
A Fresh Look At Modeling
Distributed Reactive Systems

Roland Moser, Schahram Dustdar
Vienna University of Technology

Vienna, Austria
e0125617@student.tuwien.ac.at,

dustdar@infosys.tuwien.ac.at

Johannes Gutleber, Luciano Orsini
CERN

Geneva, Switzerland
johannes.gutleber@cern.ch,

luciano.orsini@cern.ch

Abstract—Scalable, distributed reactive systems require a
scalable control infrastructure. Being able to model such an
infrastructure is a prerequisite for putting it into place. In
current systems, finite state machine based approaches are
prevailing. They are, however, limited by their nature and
hamper further improvements. Extensions like statecharts have
emerged to alleviate those shortcomings. Despite all this work,
the proposed improvements do not live up to the requirements of
continuously operating distributed systems. Therefore we look
for alternatives that break with the underlying state-based
model. Workflow systems recently became mature enough to be
considered for use cases going beyond small-scale business
applications. The concept on which they build is promising to
scale to large systems. This paper compares various modeling
technologies using the real-world scenario of distributed data
acquisition systems as we find them in currently operating high-
energy physics installations at the Large Hadron Collider at
CERN. The outcome of our qualitative evaluation will show that
current finite state machine compared to workflow based
approaches have a bigger gap between specification and executed
processes. Consequently workflow based approaches are better
suited for the use case at hand and require less custom software
extensions to reduce the remaining gap.

Keywords—distributed systems; reactive systems; state
machines; state charts; ECA rules; workflows; web services

I. INTRODUCTION
With ever growing amounts of data to be processed and

with systems that are built rather from composing services than
designing them at the drawing board, mastering system
complexity becomes a challenge. To avoid inconsistencies at
runtime, the gap between specification and running processes
must be kept small [1]. Ideally processes are a result of directly
executing models. In this context we evaluate different
specification models.

Models must be able to address diverse problems.
Installations need to scale up to several thousands of
interconnected nodes, include heterogeneous, interdependent
services from a number of different vendors. Tasks contain
real-time paths and most important do not have a single flow of
execution. These systems are ever-running distributed
applications that cooperate autonomously to process data [2].

Systems of that kind prevail in environmental monitoring
[3], power distribution [4], plant control systems [5] and high
energy physics installations [6] [7]. Traditional architectures to
build operating systems for those domains frequently match
one of the following three categories: (i) state-based, (ii) rule-
based or (iii) programmatic (flow-based).

Our analysis emerges from first hand experience evaluating
a real system that has been put in place at CERN to operate one
of the Large Hadron Collider experiments. As a result, we had
to understand the limitations of traditional approaches.

In the search of an architecture, which better fits today’s
information systems, we follow the trail of web service
oriented architectures that are tightly bound to workflows for
coordination and control purposes [8].

Our experience report on real-scale, currently operating
high-energy physics applications may help identifying key
factors for modeling approaches that fit the requirements of
distributed reactive systems .

II. MOTIVATION
Having reviewed recently commissioned distributed data

acquisition systems at CERN [9] [10] [11] [12] [13] we
identified several limitations in traditional approaches to build
systems for configuration, control and monitoring. In addition
we found our results to be applicable to a much larger family of
systems that we generally call distributed reactive systems. The
motivation for this paper is to understand better the efficacy of
different modeling approaches for generalized, distributed,
reactive systems. Reactive systems, in contrast to
transformational systems, usually terminate only on failure and
generate responses to external stimuli as and when they occur
[2]. The following section presents the data acquisition system
of a project in which we are currently involved and that serves
us as an example. The characteristics of the system at hand are
not unique and can be found in systems akin as well as related
application domains.

