
Esc: Towards an Elastic Stream Computing Platform for the Cloud

Benjamin Satzger, Waldemar Hummer, Philipp Leitner, and Schahram Dustdar
Distributed Systems Group

Vienna University of Technology
Argentinierstr. 8/184-1, A-1040 Vienna, Austria,

{satzger, hummer, leitner, dustdar}@infosys.tuwien.ac.at

Abstract—Today, most tools for processing big data are
batch-oriented. However, many scenarios require continuous,
online processing of data streams and events. We present ESC,
a new stream computing engine. It is designed for computations
with real-time demands, such as online data mining. It offers
a simple programming model in which programs are specified
by directed acyclic graphs (DAGs). The DAG defines the data
flow of a program, vertices represent operations applied to
the data. The data which are streaming through the graph
are expressed as key/value pairs. ESC allows programmers to
focus on the problem at hand and deals with distribution and
fault tolerance. Furthermore, it is able to adapt to changing
computational demands. In the cloud, ESC can dynamically
attach and release machines to adjust the computational
capacities to the current needs. This is crucial for stream
computing since the amount of data fed into the system is
not under the platform’s control. We substantiate the concepts
we propose in this paper with an evaluation based on a high-
frequency trading scenario.

Keywords-stream computing; event processing; adaptability

I. INTRODUCTION

“Cloud Computing” is an ongoing trend in the IT world.
It has the potential to transform the way software is used
and hardware is designed and purchased. New services
can be deployed rapidly without bearing massive initial
investments and time delays accompanied by setting up
the necessary infrastructure. As pointed out by Armbrust
et al. [1], the nearly impossible task of predicting future
workload and hardware requirements has become obsolete.
Moreover, without a self-maintained infrastructure one can
avoid overprovisioning, which would be required to cope
with peaks but is a waste of resources in off-peaks.

ESC (pronounced “Escape”) is a distributed stream pro-
cessing platform written in Erlang [2]. ESC employs a
similar programming model as MapReduce [3] in that it
applies operations to key/value pairs. In contrast to MapRe-
duce, which is tailored to batch-oriented processing of
large data sets, ESC is designed to deal with distributed
online processing of event streams fed into the system at
unpredictable rates. It targets data processing tasks with soft
real-time demands such as analysis of sensor network data,
online web mining, or algorithmic trading. A directed acyclic
graph defines the data flow of a program in ESC; its vertices
specify the operations applied to the key/value pairs called

events. The usage of DAGs for stream processing is very
expressive, much more expressive than an online version of
MapReduce. Programmers can focus on the task at hand
while ESC contributes concurrency, distribution, and fault
tolerance. For large batch-oriented tasks, cloud computing
can get results as quickly as the software scales, because
using 1,000 servers for one hour causes the same costs as
one server for 1,000 hours [1]. This is different for stream
processing where we have no control over the arrival rate
of events. ESC is supposed to be deployed within a cloud
in which it is possible to request and release machines at
runtime. In such a setting ESC is able to dynamically adapt
to the computational needs, i.e., to automatically scale up
and down, to be elastic so to say. This is crucial for stream
processing in order to cope with peaks and off-peaks.

In this paper we describe the basic architecture, func-
tionality, and programming model of ESC. For evaluation
purposes, we use ESC to compute stock correlations in a
high-frequency trading setting and present the results. The
paper is structured as follows. In Section II we describe the
high-frequency trading scenario. Section III explains how
stream computing in ESC works, while Section IV focuses
on failover and adaptability. We provide insights into the
implementation of ESC in Section V. Then, Section VI de-
scribes the conducted experiment and the results. Overview
of related work is given in Section VII. Finally, Section VIII
concludes the paper and points to future work.

II. SCENARIO

In this section we present a motivating scenario from the
financial computing domain. High-frequency trading is the
trading of financial assets based on computerized strategies
with brief holding time and high volume. The correlation
among assets plays an important role in algorithmic trading
[4]. A simple strategy would be to look at two long-term
highly correlated stocks, such as McDonalds and Burger
King, and to detect a deterioration in correlation. This
could be exploited to make a profit. In simple terms, if the
McDonalds stock price increases then you would expect the
Burger King stock to gain in the very near future, too. If
this is not the case a trading strategy could be to either buy
Burger King stocks or sell McDonalds stocks. At the heart

2011 IEEE 4th International Conference on Cloud Computing

978-0-7695-4460-1/11 $26.00 © 2011 IEEE

DOI 10.1109/CLOUD.2011.27

348

of such a trading algorithm would be the computation of
short-term stock correlation in real-time.

