Proceedings of the COST Action IC0804 - 1st Year

Including Energy Efficiency into Self-adaptable
Cloud Services

Ivona Brandic, Vincent C. Emeakaroha, Michael Maurer, Schahram Dustdar
Distributed Systems Group, Vienna University of Technology, Vienna, Austria
{ivona,vincent,maurer,dustdar} @infosys.tuwien.ac.at

Abstract—Nowadays, novel computing paradigms as for exam-
ple Cloud Computing are gaining more and more on importance.
In case of Cloud Computing users pay for the usage of the
computing power provided as a service. Beforehand they can
negotiate specific functional and non-functional requirements
relevant for the application execution. However, providing com-
puting power as a service bears different research challenges. On
one hand dynamic, versatile, and adaptable services are required,
which can cope with system failures and environmental changes.
On the other hand, energy consumption should be minimized. In
this paper we present the first results in establishing adaptable,
versatile, and dynamic services considering negotiation bootstrap-
ping and service mediation achieved in context of the Foundations
of Self-Governing ICT Infrastructures (FoSII) project, We discuss
novel meta-negotiation and SLA mapping solutions for Cloud
services bridging the gap between current QoS models and Cloud
middleware and representing important prerequisites for the
establishment of autonomic Cloud services.

Index Terms—Cloud Computing; SLA management; auto-
nomic computing;

I. INTRODUCTION

Service-oriented Architectures (SOA) represent a promising
approach for implementing ICT systems [1]. Thereby, software
is packaged to services and can be accessed independently
of the used programming languages, protocols, and platforms.
Despite remarkable adoption of SOA as the key concept for the
implementation of ICT systems, the full potential of SOA (e.g.,
dynamism, adaptivity) is still not exploited [3]. SOA approach
and Web service technologies represent large scale abstractions
and a candidate concept for the implementation novel comput-
ing paradigms where sophisticated scientific applications can
be accessed as services over Internet [2] or where massively
scalable computing is made available to end users as a service
as in case of Cloud Computing [4]. In all those approaches
the access to computing power is provided as a service.

The key benefits of providing computing power as a service
are (a) avoidance of expensive computer systems configured
to cope with peak performance, (b) pay-per-use solutions for
computing cycles requested on-demand, and (c) avoidance of
idle computing resources. The development of novel concepts
for dynamic, versatile, and adaptive services represents an
open and challenging research issue [5]. Major goal of this
paper is to facilitate service negotiation in heterogeneous
Clouds. In order to enable service users to find services which
best fit to their needs (considering costs, execution time and
other functional and non-functional properties), service users

84

should negotiate and communicate with numerous publicly
available services.

Non-functional requirements of a service execution are
termed as Quality of Service (QoS), and are expressed and
negotiated by means of Service Level Agreements (SLAs). SLA
templates represent empty SLA documents with all required
elements like parties, SLA parameters, metrics and objec-
tives, but without QoS values. However, most existing Cloud
frameworks assume that the communication partner knows
about the negotiation protocols before entering the negotiation
and that they have matching SLA templates. In commercially
used Clouds this is an unrealistic assumption since services
are discovered dynamically and on demand. Thus, so-called
meta-negotiations are required to allow two parties to reach
an agreement on what specific negotiation protocols, security
standards, and documents to use before starting the actual
negotiation. The necessity for SLA mappings can be motivated
by differences in terminology for a common attribute such as
price, which may be defined as usage price on one side and
service price on the other, leading to inconsistencies during
the negotiation process.

Thus, we approach the gap between existing QoS methods
and Cloud services by proposing an architecture for Cloud ser-
vice management with components for meta-negotiations and
SLA mappings [9]. Meta-negotiations are defined by means of
a meta-negotiation document where participating parties may
express: the pre-requisites to be satisfied for a negotiation,
for example, requirement for a specific authentication method;
the supported negotiation protocols and document languages
for the specification of SLAs; and conditions for the estab-
lishment of an agreement, for example, a required third-party
arbitrator. SLA mappings are defined by XSLT! documents
where inconsistent parts of one document are mapped to
another document e.g., from consumer’s template to provider’s
template. Moreover, based on SLA mappings and deployed
taxonomies, we eliminate semantic inconsistencies between
consumer’s and providers SLA template.

