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Abstract—Scalable, distributed reactive systems require a 
scalable control infrastructure. Being able to model such an 
infrastructure is a prerequisite for putting it into place. In 
current systems, finite state machine based approaches are 
prevailing. They are, however, limited by their nature and 
hamper further improvements. Extensions like statecharts have 
emerged to alleviate those shortcomings. Despite all this work, 
the proposed improvements do not live up to the requirements of 
continuously operating distributed systems. Therefore we look 
for alternatives that break with the underlying state-based 
model. Workflow systems recently became mature enough to be 
considered for use cases going beyond small-scale business 
applications. The concept on which they build is promising to 
scale to large systems. This paper compares various modeling 
technologies using the real-world scenario of distributed data 
acquisition systems as we find them in currently operating high-
energy physics installations at the Large Hadron Collider at 
CERN. The outcome of our qualitative evaluation will show that 
current finite state machine compared to workflow based 
approaches have a bigger gap between specification and executed 
processes. Consequently workflow based approaches are better 
suited for the use case at hand and require less custom software 
extensions to reduce the remaining gap. 

Keywords—distributed systems; reactive systems; state 
machines; state charts; ECA rules; workflows; web services 

I.  INTRODUCTION 
With ever growing amounts of data to be processed and 

with systems that are built rather from composing services than 
designing them at the drawing board, mastering system 
complexity becomes a challenge. To avoid inconsistencies at 
runtime, the gap between specification and running processes 
must be kept small [1]. Ideally processes are a result of directly 
executing models. In this context we evaluate different 
specification models. 

Models must be able to address diverse problems. 
Installations need to scale up to several thousands of 
interconnected nodes, include heterogeneous, interdependent 
services from a number of different vendors. Tasks contain 
real-time paths and most important do not have a single flow of 
execution. These systems are ever-running distributed 
applications that cooperate autonomously to process data [2]. 

Systems of that kind prevail in environmental monitoring 
[3], power distribution [4], plant control systems [5] and high 
energy physics installations [6] [7]. Traditional architectures to 
build operating systems for those domains frequently match 
one of the following three categories: (i) state-based, (ii) rule-
based or (iii) programmatic (flow-based). 

Our analysis emerges from first hand experience evaluating 
a real system that has been put in place at CERN to operate one 
of the Large Hadron Collider experiments. As a result, we had 
to understand the limitations of traditional approaches. 

In the search of an architecture, which better fits today’s 
information systems, we follow the trail of web service 
oriented architectures that are tightly bound to workflows for 
coordination and control purposes [8]. 

Our experience report on real-scale, currently operating 
high-energy physics applications may help identifying key 
factors for modeling approaches that fit the requirements of 
distributed reactive systems . 

II. MOTIVATION 
Having reviewed recently commissioned distributed data 

acquisition systems at CERN [9] [10] [11] [12] [13] we 
identified several limitations in traditional approaches to build 
systems for configuration, control and monitoring. In addition 
we found our results to be applicable to a much larger family of 
systems that we generally call distributed reactive systems. The 
motivation for this paper is to understand better the efficacy of 
different modeling approaches for generalized, distributed, 
reactive systems. Reactive systems, in contrast to 
transformational systems, usually terminate only on failure and 
generate responses to external stimuli as and when they occur 
[2]. The following section presents the data acquisition system 
of a project in which we are currently involved and that serves 
us as an example. The characteristics of the system at hand are 
not unique and can be found in systems akin as well as related 
application domains. 

A. High Energy Physics 
High-energy physics belongs to the domain of particle 

physics. Charged, subatomic particles are accelerated and 
brought to collision at high rate in intersecting storage rings. 
When particles interact at predetermined collision points in the 
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Fig. 2. An example for a distributed data acquisition architecture for a 
high energy physics installations. 

