, “A Service-Oriented Framework for GNU
Octave-Based Performance Prediction,” in 2010 IEEE International
Conference on Services Computing (SCC’10), 2010, pp. 114–121.

[13] Z. Lee, Y. Wang, and W. Zhou, “A Dynamic Priority Scheduling
Algorithm on Service Request Scheduling in Cloud Computing,” in
International Conference on Electronic and Mechanical Engineer-
ing and Information Technology (EMEIT), 2011, pp. 4665–4669.

[14] P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dustdar,
and F. Leymann, “Runtime Prediction of Service Level Agreement
Violations for Composite Services,” in Proceedings of the 3rd
Workshop on Non-Functional Properties and SLA Management in
Service-Oriented Computing (NFPSLAM-SOC’09), 2009.

[15] P. Leitner, W. Hummer, and S. Dustdar, “Cost-Based Optimization
of Service Compositions,” IEEE Transactions on Services Comput-
ing (TSC), 2012, to appear.

[16] P. Leitner, W. Hummer, B. Satzger, C. Inzinger, and S. Dustdar,
“CloudScale - a Novel Middleware for Building Transparently Scal-
ing Cloud Applications,” in ACM Symposium on Applied Computing
(SAC), 2012.

[17] J. Li, S. Su, X. Cheng, Q. Huang, and Z. Zhang, “Cost-Conscious
Scheduling for Large Graph Processing in the Cloud,” in IEEE
International Conference on High Performance Computing and
Communications (HPCC’11), 2011, pp. 808–813.

[18] L. Li, “An Optimistic Differentiated Service Job Scheduling System
for Cloud Computing Service Users and Providers,” in 3rd Inter-
national Conference on Multimedia and Ubiquitous Engineering,
2009, pp. 295–299.

[19] M. M. Michael, J. E. Moreira, D. Shiloach, and R. W. Wisniewski,
“Scale-Up x Scale-Out: A Case Study Using Nutch/Lucene,” in
21th International Parallel and Distributed Processing Symposium
(IPDPS 2007), 2007, pp. 1–8.

[20] H. J. Moon, Y. Chi, and H. Hacigümüs, “SLA-Aware Profit Opti-
mization in Cloud Services via Resource Scheduling,” in Proceed-
ings of the 2010 6th World Congress on Services (SERVICES’10),
2010, pp. 152–153.

[21] I. A. Moschakis and H. D. Karatza, “Performance and Cost Evalu-
ation of Gang Scheduling in a Cloud Computing System With Job
Migrations and Starvation Handling,” in 16th IEEE Symposium on
Computers and Communications (ISCC 2011), 2011, pp. 418–423.

[22] B. Satzger, W. Hummer, P. Leitner, and S. Dustdar, “ESC: Towards
an Elastic Stream Computing Platform for the Cloud,” in 4th IEEE
International Conference on Cloud Computing (CLOUD 2011),
2011, pp. 348 – 355.

[23] A. Schmietendorf, R. Dumke, and D. Reitz, “SLA Management -
Challenges in the Context of Web-Service-Based Infrastructures,” in
Proceedings of the IEEE International Conference on Web Services
(ICWS’04), 2004.

[24] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A Cost-Aware
Elasticity Provisioning System for the Cloud,” in 31st International
Conference on Distributed Computing Systems (ICDCS’11), 2011,
pp. 559–570.

220220