We assume a scenario where, in a preselection step, five
promising stocks are selected and the stream computing
program is to output the most correlated pair of stocks,
according to the Pearson correlation coefficient. Each input
consists of the stock symbol as key and a list of transactions’
timestamp/price pairs as value.

In order to compute the Pearson correlation, equally
spaced data points are needed. However, transactions take
place at random time intervals. Therefore, a homogenization
step is needed to force equidistantly distributed data points.
This preprocessing can be done by simply assigning each
data point the closest timestamp’s value. We assume in the
following that the short-term correlation is based on the ticks
of the last ten minutes; we further assume that 50 ticks
per second are generated resulting in 30, 000 data points
describing one stock. The stock values are provided in the
course of a request, i.e., five stock values for each request
are identified by the same request identifier. The task is to
calculate the most highly correlated stocks for each request.

The scenario introduced above could be implemented in
ESC by a DAG as shown in Figure 1. We will denote the
vertices of the graph processing elements (PEs). Vertices
with zero in-degree are called input PEs, zero out-degree
vertices are output PEs. The former do not consume events
but are pure emitters, bridging external input to the stream
processing graph, while the latter represent sinks which
make the results available to an external party. Events that
are consumed and produced by PEs are composed of a
key/value pair. Additionally, events contain an event type
and a context field used to join events belonging to the same
context. In the high frequency trading scenario the context
field is used to group the stocks by request. The input PEs
are used as entry point for the stock tick data. The next layer
consists of correlation PEs which accept data for two stocks.
These PEs perform a homogenization as described above and
finally compute the Pearson correlation. The output of the
correlation PEs is fed into a PE computing the maximum of
all inputs. The final PE outputs the most correlated stocks.

ESC transparently maps and executes the functionality
specified by a DAG using machines of the cloud. It adapts
to the current requirements imposed by varying input rates
and changing computational loads.

III. STREAM COMPUTING IN ESC

In this section we introduce the main components in the
ESC system, and briefly discuss their responsibilities and
dependencies. The functionality of PEs, which execute the
operators specified in the DAG, are described in more detail.
Finally, we show how the operator function of a single PE
is specified.

Machines

Esc Platform

Input OutputCorrelation Max

Figure 1. Functionality of ESC: Input PEs create input events, output PEs
publish final events, intermediate PEs may consume and produce events;
they perform the actual computations. The above shown DAG computes
the stocks with maximum correlation based on the tick data of five input
stocks. The ESC platform is responsible for mapping PEs to machines in
the cloud. It is able to adapt to changing computational requirements, e.g.,
by adding machines to the resource pool.

A. Processes in ESC

In ESC all functionality is implemented by concurrently
running lightweight processes. They can be divided into sys-
tem, machine, and processing element processes, as shown
in Figure 2. System processes provide the foundations for
running stream computing applications. Systemwide, there
is exactly one instance for each such process. Machine
processes, on the other hand, need to be running on each
node. The processes associated with PEs may run anywhere;
a machine can host zero to many PE processes. The App Info
process takes a user provided DAG and makes it available to
all interested processes. It plays a crucial role for initializa-
tion and also for failover. The Pool Manager is responsible
for attaching and releasing machines. It also maintains statis-
tics about all managed nodes, such as their current workload.
This information is issued by Stats Sender processes and
used to map PE processes to suitable machines. PE Factory
allows for a creation and initialization of PE processes on
arbitrary machines of the network in cooperation with a
Supervisor on the respective machine which creates and
monitors them locally. The Autonomic Manager component
is responsible for high-level adaptation decisions. It collects
relevant data and reconfigures the system if necessary. For
instance, if all machines of the pool are under heavy load
and stream processing performance decreases, it triggers
the attachment of a new machine from the cloud if that
action is available. The only task of the Alive Monitor is