 
Fig. 1. The Compact Muon Solenoid experiment for the Large Hadron 
Collider at CERN. 

ring, the total energy of the interaction partners is converted 
into matter. So new particles are created that escape in all 
directions. Every such interaction, called an event, is uniquely 
identified for later analysis. Multiple detector layers surround 
each interaction points (see Fig. 1). Each one is sensitive to a 
certain type of particles and hence newly created matter can be 
traced, quantified and identified. Groups of detector elements 
are connected to custom electronic readout devices that 
forward acquired data to deep buffers at high speed. Data from 
one detector collected in a single buffer are called a fragment. 
The sum of all fragments makes up the data of one event, 
which we can analyze using physics algorithms. For 
processing, a full event must be built in a single place. To cope 
with the high frequency at which event data are produced each 
event is built and analyzed in a separate processing unit of a 
computing cluster. This is possible, because collision events 
are independent from each other. Analysis of event data is 
based on a set of selection/rejection algorithms that are applied 
to the data in several steps. If an event does not satisfy the 
required properties, it is discarded, i.e. it will not be stored 
persistently for finer grained investigation. 

Such computing systems are rather data bound than CPU 
bound. Data rates that we find in current systems are enormous. 
The Large Hadron Collider experiments having entered 
operation in September 2008 must eventually cope with an 
interaction rate of 40 MHz. Since no purely software-based 
distributed system may digest the total detector data of 1 
MByte for a single event every 25 ns to date, pre-selection is 
performed in custom built, pipelined processors that reside 
close to the detectors. A resulting 100 kHz data rate to the 
fragment buffers poses still a challenging task. Each fragment 
is on average 2 KBytes large and about 500 buffers are needed 
to temporarily store the data. Buffers are essentially embedded 
computing systems equipped with IO processors, since the data 

have to be transferred over switched networks to the processors 
that host the analysis algorithms. Such a switched network 
requires an aggregate throughput of 800 Gbps with a total 
number of about 1000 logical ports. To perform the processing 
in time, i.e. before a fragment buffer overruns, a total of 5 
TOps processing power is needed today. Since scaling of such 
a fully connected network has to be ensured, thorough research 
has been invested in efficient traffic shaping algorithms [14] 
[15] [16].  

B. Data Acquisition 
A data acquisition (DAQ) system for an LHC scale high-

energy physics experiment can be architected as a distributed 
computing system (see Fig. 2). In a DAQ cluster, a set of 
application modules, distributed over the nodes in the system, 
collaborate to perform data taking tasks. In contrast to number-
crunching systems that dominate the parallel-computing 
domain, distributed systems for data acquisition are dominated 
by throughput and scaling requirements [6] [17]. The DAQ 
system is embedded in the experiment and interacts with 
custom hardware, detector readout and trigger system. 

C. Case Study 
The presented use case has been picked among a variety of 

scenarios. It is not limited to the system at hand but largely 
applies to other distributed reactive systems. We consider it a 
good use case for evaluation as it contains aspects that we 
require to find fulfilled by a modeling approach that targets 
distributed reactive systems. In particular we can analyze on 
how to model the following aspects with different modeling 
approaches: 

- Synchronization in regards to dependencies between 
sub processes, 

- Parallelization to efficiently model independent sub 
processes, 

- Parameterization of models to deal with changes to 
the system layout transparently without changes to 
models. 

In addition this use case allows us to analyze which 
protocols are natively supported by standard tools and if and 
how they deal with non-standard communication protocols. 
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Fig. 3. A simplified example for dependencies in a bootstrapping 
scenario of a data acquisition architecture in high energy physics 
installations. Elements with gray background are primarily used for 
analysis. 

TABLE I. EVALUATION CRITERIA 

Criteria Description 
Primary Criteria 

Functional What is to be performed and why 
Task Capability to group behaviour 
Task Decomposition Organizing tasks into subtasks 
Input Modelling of unstructured input data 
Output Modelling of unstructured output data 

Organizational Who performs 
Resources Local or distributed resources 
Participants Programs, Humans 
Structures Grouping of resources 
Roles Roles can be assigned to participants 

Informational What information is required 
Application data Data manipulated by the process 
Meta data Associated with process data 

interpreted by model engine 
Control data All execution related data 

Behavioural When and how is it performed 
Sequence Dependencies 
Parallel Modelling of parallel processes 
Constraint Pre and post conditions 
Temporal Constraint Duration, timeout, real-time behaviour 
Branching (Conditional) splitting into multiple 

parallel processes 
Loop Repeat until a condition is true 
Synchronization Joins, rendezvous 
Triggers (External) events 