II. OVERVIEW

To facilitate dynamic, versatile, and adaptive IT infrastruc-
tures, SOA systems should react to environmental changes,

IXsL Transformations (XSLT) Version 1.0,

http://www.w3.org/TR/xslt.html



Proceedings of the COST Action IC0804 - 1st Year

Service
Compositions
Mapping Stralegies

QoS Metrics
Protocol
Evaluation

X

14
QoS Metrics
Protocol

£

using VieSLAF
Iramework

Evaluation

J

General Architecture of an Autonomic System Explained on a QoS

Fig. 1.
Example

software failures, and other events which may influence the
systems’ behavior. Therefore, adaptive systems exploiting self-
* properties (self-healing, self-controlling, self-managing, etc.)
are needed, where human intervention with the system is min-
imized. We propose models and concepts for adaptive services
building on the approach defined by means of autonomic
computing [6], [7].
We identified the following objectives:

« Negotiation bootstrapping and service mediation. The
first objective is to facilitate communication between
publicly available services. Usually, before service usage,
service consumer and service provider have to establish
an electronic contract defining terms of use [8]. Thus,
they have to negotiate the exact terms of contract (e.g., ex-
act execution time of the service). However, each service
provides a unique negotiation protocol often expressed
using different languages, representing an obstacle within
the SOA architecture. We propose novel concepts for
automatic bootstrapping between different protocols and
contract formats increasing the number of services a
consumer may negotiate with. Consequently, the full
potential of public services could be exploited.

Service Enforcement Services may fail, established con-
tracts between services may be violated. The second
objective is to develop methods for service enforcement,
where failures and malfunctions are repaired on demand
and where services are adapted to changing environmen-
tal and system conditions. We propose development of
knowledge bases where the directives, policies, and rules
for failure adjustment and repair may be specified and
stored. Furthermore, adequate methods for the condition
specification and condition evaluation are emerging re-
search issues.

Service adaptivity Service failures or violations of elec-
tronic agreements must be detected in an efficient manner.
Moreover, the reaction to failures should be done in
an adequate way. Thus, the third objective is the de-
velopment of novel methods for modeling of intelligent
logging capabilities at the level of a single service as
well as composite services. Sophisticated concepts for
the measurement of service execution parameters and
Quality of Service (QoS) are needed as well as generic
monitoring capabilities which can be customized on-

85

demand for different services.

In order to achieve aforementioned goals we utilize the
principles of autonomic computing. Autonomic computing
research methodology can be exemplified using Quality of
Service (QoS) as shown in Figure 1. The management is done
through the following steps: (i) Monitoring: QoS managed
element is monitored using adequate software sensors; (ii)
Analysis: The monitored and measured metrics (e.g., execution
time, reliability, availability, etc.) are analyzed using knowl-
edge base (condition definition, condition evaluation, etc.); (iii)
Planning: Based on the evaluated rules and the results of the
analysis, the planning component delivers necessary changes
on the current setup e.g., renegotiation of services which do not
satisfy the established QoS guarantees; (iv) Execution: Finally,
the planned changes are executed using software actuators and
other tools (e.g., VieSLAF framework [9]), which query for
new services.

A. Negotiation Bootstrapping and Service Mediation

Autonomic computing can be applied for other managed
elements e.g., service negotiation. In the following we explain
the first steps in achieving aforementioned architecture: meta-
negotiations and SLA mappings.

Figure 2 depicts how the principles of autonomic comput-
ing can be applied to negotiation bootstrapping and service
mediation. As a prerequisite of the negotiation bootstrapping
users have to specify a meta-negotiation document describing
the requirements of a negotiation, as for example required ne-
gotiation protocols, required security infrastructure, provided
document specification languages, etc. During the monitorig
phase all candidate services are selected where negotiation
bootstrapping is required. During the analysis phase existing
knowledge base is queried and potential bootstrapping strate-
gies are found. In case of missing bootstrapping strategies
users can define in a semi-automatic way new strategies
(planning phase). Finally, during the execution phase the
negotiation is started by utilizing appropriate bootstrapping
strategies.

The same procedure can be applied to service mediation.
During the service negotiation, inconsistencies in SLA tem-
plates may be discovered (monitoring phase). During the anal-
ysis phase existing SLA mappings are analyzed. During the
planning phase new SLA mappings can be defined, if existing
mappings cannot be applied. Finally, during the execution
phase the newly defined SLA mappings can be applied.

ITII. META-NEGOTIATIONS

In this section, we present an example scenario for the meta-
negotiation architecture, and describe the document structure
for publishing negotiation details into the meta-negotiation
registry.