A. High Energy Physics
High-energy physics belongs to the domain of particle

physics. Charged, subatomic particles are accelerated and
brought to collision at high rate in intersecting storage rings.
When particles interact at predetermined collision points in the

2013 IEEE Third International Conference on Cloud and Green Computing

978-0-7695-5114-2/13 $26.00 © 2013 IEEE

DOI 10.1109/CGC.2013.83

494

2013 IEEE Third International Conference on Cloud and Green Computing

978-0-7695-5114-2/13 $26.00 © 2013 IEEE

DOI 10.1109/CGC.2013.83

494

2013 IEEE Third International Conference on Cloud and Green Computing

978-0-7695-5114-2/13 $26.00 © 2013 IEEE

DOI 10.1109/CGC.2013.83

494

Fig. 2. An example for a distributed data acquisition architecture for a
high energy physics installations.

Fig. 1. The Compact Muon Solenoid experiment for the Large Hadron
Collider at CERN.

ring, the total energy of the interaction partners is converted
into matter. So new particles are created that escape in all
directions. Every such interaction, called an event, is uniquely
identified for later analysis. Multiple detector layers surround
each interaction points (see Fig. 1). Each one is sensitive to a
certain type of particles and hence newly created matter can be
traced, quantified and identified. Groups of detector elements
are connected to custom electronic readout devices that
forward acquired data to deep buffers at high speed. Data from
one detector collected in a single buffer are called a fragment.
The sum of all fragments makes up the data of one event,
which we can analyze using physics algorithms. For
processing, a full event must be built in a single place. To cope
with the high frequency at which event data are produced each
event is built and analyzed in a separate processing unit of a
computing cluster. This is possible, because collision events
are independent from each other. Analysis of event data is
based on a set of selection/rejection algorithms that are applied
to the data in several steps. If an event does not satisfy the
required properties, it is discarded, i.e. it will not be stored
persistently for finer grained investigation.

Such computing systems are rather data bound than CPU
bound. Data rates that we find in current systems are enormous.
The Large Hadron Collider experiments having entered
operation in September 2008 must eventually cope with an
interaction rate of 40 MHz. Since no purely software-based
distributed system may digest the total detector data of 1
MByte for a single event every 25 ns to date, pre-selection is
performed in custom built, pipelined processors that reside
close to the detectors. A resulting 100 kHz data rate to the
fragment buffers poses still a challenging task. Each fragment
is on average 2 KBytes large and about 500 buffers are needed
to temporarily store the data. Buffers are essentially embedded
computing systems equipped with IO processors, since the data

have to be transferred over switched networks to the processors
that host the analysis algorithms. Such a switched network
requires an aggregate throughput of 800 Gbps with a total
number of about 1000 logical ports. To perform the processing
in time, i.e. before a fragment buffer overruns, a total of 5
TOps processing power is needed today. Since scaling of such
a fully connected network has to be ensured, thorough research
has been invested in efficient traffic shaping algorithms [14]
[15] [16].

B. Data Acquisition
A data acquisition (DAQ) system for an LHC scale high-

energy physics experiment can be architected as a distributed
computing system (see Fig. 2). In a DAQ cluster, a set of
application modules, distributed over the nodes in the system,
collaborate to perform data taking tasks. In contrast to number-
crunching systems that dominate the parallel-computing
domain, distributed systems for data acquisition are dominated
by throughput and scaling requirements [6] [17]. The DAQ
system is embedded in the experiment and interacts with
custom hardware, detector readout and trigger system.

C. Case Study
The presented use case has been picked among a variety of

scenarios. It is not limited to the system at hand but largely
applies to other distributed reactive systems. We consider it a
good use case for evaluation as it contains aspects that we
require to find fulfilled by a modeling approach that targets
distributed reactive systems. In particular we can analyze on
how to model the following aspects with different modeling
approaches:

- Synchronization in regards to dependencies between
sub processes,

- Parallelization to efficiently model independent sub
processes,

- Parameterization of models to deal with changes to
the system layout transparently without changes to
models.

In addition this use case allows us to analyze which
protocols are natively supported by standard tools and if and
how they deal with non-standard communication protocols.

495495495

Fig. 3. A simplified example for dependencies in a bootstrapping
scenario of a data acquisition architecture in high energy physics
installations. Elements with gray background are primarily used for
analysis.