349

Processing Element

WorkerWorkers

System

Pool
Manager PE Factory

Alive
Monitor

Machine

Stats
Sender

SupervisorApp Info

Configuration

Autonomic
Manager

PE Manager Heartbeat
Sender

PE
Operator

PE
Buffer

1 * 1 *

*

Figure 2. Main processes in ESC: System processes provide system-wide
functionality, i.e., globally, there is one instance for each system process,
running on an arbitrary machine. On each machine, machine processes
provide basic machine centered functionalities. There may be many pro-
cessing element specific processes running on multiple machines, whereas
a processing element comprises a manager process, a monitor process and
several workers. Each worker is made up of a PE Buffer/Operator pair.

to monitor input PEs. Input PEs play a special role for the
fault tolerance of ESC and are obliged to send heartbeats
to the Alive Monitor by a Heartbeat Sender process. The
Alive Monitor is aware of all input PEs specified by the
DAG because of the App Info process and expects to receive
heartbeat messages from all of them. PE processes represent
the “work horse” processes in ESC which perform the actual
stream computing. All other processes can be attributed to
service tasks providing configuration, adaptation, and fault
tolerance. The PE Manager serves as the gateway to the PE
it represents, performs load-balancing, and, with the help
of the PE Factory, creates and destroys PE Buffers and PE
Operators. There may be many workers, i.e., pairs of PE
Buffers/Operators, belonging to the same PE. These subcom-
ponents do not need to run on the same physical machine.
The PE Factory would typically create new processes on
the least loaded machine. The task of the PE Buffer is
to cache events and to transmit them to a PE Operator,
which performs the actual user-defined computation. PE
Operators may emit new events to subsequent PEs, i.e., to
their corresponding PE Managers.

B. Processing Elements

PE processes perform the computational task as defined
by the DAG. Figure 3 illustrates the functionality of a PE.
Its manager process serves as entry point for all incoming
events. On arrival of a new event it first checks whether it is
responsible for consuming events of that type. PE Managers
have an exchangeable balancer function b : Events →
Workers, mapping events to workers. A function b : e 7→ 0
would map all events to the same worker with id 0, whereas a
function of b : e 7→ hash10(e), which hashes e to the range
[1, .., 10], would distribute events among ten workers. Each

worker’s PE Buffer caches events, and a strategy function
determines which events are to be joined and when to flush
a buffer. One strategy is to join events by their context and
flush when a PE Buffer has received an event of a particular
context from all incoming neighbor PEs (as defined by the
DAG). When a buffer is being flushed, its content, a list of
events, is transmitted to the PE Operator, which applies the
user-defined operator f to the list of events. Each event has
the form (Type, Context,Key, V alue). The PE Operator
may maintain its state between calls (stateful), as indicated
by the database symbol in Figure 3, or not (stateless). Fi-
nally, the PE Operator can emit a new event to all successors
in the DAG, containing the result of operator f .

C. Programming Model

The programming of a stream computing application
consists of two main parts, the specification of the DAG
(defining the flow of the stream) and the type of each vertex.
Each PE type is assigned a function f which implements the
following scheme:

f(EventList, State, Args) ->
{ok, NewState?} |
{emit, Event, NewState?} |
{emit_multi, EventList, NewState?}

The operator function, called by the ESC system, must
have a signature consisting of three parameters. The first
is the list of events, the second is a state object, which
can be used to implement stateful PEs, and finally a list
of arguments. The argument list is empty by default, but
arguments can be defined in the configuration. The operator
f can either emit no event (ok), a single event (emit),
or multiple events emit_multi. When a NewState is
returned it will be kept and used for the next call of
the respective operator. The function for the Max operator,
which returns the maximum of all inputs, looks as follows:

max(EventList, State, Args) ->
Result = maxVal(EventList),
{emit, Result}.

The function maxVal(EventList) picks the event
e = (t, c, k, v) with maximum value v in EventList. The
general idea of ESC is to establish a library of PE types
which can be reused. The programmer only needs to draw a
DAG with the help of a graphical tool and to either assign
predefined types or to create a new type by implementing
and specifying an operator.