A. Meta-Negotiation Scenario

The meta-negotiation infrastructure can be employed in the
following manner: (i) Publishing: A service provider publishes
descriptions and conditions of supported negotiation protocols



Proceedings of the COST Action IC0804 - 1st Year

Negotiation Bootstrapping

Service Mediation

Prerequisites

Definition and publication of
Meta-negotiation documents

Monitoring

Detections of SLA
inconsistencies

Analysis ;Oms"aw;

ion of existing
ng strategies

Evaluation of existing SLA
mappings

s
H

strategies

Bootstrapping

Application of existing and
definition of new bootstrapping

Application of existing and 1
definition of new SLA
mappings

Applicaiton of SLA mappings
to fulfill successful SLA
contracting

Fig. 2. Negotiation Bootstrapping and Service Mediation as Part of the Autonomic Process

into the registry; (ii) Lookup: Service consumers perform
lookup on the registry database by submitting their own
documents describing the negotiations that they are looking
for. (iii) Marching: The registry discovers service providers
who support the negotiation processes that a consumer is
interested in and returns the documents published by the ser-
vice providers; (iv) Negotiation: Finally, after an appropriate
service provider and a negotiation protocol is selected by a
consumer using his/her private selection strategy, negotiations
between them may start according to the conditions specified
in the provider’s document.

In the following we explain the sample meta-negotiation
document.

B. Meta-Negotiation Document (MND)

The participants publishing into the registry follow a
common document structure that makes it easy to discover
matching documents. This document structure is presented in
Figure 3 and consists of the following main sections.

Each document is enclosed within the
<meta-negotiation> </meta-negotiation>
tags. Each meta-negotiation (MN) comprises three
distinguishing parts, namely pre-requisites, negotiation
and agreement as described in the following paragraphs.

a) Pre-requisites: The conditions to be satisfied before a
negotiation starts are defined within the <pre-requisite>
element (see Figure 3, lines 3-10). Pre-requisites define the
role a participating party takes in a negotiation, the security
credentials and the negotiation terms. The <security>
element specifies the authentication and authorization mecha-
nisms that the party wants to apply before starting the nego-
tiation process. The negotiation terms specify QoS attributes
that a party is willing to negotiate and are specified in the
<negotiation-term> element. For example, in Figure 3,
the negotiation terms of the consumer are beginTime and
endTime, and price (line 6).

b) Negotiation: Details about the negotiation process are
defined within the <negotiation> element. Each docu-
ment language is specified within the <document> element.
In Figure 3, WSLA is specified as the supported document

86

- Service 1
- Service 2
- Service 3

- Service n

3. <<search services>>

5. <template adaptation>>

)

Fig. 4. Management of SLA-Mappings

2. <<assign mappings>>

4. <<assign mappings>>

1. <<assign services lo category>>

Service
Provider

Service
Consumer

language. Additional attributes specify the URI to the API
or WSDL for the documents and their versions supported
by the consumer. In Figure 3, AlternateOffers is specified as
the supported negotiation protocol. In addition to the name,
version, and schema attributes, the URI to the WSDL or API of
the negotiation protocols is specified by the location attribute
(line 12).

c) Agreement: Once the negotiation has concluded and
if both parties agree to the terms, then they have to sign
an agreement. This agreement may be verified by a third
party organization or may be logged with another institution
who will also arbitrate in case of a dispute. These modalities
are specified within the <agreement> clause of the meta-
negotiation document as shown in line 14,

IV. SLA MAPPINGS

In the presented approach each SLA template has to be pub-
lished into a registry where negotiation partners i.e., provider
and consumer, can find each other.

A. Management of SLA mappings

Figure IV-A depicts the architecture for the management
of SLA mappings and participating parties. The registry com-
prises different SLA templates whereby each of them represent
a specific application domain, e.g., SLA templates for medical,
telco or life science domain. Thus, each service provider
may assign his/her service to a particular template (see step
1 in Figure IV-A) and afterwards assign SLA mappings if



Proceedings of the COST Action IC0804 - 1st Year

. <meta-negotiation ...>

<pre-requisite>

<role name="consumer"/>

<security> <authentication value="GSI" location

<negotiation-terms>

-

1:
2
3
4. =
5

6

8 </negotiation-terms>

</pre-requisite>

<negotiation>

<document name="WSLA" value="uri"

9.

10.
11:
12
13,
14,
15.</meta-negotiation>

version="1.0"/>

</negotiation>

Fig. 3.

XSL-
Transfor-

local
WSLA
template

Transfor.
mations

Fig. 5. Scenario for XSL Transformations

necessary (see step 2). Each template ¢ may have n services
assigned.