Operational How is it performed (interfaces) 
Secondary Criteria 

Security Who is allowed to access 
Causality To enforce consistency 
History What happened during execution 
Integrity Recovery from failures 

Consider a bootstrapping scenario in which the operator 
brings the computers, networks and applications into a state 
ready for operation (Fig. 3). Initially all equipment is power 
cycled and the health status of the system is determined. The 
overall state is derived from numerous diverse constituents. 
Hardware gauges such as voltage levels and cooling need to be 
taken into consideration, as well as assuring proper functioning 
of system software such as drivers and daemons. 

While some of the operations can be performed in parallel, 
others require respecting interdependencies among different 
components. Bootstrapping may continue for instance only if a 
connection test has completed successfully. At software level, 
directory servers must be operational before clients can run 
their local daemons that connect to it. Using service discovery 
with the service location protocol (SLP) [18] [19] requires that 
a directory agent is running before all other daemon processes 
on the participating computers. Reachability of computers is a 
prerequisite that is ensured by a properly configured DHCP 
environment, working name resolution in all subnets and a 
running SSH program on each node. 

In reality, the system at hand is not limited to the central 
data acquisition partition, but is made up from a number of 
sub-systems, each one associated to a sub-detector that together 
make up the experiment. The outlined task serves therefore as a 
template that must be applied to all subsystems. This requires 
parameterization of the task with system and network 
configuration as well as with run-time parameters that are 
characteristic to each sub-system. 

After presenting the model evaluation criteria, we match 
the case study to (i) state machines, (ii) statecharts, (iii) ECA 
rules and (iv) Web Workflows. State machines and statecharts 
were chosen over petri nets and other state-based modeling 
approaches as they are frequently used for scalable, distributed 
reactive systems found in high-energy physics experiments [7]. 

ECA rules were selected as a concrete example for a rule-based 
modeling approach that is used as core functionality in 
distributed multi-agent systems [20]. Finally the paper shows 
how the different models fit the evaluation criteria. 

III. MODEL EVALUATION 

A. Evaluation Criteria 
We base our evaluation criteria on perspectives as 

introduced in [1] [21] [22] [23]: (i) functional, (ii) 
organizational, (iii) informational, (iv) behavioral and (v) 
operational. Where required we add domain-relevant items (see 
TABLE I. ).  

At all steps of the evaluation our motivation is to find a 
small gap between specification and executed processes. 
Blending programming in the small to circumvent modeling 
deficiencies with high level modeling is however discouraged, 
since it introduces elements into models, which are unrelated to 
the processes and may directly influence its behavior [1] [24]. 

In addition to the standard perspectives, we have identified 
evaluation properties depicted in TABLE II.  

We base our report on first hand experience that we gained 
by modeling various scenarios for an LHC experiment that is in 
operation now. From this we derive qualitative criteria. 
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TABLE II. ADDITIONAL EVALUATION PROPERTIES 

Criteria Description 
Verification Model in conformance with its goals 

Syntax Model in conformance with grammar 
Semantic Model in conformance with (process) 

goals 
Structure Model will not lead to erroneous 

execution 

 
Fig. 4. Modelling a point of synchronization with two unordered 
incoming events. 

 
Fig. 5. Checking of two services (SSH and SLP) in parallel with flat 
state machines. 

 
Fig. 6. Statecharts with scripts (t1), parameterized events (t2) and 
parameterized timeouts (t3). 

B. Finite State Machines 
Finite state machines (FSM) primarily model behavior 

based on states and transitions. A state is the sum of all past 
events, and transitions model changes of states on events 
(triggers) [5]. Flat FSMs only allow one state to be active at 
any point in time. They are not capable to directly model 
aspects found in our use case: (i) functional, (ii) behavioral 
(parallelism, synchronization) and (iii) organizational. 

Functional, task decomposition: Exclusively modeling 
behavior and not being able to model task decomposition is an 
exclusion criteria for our application domain. In our case study 
either we would have to model all actions in a single, flat state 
machine or provide one state machine for each task to be 
performed. The problem of the latter approach is that the model 
does not allow us to bond together individual state machines. 
As a matter of fact various products extend FSMs with this 
feature at implementation level [7]. 