IV. FAILOVER AND ADAPTABILITY

In this section we elaborate on the initialization and
failover functionality of ESC, and how cloud-based adapt-
ability is achieved.

350

Processing Element
ID: n

Workers *

PE Manager
PE Buffer

e b(e) e
[b(e) = n]

PE Operator

List of
eventsFunction

Balancer
b

s

Function
Buffer

Strategy f

Function

Operator
e'

Cons
ume?

State

ID: n

Figure 3. Functionality of PEs. There is exactly one PE Manager responsible for each PE defined in the DAG. It serves as gateway for all incoming
events. These are only processed by the PE Manager if the PE has registered for the specific event type. The PE Manager enables load-balancing by
defining a balancer function b. PE Buffer caches incoming events and submits the buffered contents to its corresponding PE Operator, as defined by the
buffer strategy function s. PE Operator applies the actual operator to the received events and emits new events to all out-neighbors in the DAG.

A. Initialization and Failover

For the machine-local detection and restart of crashed
processes we use Erlang’s supervision trees. A supervision
tree is a tree of processes where the parent processes in
the tree monitor the child processes and restart them if they
fail. In Figure 2, this approach is illustrated in a simplified
way. Instead of having one supervisor process per machine
there is actually a whole supervision tree on each machine
which performs monitoring and restarting of local processes.
This local supervision of all processes ensures basic fault
tolerance, as long as no machine is going down. All system
processes are started as a distributed Erlang application.
This means that if the machine running the system process
application crashes, the Erlang platform will detect that and
restart the application on another machine. Hence, initializa-
tion of system processes as well as failover in the case of
a machine crash are basically covered by Erlang. For more
details about supervision trees as well as distributed Erlang
applications and their failover technique we refer to [2]. The
Pool Manager requires all attached machines to periodically
send heartbeats; if a machine fails to transmit them, it is
removed from the pool. When a machine is being attached
to the pool, an initial supervision tree is started together with
a statistics process, sending heartbeats containing statistics
such as the machine’s workload.

The above described techniques ensure that all manage-
ment processes are fault tolerant. In turn, they implement the
initialization and fault tolerance of the PE processes, which
is described in the following. The basic design principle is
that initialization and failover are treated in exactly the same
way. The Alive Monitor requires all input PEs to periodically
send heartbeats. If no heartbeat is received from an input PE
for a certain amount of time, it is created. This applies both
to the initial phase and to the failure case. The alive monitor
detects that certain input PEs are not running and starts them.
The initialization phase represents the special case that no
single input PE is running, which is however treated equally
as if all input PEs were crashed. Whenever a PE emits a new
event it sends it to all successors, as defined by the DAG.

This includes a short check whether the neighboring PE is
actually running - if not, it is created. In more detail, the
creation is triggered by the PE which detected the issue and
the PE Factory creates the new PE. During that process,
the PE Factory communicates with the Pool Manager to
figure out the optimal machine, usually the least loaded one.
This means that each PE is initially created upon the first
attempt to send an event to it. In the initialization phase of
a PE, its manager contacts the App Info process to receive
information about its configuration, such as the PE’s type.
At that stage no worker has been created yet. The manager
maps each incoming event to a worker ID using its balancer
function. It also maintains a hash table mapping from that
ID to the respective PE Buffer’s address. If a worker ID
is not contained in the hash table, the PE Buffer and a
corresponding PE Operator are created. Consequently, PE
Buffer and PE Operator are created when they are to process
the first event that is mapped to that ID. If a failure (e.g.,
a machine outage) unexpectedly terminates a PE worker, in
the worst case the transient data such as the events cached
by the PE Buffer and the state of the PE Operator may get
lost. The functionality of ESC, however, will be restored if
possible, i.e., if a machine for failover is available. We plan
to extend ESC with a means to persistently store events
and states, which would lead to a highest possible failure
tolerance. This feature, however, is likely to influence the
overall performance significantly.