Service consumer may search for the services using meta-
data and search terms (step 3). After finding appropriate
services each service consumer may define mappings to the
appropriate template the selected service is assigned to (step
4). Thereafter, the negotiation between service consumer and
service provider may start as described in the next section.
As already mentioned templates are not defined in a static
way. Based on the assigned SLA mappings and the predefined
rules for the adaptation, SLA templates are updated frequently
trying to reflect the actual SLAs used by service provides and
consumers (step 5).

Currently, SLA mappings are defined on an XML level,
where users define XSL transformations. However, a UML
based GUI for the management of SLA mappings is subject
of ongoing work.

B. Scenario for SLA mappings

Figure 5 depicts a scenario for defining XSL transforma-
tions. For the definition of SLA agreements we use Web
Service Level Agreement (WSLA). WSLA templates are
publicly available and published in a searchable registry.
Each participant may download previously published WSLA
templates and compare them with the local template. This can
be done in an automatic way by using appropriate tools. We
are currently developing a GUI that can help consumers to
find suitable service categories. If there are any inconsistencies
discovered, service consumer may write rules (XSL transfor-
mation) from his/her local template to the remote template,
The rules can also be written by using appropriate visualization
tools. Thereafter, the rules are stored in the database and can be
applied during the runtime to the remote template. During the
negotiation process, the transformations are performed from

87

uri"/> </security>

<negotiation-term name="beginTime"/> <negotiation-term name="endTime"/>

<protocol name="alternateOffers" schema="uri" version="1.0" location="uri"/>

<agreement> <confirmation name="arbitrationService" value="uri"/> </agreement>

Example Meta-negotiation Document

the remote WSLA template to the local template and vice
versa.

Figure 5 depicts a service consumer generating a WSLA,
The locally generated WSLA plus the rules defining transfor-
mation from local WSLA to remote WSLA, deliver a WSLA
which is compliant to the remote WSLA. In the second case,
the remote template has to be translated into the local one.
In that case, the remote template plus the rules defining
transformations from the remote to local WSLA deliver a
WSLA which is compliant to the local WSLA. Thus, in this
manner, the negotiation may be done using non-matching
templates.

Even the service provider can define rules for XSL trans-
formations from the publicly published WSLA templates to
the local WSLA templates. Thus, both parties, provider and
consumer, may match on a publicly available WSLA template.

ACKNOWLEDGMENT
The work described in this paper was partially supported
by the Vienna Science and Technology Fund (WWTF) under
grant agreement ICT08-018 Foundations of Self-governing
ICT Infrastructures (FoSII).

REFERENCES

[1] A. P. Barros, M. Dumas. The Rise of Web Service Ecosystems. IT
Professional 8(5): 31 — 37 , Sept.-Oct. 2006.

J. Blythe, E. Deelman, Y. Gil. Automatically Composed Workflows for
Grid Environments. IEEE Intelligent Systems 19(4): 16-23 2004.

M.P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann. Service-Oriented
Computing: State of the Art and Research Challenges, IEEE Computer,
40(11): 64-71, November 2007

R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and Ivona Brandic. Cloud
Computing and Emerging IT Platforms: Vision, Hype, and Reality for
Delivering Computing as the 5th Utility, Future Generation Computer
Systems, ISSN: 0167-739X, Elsevier Science, Amsterdam, The Nether-
lands, 2009, in press, accepted on Dec. 3, 2008.

Foundations of Self-Governing ICT Infrastructures (FoSII) Project,
http://www.infosys.tuwien.ac.at/linksites/FOSII

J.0. Kephart, D.M. Chess, The vision of autonomic computing. Computer,
36:(1) pp. 41-50, Jan 2003.

D. Ardagna, G. Giunta, N. Ingraffia, R. Mirandola and B. Pernici. QoS-
Driven Web Services Selection in Autonomic Grid Environments. GADA
2006, International Conference, Montpellier, France, 2006.

K. Czajkowski, I. Foster, C. Kesselman, V. Sander and S. Tuecke, SNAP:
A Protocol for Negotiating Service Level Agreements and Coordinating
Resource Management in Distributed Systems. 8th Workshop on Job
Scheduling Strategies for Parallel Processing, Edinburgh Scotland, July
2002.

L. Brandic, D. Music, Ph. Leitner, S. Dustdar. VieSLAF Framework:
Enabling Adaptive and Versatile SLA-Management. Gecon09, In con-
junction with Euro-Par 2009, 25- 28 August 2009, Delft, The Netherlands

2

[3]

—

[4

[5

—

[6

—

7

(8]

(9