TABLE I. EVALUATION CRITERIA

Criteria Description
Primary Criteria

Functional What is to be performed and why
Task Capability to group behaviour
Task Decomposition Organizing tasks into subtasks
Input Modelling of unstructured input data
Output Modelling of unstructured output data

Organizational Who performs
Resources Local or distributed resources
Participants Programs, Humans
Structures Grouping of resources
Roles Roles can be assigned to participants

Informational What information is required
Application data Data manipulated by the process
Meta data Associated with process data

interpreted by model engine
Control data All execution related data

Behavioural When and how is it performed
Sequence Dependencies
Parallel Modelling of parallel processes
Constraint Pre and post conditions
Temporal Constraint Duration, timeout, real-time behaviour
Branching (Conditional) splitting into multiple

parallel processes
Loop Repeat until a condition is true
Synchronization Joins, rendezvous
Triggers (External) events

Operational How is it performed (interfaces)
Secondary Criteria

Security Who is allowed to access
Causality To enforce consistency
History What happened during execution
Integrity Recovery from failures

Consider a bootstrapping scenario in which the operator
brings the computers, networks and applications into a state
ready for operation (Fig. 3). Initially all equipment is power
cycled and the health status of the system is determined. The
overall state is derived from numerous diverse constituents.
Hardware gauges such as voltage levels and cooling need to be
taken into consideration, as well as assuring proper functioning
of system software such as drivers and daemons.

While some of the operations can be performed in parallel,
others require respecting interdependencies among different
components. Bootstrapping may continue for instance only if a
connection test has completed successfully. At software level,
directory servers must be operational before clients can run
their local daemons that connect to it. Using service discovery
with the service location protocol (SLP) [18] [19] requires that
a directory agent is running before all other daemon processes
on the participating computers. Reachability of computers is a
prerequisite that is ensured by a properly configured DHCP
environment, working name resolution in all subnets and a
running SSH program on each node.

In reality, the system at hand is not limited to the central
data acquisition partition, but is made up from a number of
sub-systems, each one associated to a sub-detector that together
make up the experiment. The outlined task serves therefore as a
template that must be applied to all subsystems. This requires
parameterization of the task with system and network
configuration as well as with run-time parameters that are
characteristic to each sub-system.

After presenting the model evaluation criteria, we match
the case study to (i) state machines, (ii) statecharts, (iii) ECA
rules and (iv) Web Workflows. State machines and statecharts
were chosen over petri nets and other state-based modeling
approaches as they are frequently used for scalable, distributed
reactive systems found in high-energy physics experiments [7].

ECA rules were selected as a concrete example for a rule-based
modeling approach that is used as core functionality in
distributed multi-agent systems [20]. Finally the paper shows
how the different models fit the evaluation criteria.

III. MODEL EVALUATION

A. Evaluation Criteria
We base our evaluation criteria on perspectives as

introduced in [1] [21] [22] [23]: (i) functional, (ii)
organizational, (iii) informational, (iv) behavioral and (v)
operational. Where required we add domain-relevant items (see
TABLE I.).

At all steps of the evaluation our motivation is to find a
small gap between specification and executed processes.
Blending programming in the small to circumvent modeling
deficiencies with high level modeling is however discouraged,
since it introduces elements into models, which are unrelated to
the processes and may directly influence its behavior [1] [24].

In addition to the standard perspectives, we have identified
evaluation properties depicted in TABLE II.

We base our report on first hand experience that we gained
by modeling various scenarios for an LHC experiment that is in
operation now. From this we derive qualitative criteria.

496496496

TABLE II. ADDITIONAL EVALUATION PROPERTIES

Criteria Description
Verification Model in conformance with its goals

Syntax Model in conformance with grammar
Semantic Model in conformance with (process)

goals
Structure Model will not lead to erroneous

execution

Fig. 4. Modelling a point of synchronization with two unordered
incoming events.

Fig. 5. Checking of two services (SSH and SLP) in parallel with flat
state machines.

Fig. 6. Statecharts with scripts (t1), parameterized events (t2) and
parameterized timeouts (t3).