B. Adaptability

ESC is designed to dynamically adapt to its environment
and changing computational needs at runtime. The cloud
paradigm that the cost of using 1,000 machines for one
hour is the same as using one machine for 1,000 hours
implies that a MapReduce job can improve its performance
by adding many machines and executing in parallel, while
incurring the same monetary cost. This is different for a
real-time streaming platform such as ESC. There exists an
optimal number of machines the processing is based on,
i.e., the minimum pool of machines such that events are

351

processed in a timely manner. In many scenarios events
are not fed into the system at equidistant time intervals,
but there are peaks and off-peak. For instance, a stream
computing platform which is used for analysis of web server
logs would typically be confronted with peaks in the daytime
and low traffic at night. Therefore elasticity is crucial, i.e.,
capabilities to attach or release resources and to adaptively
redistribute processes among the controlled machines.

IBM’s vision of its initiative Autonomic Comput-
ing (AC) [5] is to design computing systems that can
manage themselves given high level objectives. The human
autonomic nervous system is the inspiration for the term AC,
as it is adjusting vital low-level functions such as heart rate
and body temperature, allowing our brain to deal with other
tasks. The AC initiative introduced the demand on future
systems to self-configure, self-heal, self-optimize, and self-
protect. Figure 4 illustrates the architecture of ESC’s Auto-
nomic Manager, designed according to the MAPE loop [6],
proposed by AC as a means for achieving adaptive systems.
The monitor phase deals with collection, aggregation, and
filtering of information, which is provided by sensors. The
preprocessed data are subsequently analyzed. The planner
constructs actions needed to achieve goals and objectives.
Finally, these actions are carried out by effectors. All four
stages of the cycle are based on knowledge the Autonomic
Manager has access to.

Autonomic Manager

Esc Platform

Sensors Effectors

Monitor Execute

PlanAnalyze

Knowledge

Figure 4. The Autonomic Manager is responsible for adapting ESC to
changing conditions - thus realizing its elasticity. It implements a MAPE
loop consisting of the steps monitor, analyze, plan, and execute.

In the current version of ESC, the Autonomic Manager
has access to two sensors, one providing information about
the workload of all currently attached machines, the other
delivering data about the queue lengths of worker processes.

The Autonomic Manager has a number of means that
have an effect on the performance of ESC and its monetary
costs: Machines can be attached to the pool and can also be
released subsequently. Also, the balancer function determin-
ing the load-balancing within a PE can be replaced during
runtime. Replacing a balancer function b : (t, c, k, v) 7→
hash2(k), which hashes the event’s key to one or two, with
a function b′ : (t, c, k, v) 7→ hash5(k) hashing the key to
the range from one to five would result in the creation of

three new pairs of PE Buffer and PE Operator processes,
all typically started at the least loaded machine. Much more
sophisticated balancing functions are possible, e.g., taking
the distribution of incoming data into account. A third way
of adaptation is to simply kill worker processes. This results
in a restart at the machine with the minimum workload.
More drastically but in the same spirit is it possible to kill
a whole PE by killing its manager process. In that case all
processes related to that PE are killed and will finally be
restarted at the optimal location at that time. A powerful
further concept for adaptation supported by ESC is graph
rewriting. Users are given the possibility to define graph
rewriting rules along with the DAG. These rules contain
information about their effect, i.e., whether they help to
increase performance in the case of peaks (expand the DAG)
or whether they are suitable to reduce overhead in off-peaks
(contract the DAG). A sample rewriting rule is illustrated in
Figure 5: it replaces a single sorting PE with a PE splitting
the input using a random pivot element, two parallel sort
PEs, and a merge PE.

Rewrite

Sort SortSplit by
Pivot

Merge

Figure 5. Exemplary graph rewriting rule which divides a simple sorting
PE into a sequence of split, sort, and merge.

The monitoring and execution phases of the MAPE cycle
are responsible for fetching data provided by the sensors and
triggering the effectors, respectively. The analyze component
condenses the received information into a higher level rep-
resentation, according to policies stored in the knowledge
base. For instance, the following policy would assign true
or false to the logic predicate overloaded:

overloaded := all nodes have workload > 95%

The planning derives actions based on simple “IF condi-
tion THEN action” policies, for instance:

IF overloaded THEN attach_machine

All these instruments can be used to optimally adapt ESC
to changing conditions and requirements.