Behavior, parallelism: Our scenario contains independent 
tasks that can be performed in parallel, like checking SLP and 
SSH server on each node. Flat FSMs do not allow to directly 
model this behavior. Representing all tasks in a single state 
machine leads to state explosion (Fig. 5) [25]. 

Behavior, synchronization: As an example for a double 
dependency of a service, consider the SLP daemon on a node 
that requires a central directory agent to be operational and a 
valid configuration file. The events to acknowledge the 
presence of either precondition can be received in any order. 
Therefore, modeling this task as a strictly sequential procedure 
to overcome the lack of modeling capabilities becomes 
difficult. Considering all combinations of event occurrences 
makes the state machine grow exponentially (Fig. 4). 

Organizational: Our system is composed of several 
subsystems, built from a single blueprint. Each subsystem 
maps to a set of network addresses, subnets, racks, power 
distribution units and data acquisition circuits. An adequate 
model must be able to separate the generic task description 
from run-time data needed to achieve its goals. This separation 
is not foreseen in FSMs. 

C. Statecharts 
Statecharts as introduced in [25] aim at overcoming 

shortcomings of flat FSMs by providing a collection of 
extensions: (i) clustering and refinement of states, (ii) 
orthogonality and (iii) generalization of transitions. Those 
concepts provide functional task decomposition and behavioral 
modeling for parallel tasks including splits and joins as well as 
input, output and temporary constraints. Some organizational 
and operational deficiencies remain. 

Organizational: The capability to support timeouts is 
paramount to model distributed reactive systems. Although the 
blueprint includes timeouts for the self-tests of the data-
acquisition hardware connected to particle detectors, these 
timeouts vary with the subsystems depending on type of 
hardware and number of cards that need to be tested. 
Statecharts include a notation for specifying timeouts. 
Timeouts trigger the emission of events. Although it is possible 
to model timeouts with parameters there is no means to bind 
these parameters to a subsystem definition that is part of the 
organizational perspective (Fig. 6). 

Operational: Staying with the above outlined example, we 
see that our system is not closed but needs to interact with 
other systems, when testing detector hardware electronics. 
Integration requires interface specifications at model level. 
Irrespective of specifying a test as an invocation of an external 
program or as interactions with hardware registers at low level, 
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on event if condition do actions 
Fig. 7. Standard form of ECA rules. 

on init 
 if exists(/etc/slp.conf) 
 do SLPCONF=true; emit(startslp) 
on started(SLPDA) 
 do SLPDA=true; emit(startslp) 
on startslp 
 if SLPDA==true AND SLPCONF==true 
 do action() 

Fig. 8. Modelling synchronization point with ECA rules. 

input parameters and results must be defined at the model 
level. Since statecharts do not include the notation of modeling 
resources and other organizational components, any action 
specification with parameters remains colloquial and is not 
verifiable against the specification. 

Statecharts became standardized in the context of UML and 
are thus a viable solution to model parts of distributed reactive 
system [26]. However, they need to be combined with other 
UML diagrams, such as interaction, timing and structure 
diagrams, to model a system completely. UML does, however, 
not specify how the diagrams are integrated. 

D. Event Condition Action Rules 
Event Condition Action (ECA) rules autonomously react to 

an event by performing actions when the condition evaluates to 
true [27] (Fig. 7). 

ECA rules are inherently parallel where an event may have 
attached additional information. Actions are scripts that change 
variables or emit new events. The lack of grouping 
functionality and association between rules, leads to problems 
for modeling (i) functional, (ii) organizational and (iii) 
operational perspectives. 

Functional, task decomposition: The lack of any support 
to structure the model imposes limitations on the size of the 
system that can be described. 

Organizational: Since no structuring is foreseen, 
organizational components cannot be modeled explicitly. They 
exist however implicitly by the presence of parameterized 
events. 