B. Finite State Machines
Finite state machines (FSM) primarily model behavior

based on states and transitions. A state is the sum of all past
events, and transitions model changes of states on events
(triggers) [5]. Flat FSMs only allow one state to be active at
any point in time. They are not capable to directly model
aspects found in our use case: (i) functional, (ii) behavioral
(parallelism, synchronization) and (iii) organizational.

Functional, task decomposition: Exclusively modeling
behavior and not being able to model task decomposition is an
exclusion criteria for our application domain. In our case study
either we would have to model all actions in a single, flat state
machine or provide one state machine for each task to be
performed. The problem of the latter approach is that the model
does not allow us to bond together individual state machines.
As a matter of fact various products extend FSMs with this
feature at implementation level [7].

Behavior, parallelism: Our scenario contains independent
tasks that can be performed in parallel, like checking SLP and
SSH server on each node. Flat FSMs do not allow to directly
model this behavior. Representing all tasks in a single state
machine leads to state explosion (Fig. 5) [25].

Behavior, synchronization: As an example for a double
dependency of a service, consider the SLP daemon on a node
that requires a central directory agent to be operational and a
valid configuration file. The events to acknowledge the
presence of either precondition can be received in any order.
Therefore, modeling this task as a strictly sequential procedure
to overcome the lack of modeling capabilities becomes
difficult. Considering all combinations of event occurrences
makes the state machine grow exponentially (Fig. 4).

Organizational: Our system is composed of several
subsystems, built from a single blueprint. Each subsystem
maps to a set of network addresses, subnets, racks, power
distribution units and data acquisition circuits. An adequate
model must be able to separate the generic task description
from run-time data needed to achieve its goals. This separation
is not foreseen in FSMs.

C. Statecharts
Statecharts as introduced in [25] aim at overcoming

shortcomings of flat FSMs by providing a collection of
extensions: (i) clustering and refinement of states, (ii)
orthogonality and (iii) generalization of transitions. Those
concepts provide functional task decomposition and behavioral
modeling for parallel tasks including splits and joins as well as
input, output and temporary constraints. Some organizational
and operational deficiencies remain.

Organizational: The capability to support timeouts is
paramount to model distributed reactive systems. Although the
blueprint includes timeouts for the self-tests of the data-
acquisition hardware connected to particle detectors, these
timeouts vary with the subsystems depending on type of
hardware and number of cards that need to be tested.
Statecharts include a notation for specifying timeouts.
Timeouts trigger the emission of events. Although it is possible
to model timeouts with parameters there is no means to bind
these parameters to a subsystem definition that is part of the
organizational perspective (Fig. 6).

Operational: Staying with the above outlined example, we
see that our system is not closed but needs to interact with
other systems, when testing detector hardware electronics.
Integration requires interface specifications at model level.
Irrespective of specifying a test as an invocation of an external
program or as interactions with hardware registers at low level,

497497497

on event if condition do actions
Fig. 7. Standard form of ECA rules.

on init
 if exists(/etc/slp.conf)
 do SLPCONF=true; emit(startslp)
on started(SLPDA)
 do SLPDA=true; emit(startslp)
on startslp
 if SLPDA==true AND SLPCONF==true
 do action()

Fig. 8. Modelling synchronization point with ECA rules.

input parameters and results must be defined at the model
level. Since statecharts do not include the notation of modeling
resources and other organizational components, any action
specification with parameters remains colloquial and is not
verifiable against the specification.

Statecharts became standardized in the context of UML and
are thus a viable solution to model parts of distributed reactive
system [26]. However, they need to be combined with other
UML diagrams, such as interaction, timing and structure
diagrams, to model a system completely. UML does, however,
not specify how the diagrams are integrated.

D. Event Condition Action Rules
Event Condition Action (ECA) rules autonomously react to

an event by performing actions when the condition evaluates to
true [27] (Fig. 7).

ECA rules are inherently parallel where an event may have
attached additional information. Actions are scripts that change
variables or emit new events. The lack of grouping
functionality and association between rules, leads to problems
for modeling (i) functional, (ii) organizational and (iii)
operational perspectives.

Functional, task decomposition: The lack of any support
to structure the model imposes limitations on the size of the
system that can be described.