V. IMPLEMENTATION

ESC is written in Erlang, a programming language initially
designed at the Ericsson Computer Science Laboratory for
building telecoms switching systems. The sequential subset
of the language can be characterized as a strict functional
programming language which is largely free from side-
effects [7]. For concurrency the actor model [8] is employed.
Today, Erlang is seen as a general-purpose language and a

352

growing number of projects are implemented in Erlang, such
as Amazon SimpleDB [9], Apache CouchDB [10], and Yaws
[11]. Also the Facebook chat system is mainly written in
Erlang [12].

Erlang was designed for writing concurrent programs,
composed of concurrent processes which have no shared
memory and communicate by asynchronous message pass-
ing. The processes are lightweight and belong to the lan-
guage, not the operating system [13]. These basic features
of Erlang, allowing a large number of concurrent activities,
fit well to the needs of our stream computing platform ESC,
which in its core consists of concurrently running processing
elements. Erlang also makes it easy to distribute the platform
over several computers in a network. The soft real-time
capabilities of Erlang support the real-time character of
stream computing, and its hot code replacement features
enable ESC to conceptually run forever evolving over time
without restarts. Last but not least, Erlang represents a
“battle-proven” solution used in production systems for more
than two decades and comes with many powerful libraries.

VI. EVALUATION

For evaluation purposes we have applied ESC to the high-
frequency trading scenario introduced in Section II. In a
real algorithmic trading application the input PEs would
receive tick data from outside by using sockets or similar
networking technologies. In the evaluation, however, special
input PEs are used which create random tick data events
of the form (’stockticks’, context, symbol, ticklist), e.g.,
(’stockticks’, 55, ’MCD’, [(2010-01-31 9:05:10.798, $1.24),
. . .]). The context field is an integer incremented by the
input PEs for each emitted event; symbol is a random
identifier representing a stock and ticklist is a random
list of size 30, 000 in which each element consists of a
timestamp and a transaction price. A correlation PE takes
two events as input (’stockticks’, context, symbol1, ticklist1)
and (’stockticks’, context, symbol2, ticklist2), and outputs
(’corr’, context, symbol1+symbol2, corr(ticklist1,ticklist2)).
Events are joined based on the context, i.e., the operator
is triggered when events from both incoming neighbors
have been received which have the same context value.
Output events of correlation PEs are labeled corr, keep
the context value, have the key set to a concatenation
of symbol1 and symbol2, and a value according to the
correlation of ticklist1 and ticklist2. The computation of the
correlation is based on the homogenization of both lists
whose most costly operation is the sorting of both lists
by timestamps. A final value is computed as the Pearson
correlation of the homogenized transaction prizes. The max
PE reemits the event with the maximum correlation. The
balancer functions of each correlation and max PEs is set
to b : (t, c, k, v) 7→ hash1(k), which maps all events to 1,
leading to a single worker for each PE; all others PEs use
the function b : (t, c, k, v) 7→ const. The evaluation has been

executed in a private cloud environment and initially only
one node is attached to ESC’s pool.

The Autonomic Manager, which is responsible for adap-
tation, operates according to the following rules (expressed
in pseudo code). The analyze phase derives two types of
predicates, mn_overloaded stating whether all attached
machines are heavily loaded and pe_overloaded(x)
declaring whether a certain PE is overloaded by analyzing
the workers’ incoming message queues.
mn_overloaded :=
all nodes have workload > 95%

pe_overloaded(x) :=
one of x’s PE Operator processes

has incoming queue size > 6

The planning policies result in attaching a new machine if
mn_overloaded is true. If no further machine is available
the attach_machine action has no effect. The second
rule defines that if a PE using a hash function for load
balancing gets overloaded, then this function is replaced by
a function hashing to a tripled range.
IF mn_overloaded THEN attach_machine

IF pe_overloaded(x) AND
x’s balancer is hashN(.) THEN

set x’s balancer to hash3N(.)

During the evaluation we create requests, i.e., random stock
tick data for five stocks fed into ESC, at varying speed.
Initially each input PE creates an event every two seconds
(on average half a request per second), then the stress level
is incremented. The results of the evaluation are illustrated
in Figure 6. The x-axis shows the temporal course of the
evaluation in seconds. Each cross in the response time
section represents a request issued to the stream computing
program and the resulting response time. The requests per
second part depicts the average number of requests per
second and can be seen as the stress level, which is increased
over time. The next section shows the number of nodes
attached to the pool - initially one node is used. Finally,
the figure depicts the number of workers, i.e., the number
of PE Buffer/Operator pairs running in the ESC platform.