Behavioral, synchronization: Considering a dependency 
on two events that may occur in any order, we unveil another 
limitation of the model. We take again the example of starting 
the SLP daemon on each system node that depends on a 
reachable directory agent and a valid local configuration file. 
This case can only be modeled indirectly though the use of 
conditions and assuming that variables exist (Fig. 8). This 
complication could be avoided by enforcing sequential 
execution of checking configuration file validity and checking 
for a running directory agent. This introduces additional 
knowledge about internals of other subsystems, leading to error 
prone system design. [28] presents a mapping of behavioral 
aspects to ECA rules using patterns. 

Operational: In the above outlined example, rules operate 
on diverse subsystems. There is no formal description available 
(a) to enforce the validity of interfaces and (b) to model 
encapsulation. 

Although ECA rules represent only a partial view of a 
system model, they became popular in distributed reactive 
systems with the advent of tool support to counterfeit the 
problems induced by the lack to structure rules. As soon as 
rules can be set into context of objects to which they apply, the 
technology allows to come to scalable models in a scalable 
manner, since all points listed under functional and 
organizational aspects can be realized. Initially tool support 
was highly custom, e.g. through the introduction of data points 
[29]. Through the introduction of the IEC 61499 standard [30], 
ECA rules have evolved into a model that fits better the real 

world. Most important, the problem of scheduling rule 
execution has been addressed by introducing the concept of 
Execution Control Charts (ECC). Rules are associated to states 
of the functional block. What remains to be addressed in this 
extended model is the organizational domain. Currently it is 
still difficult to produce abstract tasks that afterwards can be 
mapped to concrete system configurations. The model is very 
much tied to industrial control systems, but has great potential 
to evolve into a generalized methodology. 

Research is still ongoing for standardizing the execution 
model that is a prerequisite to validate that a model exhibits the 
same run-time behavior in different scenarios using different 
execution platforms. The approach taken with ViDRE to 
execute business rules was to define a standardized Web 
Service interface that can be implemented with different rule 
engines [31] [32] [33]. For distributed reactive systems as 
outlined in this paper, we however need the model to interact 
directly with the distributed reactive system. In particular the 
model needs to be able to communicate with application 
services to evaluate conditions of and to perform actions on 
application services. 

E. Workflows 
We see the Business Process Execution Language (BPEL) 

as the unified approach for modeling Web Workflows. It is 
based on individual approaches by IBM, Microsoft and Oracle. 
Workflows are a formal representation of a process to model 
reactive systems. They have their roots in modeling document-
based executable business processes. The separation of Web 
Services from their underlying technologies made it possible to 
define a technology independent programming model. The 
choice for this model in the service-oriented architecture 
(SOA) fell on workflows. While Web Service standards are 
concerned with describing service interfaces, Web Workflows 
aim at orchestrating these services. Actually, what is denoted 
by Web Workflows is entirely decoupled from concrete 
implementations, systems and technologies and represents the 
distilled essence as outlined in XML, WSDL and BPEL. This 
concept is effective because it abstracts from real-world 
scenarios as opposed to traditional modeling concepts that must 
be mapped to existing technologies [34]. 

We extend the example of starting an SLP daemon, which 
depends on a reachable directory agent and a valid 
configuration by modeling the checking the availability of a 
central directory agent as a separate workflow with 
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Fig. 9. Modelling SLP startup with Web workflows. 

(a) (b) 

 
Fig. 10. SLP daemons depend on the local host to be booted and a central 
SLP directory agent. 

configurable timing constraints (Fig. 9). Based on this, we 
analyze the different perspectives. 

Behavioral: Workflows natively support parallel flows of 
activities, branching, synchronization and loops. Sequential 
flows have to be explicitly modeled using transitions between 
activities [35]. Activities with multiple outgoing connections 
represent unconditional branching, and activities with multiple 
incoming transitions are points of synchronization and allow 
specifying a join condition.  

Functional: Workflows allow decomposing systems into 
tasks, which are either atomic activities (e.g. wait, receive, 
reply and assign) or workflows. 

Operational: Workflows are Web Services with well-
defined interfaces in WSDL that allow attaching parameters to 
requests and responses, and let us validate messages. 

Informational: Application data are formulated in XML 
and transformations can be modeled with explicit assignment 
activities formulated as XPath expressions. 