Organizational: Since no structuring is foreseen,
organizational components cannot be modeled explicitly. They
exist however implicitly by the presence of parameterized
events.

Behavioral, synchronization: Considering a dependency
on two events that may occur in any order, we unveil another
limitation of the model. We take again the example of starting
the SLP daemon on each system node that depends on a
reachable directory agent and a valid local configuration file.
This case can only be modeled indirectly though the use of
conditions and assuming that variables exist (Fig. 8). This
complication could be avoided by enforcing sequential
execution of checking configuration file validity and checking
for a running directory agent. This introduces additional
knowledge about internals of other subsystems, leading to error
prone system design. [28] presents a mapping of behavioral
aspects to ECA rules using patterns.

Operational: In the above outlined example, rules operate
on diverse subsystems. There is no formal description available
(a) to enforce the validity of interfaces and (b) to model
encapsulation.

Although ECA rules represent only a partial view of a
system model, they became popular in distributed reactive
systems with the advent of tool support to counterfeit the
problems induced by the lack to structure rules. As soon as
rules can be set into context of objects to which they apply, the
technology allows to come to scalable models in a scalable
manner, since all points listed under functional and
organizational aspects can be realized. Initially tool support
was highly custom, e.g. through the introduction of data points
[29]. Through the introduction of the IEC 61499 standard [30],
ECA rules have evolved into a model that fits better the real

world. Most important, the problem of scheduling rule
execution has been addressed by introducing the concept of
Execution Control Charts (ECC). Rules are associated to states
of the functional block. What remains to be addressed in this
extended model is the organizational domain. Currently it is
still difficult to produce abstract tasks that afterwards can be
mapped to concrete system configurations. The model is very
much tied to industrial control systems, but has great potential
to evolve into a generalized methodology.

Research is still ongoing for standardizing the execution
model that is a prerequisite to validate that a model exhibits the
same run-time behavior in different scenarios using different
execution platforms. The approach taken with ViDRE to
execute business rules was to define a standardized Web
Service interface that can be implemented with different rule
engines [31] [32] [33]. For distributed reactive systems as
outlined in this paper, we however need the model to interact
directly with the distributed reactive system. In particular the
model needs to be able to communicate with application
services to evaluate conditions of and to perform actions on
application services.

E. Workflows
We see the Business Process Execution Language (BPEL)

as the unified approach for modeling Web Workflows. It is
based on individual approaches by IBM, Microsoft and Oracle.
Workflows are a formal representation of a process to model
reactive systems. They have their roots in modeling document-
based executable business processes. The separation of Web
Services from their underlying technologies made it possible to
define a technology independent programming model. The
choice for this model in the service-oriented architecture
(SOA) fell on workflows. While Web Service standards are
concerned with describing service interfaces, Web Workflows
aim at orchestrating these services. Actually, what is denoted
by Web Workflows is entirely decoupled from concrete
implementations, systems and technologies and represents the
distilled essence as outlined in XML, WSDL and BPEL. This
concept is effective because it abstracts from real-world
scenarios as opposed to traditional modeling concepts that must
be mapped to existing technologies [34].

We extend the example of starting an SLP daemon, which
depends on a reachable directory agent and a valid
configuration by modeling the checking the availability of a
central directory agent as a separate workflow with

498498498

Fig. 9. Modelling SLP startup with Web workflows.

(a) (b)

Fig. 10. SLP daemons depend on the local host to be booted and a central
SLP directory agent.

configurable timing constraints (Fig. 9). Based on this, we
analyze the different perspectives.

Behavioral: Workflows natively support parallel flows of
activities, branching, synchronization and loops. Sequential
flows have to be explicitly modeled using transitions between
activities [35]. Activities with multiple outgoing connections
represent unconditional branching, and activities with multiple
incoming transitions are points of synchronization and allow
specifying a join condition.

Functional: Workflows allow decomposing systems into
tasks, which are either atomic activities (e.g. wait, receive,
reply and assign) or workflows.

Operational: Workflows are Web Services with well-
defined interfaces in WSDL that allow attaching parameters to
requests and responses, and let us validate messages.

