Collaborative Web Service Technologies

Wolfgang Schreiner, Schahram Dustdar
Distributed Systems Group, Information Systems Institute
Vienna University of Technologies
{schreiner, dustdar}@infosys.tuwien.ac.at

Abstract

Due to their heterogeneous nature, which stems from the
definition of several XML-based standards to overcome
platform and language dependence, Web services have
become an emerging and promising technology to design
and build complex inter-enterprise business applications
out of single Web-based software components. The aim of
this paper is to discuss the basic idea of service oriented
architectures and the service oriented programming
paradigm, their appliance in collaborative environments
and the challenges that may arise when performing
service based collaborative systems engineering. We
present current approaches to overcome these difficulties,
but focus on the many unsolved issues of the current state
of the art in Web service technologies.

1. Introduction

Web services, as understood today, are built on the
implementation of several XML based standards for
consistent software component interface description,
component registration and message exchange among
interacting service components. Since many different
standards and architectures have been proposed in the past
years to enable distributed computing, Web service
technologies provide an innovative approach to overcome
the drawbacks of other existing mechanisms. In order to
be able to develop distributed software components to
increase QoS aspects, such as reliability or availability, or
to enable collaboration and interaction among different
users, companies have developed their own protocols,
which lead to the implementation of adapters to overcome
heterogeneity and to enable interoperability among
different technologies. Considering n incompatible
message formats would require n* (n-1) /2 adapters to
make them work together and n additional adapters for
each new technology that is being developed. Web
services eliminate these drawbacks, by introducing
standards for uniform software component description and
message exchange. If there is only one way to exchange
messages, this reduces the number of required adapters to

n, implementing mappings from n different message
formats to one standardized XML protocol.

POET
| database

MySQL
database

| Oracle .

| sQL Server
| \ database

database

=
|
Informix | PostgreSQL
database | database

|

Fig. 1: Data transfer between heterogeneous data
sources

Figure 1 illustrates the interactions in a heterogeneous
network. Since every endpoint supports different
communication protocols, mapping rules for each message
format to the other ones are needed,

MySQL POET
database database
| 5
SQL Server | Oracle
‘ database AML "| database
Informix PostgreSQL
database database

Fig. 2: XML as universal data format for message
exchange

Figure 2 shows the benefits of a uniform XML
protocol. Data transfer works via XML formatted plain
text, which is parsed and transferred into platform specific
message format at each communication endpoint every
time a message is about to be sent or received.

With Web services it does no longer matter, which
programming language a software component is
implemented in or which operating system hosts a Web
service. The interface of a software component, including
namespace or operation signatures, is described in a
standardized XML format called WSDL (Web Service
Description Language) [1]. Remote procedure calls
(RPCs) to a software component are also translated into a
standardized XML format, namely SOAP (Simple Object
Access Protocol). SOAP [2] allows different protocol
bindings, such as HTTP or SMTP, for message transfer.
Considering other technologies, RMI for instance,
requires Java installed at each communication endpoint,
since messages are sent as Java byte code. A host
exposing a Java component as a Web service first
translates the byte code, originating from a Java remote
method invocation, into a SOAP-formatted message
before sending the request over the network and accepts
only SOAP messages respectively, which are then
translated to a message format, specific for the certain
programming language used for the underlying service

implementation.
/ : \
Registry :]
A

| e L
s AN

publish ‘,:;,‘/’
/ - \\ g - \
{ Provider /‘3:—'_1/{ Consumer)
L bind . ,./

s .

Fig. 3: Traditional Web Service Ari:wl{ifecture

Figure 3 illustrates the traditional Web service model
including the three entities Service Registry, Service
Provider, and Service Consumer. This model is widely
adopted and implies kind of client-server architecture.
Other approaches, such as P2P infrastructure, where each
node acts as server as well, have been suggested. The
service provider entity implements or simply offers a
certain service, which in this context refers to a software
component consisting of several methods or procedures
written in any programming language running on any
operating system. The component’s interface, including
name, access point, signatures of visible operations and
the protocol to be used for SOAP messaging is translated
into WSDL format and published in a global service
registry. The information stored in the registry is also
XML formatted using the UDDI (Universal Description,
Discovery and Integration) [3] standard, for instance, and
allows the storage of additional information about the
service provider, such as name, address or telephone

number, and technical information about the service itself.
The service consumer may then contact the registry by
sending a SOAP formatted request, and search for
services that have been published. If an appropriate
service is found, the service consumer may invoke the
service via SOAP using the service URL or access point
stored in the registry. The corresponding basic operations
are also depicted in Figure 3. Both SOAP and WSDL
have been developed by the W3C, while UDDI is an
OASIS release. In order to decouple the SOAP and
WSDL standards from each other, IBM proposed the Web
Services Invocation Framework (WSIF), which is now
hosted by the Apache Software Foundation. WSIF hides
the protocol binding through which the WSDL description
is being invoked and allowing the service provider
concentrate on the service interface definition.

So far, we introduced the basic Web service concepts.
The standards named in the introduction have already
been implemented and basically work for Web service
implementation and usage. Meanwhile WSDL 2.0 and
SOAP 1.2 have been proposed and UDDI already
specifies version 3. Unfortunately, there are still many
open problems concerning Web services to enable serious
enterprise application integration. When service
interactions become more complex, additional standards
are needed to ensure consistency and coordination of the
service invocations. Adding transactions to simple RPCs
requires additional protocols, building complex
applications requires composition support for Web
services and distributed message transfer among multiple
users requires certain security mechanisms, just to name a
few unsolved issues. In Section 2, we will focus on service
coordination protocols and transactions. Section 3
concentrates on the relevance of composition of software
components in a Web service environment. We deal with
issues influencing service composition strategies and
briefly discuss currently existing composition concepts.