The response for the first three requests issued to the
system takes relatively long. This is due to the nature of
ESC to initialize PEs at the time when their functionality is
to be used. When the number of requests exceeds one per
second, the system becomes overloaded and the response
time clearly deteriorates. This situation triggers the attach-
ment of a second node to the pool (see ’#Nodes’) and the
creation of new workers (see ’#Workers’). The correlation
PEs have to compute the correlation based on long lists
and are by far the most heavily loaded processes. Their
overload manifests in growing input queues. This causes
the hash1 balancer function to be replaced by a hash3
balancer functions. In that course, two new workers are

353

 1

 2

 3

 4

 5

 6

 7

Response time

 1
 2
 3

Requests per second

 1
 2
 3
 4

#Nodes

 10
 20
 30

 30 60 90 120 150 180 210 240 270

#Workers

Figure 6. Results of the conducted experiment, a high-frequency trading scenario. Each cross in the section ’Response time’ represents the response time
in seconds for a single request. A request consists of five stocks each described by 30, 000 tick values. The response contains the two maximally correlated
stocks. ’Requests per second’ shows the average number of requests per second and can be regarded as the stress level. ’#Nodes’ depicts the number of
nodes attached to ESC’s pool. ’#Workers’ informs about the number of PE Buffer/Operator processes currently running. The system is able to adapt to an
increasing stress level by automatically adding nodes and creating new workers.

created on the least loaded machine. These adaptations are
controlled by the Autonomic Manager. The increment to two
requests per second causes another peak in the response time
which is countered by attaching a third node and a further
increase in the number of workers. The final peak resulting
from the final increase of the stress level can be resolved
by increasing the workers. The quite high final jump in
’#Workers’ illustrates the replacement of a hash3 balancer
by a hash9 function. All in all, ESC was able to detect
overload situations and to dynamically adapt the platform by
requesting more machines from the cloud and by increasing
the number of concurrently running workers.

VII. RELATED WORK

The Google MapReduce [3] framework is a programming
model and an associated implementation for processing and
generating large data sets in a batch oriented mode. It is
inspired by functional programming, which often uses map
and reduce functions. MapReduce’s simple key/value based
programming model and its scalability are probably the key
to its enormous popularity. Dryad [14], a project at Microsoft
Research, has similar features to MapReduce, but uses DAGs
as a more flexible way of specifying applications. In that

respect ESC and Dryad are similar. However, in contrast to
ESC, Dryad is explicitly targeted at batch processing and
not at online stream processing. In [15], the authors propose
modifications of Hadoop, an open-source implementation
of MapReduce, that allows data to be pipelined between
operators. This extends MapReduce in that it is better
suitable to deal with real-time requirements. A similar aim
is pursued in [16]. Changes to Hadoop are presented in
order to completely remove the barrier between the Map
and Reduce stages. This can improve the performance of
MapReduce but has a negative influence on the ease of
programming. S4 [17] is similar to ESC in that it is designed
for stream processing of key/value based events. In contrast
to ESC it does not specify programs as DAG and depends on
Zookeeper, which provides functionality such as automatic
failover. In the current version it lacks adaptability features
such as dynamic load balancing. SPC [18] is a platform
to support stream-mining applications using a subscription-
like model for specifying stream connections. According to
[17], SPC is restricted to highly specialized applications. The
related area of complex event processing also deals with the
analysis of events, but these systems often focus on complex

354

events and queries rather than high throughput and a simple
programming model. The STREAM project [19] investigates
data management and query processing for long-running
queries over streams of data. It deals with building a general-
purpose prototype data stream management system and
features an own query language. Borealis [20] is a stream
processing engine combining the experiences of two projects
called Aurora [21], a centralized engine, and Medusa [22],
providing distribution.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented our new stream computing platform
called ESC. It provides a simple programming model for
programmers based on DAGs and hides complexity coming
along with aspects such as distribution and fault tolerance.
The basic architecture and functionality of ESC have been
discussed. We have demonstrated the ability of our engine
to dynamically adapt to varying workloads based on a high-
frequency trading scenario.