Informational: Application data are formulated in XML
and transformations can be modeled with explicit assignment
activities formulated as XPath expressions.

Organizational: Our system consists of several
subsystems, built from the same blueprint. Although
Workflows support generic modeling of tasks, and activities
can be fully parameterized with variables, binding of
organizational data to subsystem definitions is not foreseen.
Instead the organizational aspects must be modeled with the
help of other primary perspectives.

Integrity: Failures are modeled as exceptions. Thus, error
recovery can be modeled in fault handlers (catch clause) close
to the execution flow [36].

Although Web Workflows provide native support for four
out of five primary perspectives, some scenarios found in our
use case still cannot be modeled efficiently.

Verification: Verifying the model is not possible for all
perspectives. The organizational perspective is modeled with
the help of informational and operational aspects and can only
be checked at runtime. Simulating the system also proves to be
difficult, as Workflows interact with unpredictable real-world
systems.

Behavioral, dynamic parallel flows: Starting all SLP
daemons requires that all computers that host SLP daemons are
booted and that the directory agent is reachable. As the number
of hosts is configuration dependent, we only model the
sequence of booting a single host. Starting all the SLP daemons
is performed in a parallel loop. This, however, prevents us
from efficiently modeling the second dependency from outside
the loop (Fig. 10). Either all hosts have to be booted and a
central SLP directory agent is running before the first SLP
daemon is started (Fig. 10a) or a central SLP directory agent is
running before any SLP directory agent is started (Fig. 10b).
Either approach introduces a bottleneck.

Web Workflows provide a complete model that tightly
integrates all five perspectives. They can be directly executed
and allow integration with existing services through standard
Web Service interfaces.

IV. CONCLUSION
Our primary motivation is to keep the gap between

specification and executed processes small. To keep additional
complexity induced by working around deficiencies in model
features small, we foster a modeling approach that natively
supports all outlined perspectives. TABLE III. gives an
overview of how well the different models support the
evaluation criteria based on our experience that we gained in
modeling scenarios in our project: (+) natively supported, (o)
supported with specific patterns and (-) not foreseen or
significant complexity increase.

Traditional modeling concepts have their roots in designing
monolithic and often in-silicon systems. These models do not
easily fit today’s requirements on distribution, system size,
extensibility and a growing degree of complexity as well as
dynamic reconfiguration. Other perspectives, such as security
are entirely unforeseen and therefore almost unthinkable to

499499499

TABLE III. EVALUATION RESULTS

Fi
ni

te
 st

at
e

m
ac

hi
ne

s

St
at

ec
ha

rts

EC
A

 ru
le

s

W
eb

 W
or

kf
lo

w

Functional - + - +
Organizational - o - o
Informational - - + +
Behavioural - + o +
Operational - - - +
Security - - - -
Causality + + - -
History + + - +
Integrity - - + +
Verification + o o o
Gap large medium medium small

retrofit. IEC61499 is a valid candidate to unify statecharts and
ECA rules into a new, complete modeling architecture that has
enough support from industry and academia to penetrate many
domains. On the other side the standard originates from
industrial control and has therefore a strong focus on modeling
closed and embedded systems.

Web Workflows on the other side emerged as an
abstraction from real-world application scenarios and are still
evolving with them. Models are strongly concerned with
interfaces and orchestrating services described by those
interfaces. Here, the problem lies rather in fitting the execution
support to the tight constraints of high-performance distributed
real-time systems, rather than fixing modeling deficiencies.

As shown in this qualitative evaluation, finite state machine
approaches as prevailing in physics experiments have a
significant gap between model and execution. This lead to
development of custom tools that bridge this gap with custom
extensions [7]. Web workflows on the other hand support four
out of the five views natively and one organization view using
the informational view. They show a small gap between
specification and executed processes and allow direct
execution of models assuming that communication with the
services is based on SOAP. Web Workflow tools such as
ActiveBPEL also allow to extend the workflow engine to
support additional communication protocols that can be used
by models transparently through custom invocation handlers
[37].