Organizational: Our system consists of several 
subsystems, built from the same blueprint. Although 
Workflows support generic modeling of tasks, and activities 
can be fully parameterized with variables, binding of 
organizational data to subsystem definitions is not foreseen. 
Instead the organizational aspects must be modeled with the 
help of other primary perspectives. 

Integrity: Failures are modeled as exceptions. Thus, error 
recovery can be modeled in fault handlers (catch clause) close 
to the execution flow [36]. 

Although Web Workflows provide native support for four 
out of five primary perspectives, some scenarios found in our 
use case still cannot be modeled efficiently. 

Verification: Verifying the model is not possible for all 
perspectives. The organizational perspective is modeled with 
the help of informational and operational aspects and can only 
be checked at runtime. Simulating the system also proves to be 
difficult, as Workflows interact with unpredictable real-world 
systems. 

Behavioral, dynamic parallel flows: Starting all SLP 
daemons requires that all computers that host SLP daemons are 
booted and that the directory agent is reachable. As the number 
of hosts is configuration dependent, we only model the 
sequence of booting a single host. Starting all the SLP daemons 
is performed in a parallel loop. This, however, prevents us 
from efficiently modeling the second dependency from outside 
the loop (Fig. 10). Either all hosts have to be booted and a 
central SLP directory agent is running before the first SLP 
daemon is started (Fig. 10a) or a central SLP directory agent is 
running before any SLP directory agent is started (Fig. 10b). 
Either approach introduces a bottleneck. 

Web Workflows provide a complete model that tightly 
integrates all five perspectives. They can be directly executed 
and allow integration with existing services through standard 
Web Service interfaces. 

IV. CONCLUSION 
Our primary motivation is to keep the gap between 

specification and executed processes small. To keep additional 
complexity induced by working around deficiencies in model 
features small, we foster a modeling approach that natively 
supports all outlined perspectives. TABLE III. gives an 
overview of how well the different models support the 
evaluation criteria based on our experience that we gained in 
modeling scenarios in our project: (+) natively supported, (o) 
supported with specific patterns and (-) not foreseen or 
significant complexity increase. 

Traditional modeling concepts have their roots in designing 
monolithic and often in-silicon systems. These models do not 
easily fit today’s requirements on distribution, system size, 
extensibility and a growing degree of complexity as well as 
dynamic reconfiguration. Other perspectives, such as security 
are entirely unforeseen and therefore almost unthinkable to 
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TABLE III. EVALUATION RESULTS 
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Organizational - o - o 
Informational - - + + 
Behavioural - + o + 
Operational - - - + 
Security - - - - 
Causality + + - - 
History + + - + 
Integrity - - + + 
Verification + o o o 
Gap large medium medium small 

retrofit. IEC61499 is a valid candidate to unify statecharts and 
ECA rules into a new, complete modeling architecture that has 
enough support from industry and academia to penetrate many 
domains. On the other side the standard originates from 
industrial control and has therefore a strong focus on modeling 
closed and embedded systems.  

Web Workflows on the other side emerged as an 
abstraction from real-world application scenarios and are still 
evolving with them. Models are strongly concerned with 
interfaces and orchestrating services described by those 
interfaces. Here, the problem lies rather in fitting the execution 
support to the tight constraints of high-performance distributed 
real-time systems, rather than fixing modeling deficiencies. 

As shown in this qualitative evaluation, finite state machine 
approaches as prevailing in physics experiments have a 
significant gap between model and execution. This lead to 
development of custom tools that bridge this gap with custom 
extensions [7]. Web workflows on the other hand support four 
out of the five views natively and one organization view using 
the informational view. They show a small gap between 
specification and executed processes and allow direct 
execution of models assuming that communication with the 
services is based on SOAP. Web Workflow tools such as 
ActiveBPEL also allow to extend the workflow engine to 
support additional communication protocols that can be used 
by models transparently through custom invocation handlers 
[37]. 

As a result of our comparison work, we chose to launch a 
project to evaluate Web Workflows for modeling, designing 
and executing the scenarios outlined in this article. Initial 
results of the ongoing project are encouraging, but if 
workflows are indeed a novel technology that can address the 
described kind of systems still remains to be elucidated in 
detail. 
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