In the future we plan to investigate ESC’s capabilities in
further scenarios and to compare it to other platforms in
more detail. To improve its performance we will examine
the possibilities to incorporate graphics processing units
(GPUs). In this case ESC would be responsible for the basic
execution of a program, but suitable tasks are outsourced
to the GPU. Another research direction is to use service
level agreements (SLAs) for specifying requirements such
as responsiveness. The platform would be responsible for
monitoring and enforcing these SLAs. Further links for
future work are concurrent execution of multiple programs,
heterogeneous environments, quality of data considerations,
and more sophisticated adaptation strategies.

ACKNOWLEDGEMENT

Financial support by the European Commission (FP7,
Grant Agreement no. 257483) is gratefully acknowledged.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “A view of cloud computing,” Commun. ACM,
vol. 53, pp. 50–58, April 2010.

[2] Ericsson AB, “Erlang/OTP System Documentation
5.8.2,” http://www.erlang.org/doc/pdf/otp-system-
documentation.pdf, Dec 2010.

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” in OSDI 2004, San Francisco,
CA, USA, 2004, pp. 137–150.

[4] M. M. Dacorogna, R. Gençay, U. Müller, R. B. Olsen, and
O. V. Picted, An Introduction to High-Frequency Finance.
Academic Press, May 2001.

[5] P. Horn, “Autonomic Computing: IBM’s per-
spective on the state of information technology.”
http://www.research.ibm.com/autonomic/, 2001.

[6] J. O. Kephart and D. M. Chess, “The vision of Autonomic
Computing,” Computer, vol. 36, no. 1, pp. 41–50, 2003.

[7] J. Armstrong, “Making reliable distributed systems in the
presence of software errors,” Ph.D. dissertation, The Royal
Institute of Technology, Stockholm, Sweden, December 2003.

[8] G. Agha, Actors: a model of concurrent computation in
distributed systems. Cambridge, MA, USA: MIT Press, 1986.

[9] “Amazon SimpleDB,” http://aws.amazon.com/simpledb/.

[10] “Apache CouchDB,” http://couchdb.apache.org/.

[11] “Yaws,” http://yaws.hyber.org/.

[12] E. Letuchy, “Facebook Chat,” May 2008. [Online]. Available:
”http://www.facebook.com/note.php?note id=14218138919”

[13] J. Armstrong, “A history of Erlang,” in HOPL 2007, New
York, NY, USA, 2007.

[14] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building
blocks,” in EuroSys 2007, New York, NY, USA, 2007, pp.
59–72.

[15] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears, “MapReduce online,” EECS
Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2009-136, Oct 2009.

[16] A. Verma, N. Zea, B. Cho, I. Gupta, and R. Campbell,
“Breaking the MapReduce stage barrier,” in CLUSTER 2010,
Heraklion, Crete, Greece, 2010, pp. 235 –244.

[17] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4:
Distributed stream computing platform,” in ICDM Workshops.
IEEE Computer Society, 2010, pp. 170–177.

[18] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen, R. King,
P. Selo, Y. Park, and C. Venkatramani, “SPC: a distributed,
scalable platform for data mining,” in DMSSP ’06, New York,
NY, USA, 2006, pp. 27–37.

[19] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar,
K. Ito, R. Motwani, U. Srivastava, and J. Widom, “STREAM:
The Stanford data stream management system,” Stanford
InfoLab, Technical Report 2004-20, 2004.

[20] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,
M. Cherniack, J.-H. Hwang, W. Lindner, A. S. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik,
“The Design of the Borealis Stream Processing Engine,” in
CIDR 2005, Asilomar, CA, USA, 2005.

[21] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. B. Zdonik,
“Monitoring streams - a new class of data management
applications,” in VLDB 2002, Hong Kong, China, 2002.

[22] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Çetintemel, Y. Xing, and S. B. Zdonik, “Scalable dis-
tributed stream processing,” in CIDR 2003, Asilomar, CA,
USA, 2003.

355