As a result of our comparison work, we chose to launch a
project to evaluate Web Workflows for modeling, designing
and executing the scenarios outlined in this article. Initial
results of the ongoing project are encouraging, but if
workflows are indeed a novel technology that can address the
described kind of systems still remains to be elucidated in
detail.

ACKNOWLEDGMENT
We wish to thank the CMS collaboration for providing the

infrastructure to carry out the project.

REFERENCES
[1] B. Curtis, Kellner M., and J. Over, "Process Modeling," Communications

of the ACM, vol. 35, no. 9, pp. 75-90, 1992.
[2] D. Harel and A. Pnueli, "On the Development of Reactive Systems,"

Logics and models of concurrent systems, pp. 477-498, 1985.
[3] J. Gutleber, G. Schimak, and H. Humer, "Using Active Behaviour in

Environmental Monitoring Systems," in IFIP TC5 WG5.11 International
Symposium on Environmental Software Systems, 1997, pp. 128-135.

[4] H. Gjermundrod, D.E. Bakken, C. H. Hauser, and A. Bose, "GridStat: A
Flexible QoS-Managed Data Dissemination Framework for the Power
Grid," IEEE Transactions on Power Delivery, 2008.

[5] Y.R. Martin, S. Coda, B.P. Duval, X. Llobet, and J.-M. Moret, "A new
plant control software for the TCV tokamak," in paper presented at
ICALEPCS 2005, 2005.

[6] J. Gutleber, R. Moser, and L. Orsini, "Data Acquisition in High-Energy
Physics," in Astronomical Data Analysis Software & Systems XVII, 2008,
pp. 47-56.

[7] B. Franek and C. Gaspar, "SMI++ object oriented framework used for
automation and error recovery in the LHC experiments," J. Phys.: Conf.
Ser., vol. 219, no. 2, 2010.

[8] F. Daniel and B. Pernici, "Web Service Orchestration and Choreography:
Enabling Business Processes on the Web," E-Business Models, Services,
and Communications - Advances in E-Business Research Series, vol. 2,
pp. 251-274, Nov. 2007.

[9] The ALICE Collaboration, "The ALICE experiment at the CERN LHC,"
JINST 3 S08002, 2008.

[10] The ATLAS Collaboration, "The ATLAS Experiment at the CERN
Large Hadron Collider," JINST 3 S08003, 2008.

[11] The CMS Collaboration, "The CMS experiment at the CERN LHC,"
JINST 3 S08004, 2008.

[12] The LHCb Collaboration, "The LHCb Detector at the LHC," JINST 3
S08005, 2008.

[13] L. Evans and P. Bryant, "LHC Machine," JINST 3 S08001, 2008.
[14] E. Barsotti, A. Booth, and M. Bowden, "Effects of various event building

techniques on data acquisition system architectures," in Fermilab note
FERMILAB-CONF-90/61, Batavia, IL, USA, 1990.

[15] G. Bauer et al., "Effects of Adaptive Wormhole Routing in Event Builder
Networks," IEEE Transactions on Nuclear Science, vol. 55, no. 1, pp.
182-189, Feb. 2008.

[16] G. Bauer et al., "The data-acquisition system of the CMS experiment at
the LHC," J. Phys.: Conf. Ser., vol. 331, no. 022021, 2011.

[17] J. Gutleber, S. Murray, and L. Orsini, "Towards a homogeneous
architecture for high-energy physics data acquisition systems," in Comp.
Phys. Comm., 2003, pp. 153:155-163.

[18] E. Guttman, C. Perkins, J. Vaizades, and M. Day. (1999) Service
Location Protocol, Version 2. [Online]. HYPERLINK
"http://www.ietf.org/rfc/rfc2608.txt" http://www.ietf.org/rfc/rfc2608.txt

[19] E. Guttman. (2002, Jan.) Vendor Extensions for Service Location
Protocol, Version 2. [Online]. HYPERLINK
"http://tools.ietf.org/html/rfc3224" http://tools.ietf.org/html/rfc3224

[20] K. Taveter and G. Wagner, "Agent-Oriented Enterprise Modeling Based
on Business Rules," in ER '01 Proceedings of the 20th International
Conference on Conceptual Modeling: Conceptual Modeling, 2001, pp.
527-540.

[21] S. Jablonski and C. Bussler, Workflow Management: Modeling Concepts,
Architecture, and Implementation.: International Thomson, 1996.

[22] M.M. Kwan and P.R. Balasubramanian, "Dynamic Workflow
Management: A Framework for Modeling Workflows," in Proc. 13th
Hawaii International Conference on System Sciences, vol. 4, 1997, pp.
367-376.

[23] M. Zur Muehlen, Workflow-based Process Controlling: Foundation,
Design, and Application of Workflow-driven Process Information
Systems.: Logos, 2004.

500500500

[24] F. DeRemer and H. Kron, "Programming-in-the-large versus
Programming-in-the-small," in Proc. int. conference on Reliable
software, 1975, pp. 114-221.

[25] D. Harel, Statecharts: A visual formalism for complex systems. Rehovot,
Israel: Department of Applied Mathematics, The Weizmann Institute of
Science, 1987.

[26] S.W. Ambler, The Object Primer. Agile Model-Driven Development with
UML 2.0.: Cambridge University Press, 2004.

[27] J. Iturrioz, O. Díaz, and I. Azpeitia, "Reactive tags: associating behaviour
to prescriptive tags," in HT '11 Proceedings of the 22nd ACM conference
on Hypertext and hypermedia, New York, 2011, pp. 191-200.

[28] L. Chen, M. Li, J. Cao, and Y. Wang, "An ECA Rule-based Workflow
Design Tool for Shanghai Grid," in 2005 IEEE International Conference
on Services Computing, vol. 1, 2005, pp. 325-328.

[29] S. Schmeling, "Common tools for large experiment controls: A common
approach for deployment, maintenance, and support," IEEE Transactions
on Nuclear Science, vol. 53, no. 3:1, pp. 970-973, 2006.

[30] G. Cengic, O. Ljungkrantzand, and K. Akesson, "A Framework for
Component Based Distributed Control Software Development Using IEC
61499," in IEEE Conference on Emerging Technologies and Factory
Automation, 2006, pp. 782-789.

[31] C. Nagl, F. Rosenberg, and S. Dustdar, "ViDRE - A Distributed Service-
Oriented Business Rule Engine based on RuleML," in 10th IEEE
International Enterprise Distributed Object Computing Conference
(EDOC'06), 16. - 20. October 2006, 2006.

[32] F. Rosenberg, C. Nagl, and S. Dustdar, "Applying Distributed Business
Rules - The ViDRE Approach," in IEEE International Conference on
Services Computing (SCC'06), Services Computing Contest (SOA
Contest 2006), 18. - 22. September 2006, Chicago, USA, 2006.

[33] F. Rosenberg and S. Dustdar, "Business Rules Integration in BPEL - A
Service-Oriented Approach," in 7th International IEEE Conference on
E-Commerce Technology (CEC 2005), 19 - 22 July 2005, Munich,
Germany, 2005.

[34] M. Vasko and S. Dustdar, "A view based analysis of workflow modeling
languages," in IEEE PDP 2006 - 14th EUROMICRO Conference on
Parallel, Distributed and Network-based Processing, 15 - 17 February,
2006, Montbéliard-Sochaux, France, 2006.

[35] N. Russell, A. ter Hofstede, W. van der Aalst, and Nataliya Mulyar,
"Workflow ControlFlow Patterns: A Revised View," , 2006,
http://www.workflowpatterns.com/documentation/documents/BPM-06-
22.pdf.

[36] R. Shapiro, A Technical Comparison of XPDL, BPML and BPEL4WS.:
Cape Visions, 2002.

[37] T. Dornemann, E. Juhnke, and B. Freisleben, "On-Demand Resource
Provisioning for BPEL Workflows Using Amazon's Elastic Compute
Cloud," in CCGRID '09 Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, 2009, pp.
140-147.

[38] F. Daniel and B. Pernici, "Insights into Web Service Orchestration and
Choreography," International Journal of E-Business Research, vol. 2,
no. 1, pp. 58-77, 01-03 2006.

501501501