2. Service Coordination

Applications used in medium to large enterprises are
often very complex, since they may map intra- and inter-
organizational business processes of a company. This
requires a huge amount of software components being
linked together and coordinated. With current Web
service technologies it is possible to overcome the issue of
platform heterogeneity, but they do not solve any
implications from both the internal or external perspective
[4]. From the internal implementation perspective, a client
must be able to execute different operations in an
appropriate order and eventually maintain status and
context information during runtime. From the external

interaction perspective, Web services should provide
constraints to allow clients to invoke its methods only in a
certain order. These implications are referred to as
conversation, dealing with the sequence of operations
occurring between a client and a Web service. The set of
accepted conversations is what specifies a conversation
protocol, for example 2PC (two phase commit) to ensure
ACID properties during a transaction. A coordination
type, in turn, defines a set of coordination protocols. In
order to provide conversation modeling for Web services,
different standardization efforts have been taken, such as
WS-Coordination proposed by IBM, Microsoft and BEA
and WS-CF [15] as part of the WS-CAF [13] framework
by Sun.

The goal of WS-Coordination was to provide a
framework for supporting coordination protocols [6]. This
has been achieved by standardizing the exchange of a
unique identifier among interacting services, a registration
interface for services to register their communication ports
and an activation interface to assign roles to each involved
service. The basic entities in WS-Coordination are
coordinators and participants. WS-Coordination supports
centralized, letting all participants in a conversation
interact with the same coordinator, and distributed, with
one coordinator for each service involved, coordination as
well. Based on the standardization efforts named above,
WS-Coordination defines three forms of interactions,
called Activation, Registration, and Protocol-specific
interactions. Activation creates a new coordination
context each time a participant initiates a new
conversation. Registration contains references to Web
services taking part in a conversation waiting for
notification in case of events in the coordination protocol.
Protocol-specific interactions are used for protocol
specific message exchange between coordinators and
participants. Activation and registration are independent
from the underlying coordination protocol. WS-
Coordination defines SOAP extensions, meta-protocols
and middleware components to enable coordination
between XML Web services.

One of the main conversation protocols needed is
transaction support. The WS-Transaction specification
suggested by IBM, Microsoft and BEA has been replaced
by two other proposals, namely WS-AtomicTransaction
[7] and WS-BusinessActivity [8]. In 2003, Sun published
a standard proposal as part of their WS-CAF framework,
called WS-TXM [16]. WS-AtomicTransaction and WS-
BusinessActivity respectively, build on the WS-
Coordination specification and provide a common
specification for transaction support among interacting
Web services. Since transactions in Web services are
often coupled with a long running business process, it is
not always possible to ensure ACID properties for Web

service transactions. Locking resources, for instance, over
a time span of several hours is not always practicable.
Transaction definitions for database interactions can thus
not always be applied to transactions in Web services,
which lead to a more flexible definition of what ACID
properties mean in context with Web services. WS-
BusinessActivitly specifies long running and WS-
AtomicTransaction is used for short duration transactions.
Both, WS-BusinessActivity and WS-AtomicTransaction
as part of the WS-Coordination specification assume the
existence of coordinators and participating Web services
and take advantage of the WS-Coordination coordination
context to initiate and perform a transaction. Coordinators
and participants as well handle the coordination protocols
composed for the atomic transaction and business activity
coordination types. Sun’s WS-TXM specification is
related to WS-CF and WS-CTX [14], defining the WS-
CAF framework, and contains three distinct protocols for
interoperability among different transaction managers. It
supports different transaction types including 2PC, long
running business activities and atomic transaction.

Other standards related to Web service coordination
protocols are the XML Common Business Library
(xCBL) [19], the Electronic Business Using XML
(ebXML) [20] and the Electronic Business Service
Oriented Architecture (ebSOA) [21] building on ebXML..
xCBL. xCBL is a XML standard for B2B transactions
used for eCommerce applications for example. ebXML is
closely related to xCBL and like UDDI defines a business
registry, but with far more storage capabilities concerning
detailed service information.

The Web Service Choreography Interface (WSCI) [10]
has been introduced by Intalio, SAP, BEA and Sun and
contains a language definition for coordination protocols,
but does not focus any lower level issues, such as service
description or messaging. WSDL, for instance, could be
extended with constraints about the execution order of
service operations. Furthermore, WSCI allows the
definition of exception handling mechanisms to specify
workflow processes in case of an exceptional service
behavior, transactions, including compensation and
rollback mechanisms, correlators and time constraints,
specifying the time interval that should elapse between
two operation invocations [4]. Correlators are capable of
identifying unique data items in a conversation and are
thus able to associate messages to conversations, where
WS-Coordination uses conversation identifiers. WSCI is
an approach for protocol description. The Web Services
Choreography Description Language (WS-CDL) [13] is
an XML-based language that describes P2P collaborations
by defining their common and complementary observable
behavior. WS-CDL supports the Web service
choreography specification in composing interoperable,

P2P collaborations independent of programming language
or platform used at the host environments.

Similar to WSCI is the Web Services Conversation
Language (WSCL) [18]. WSCL allows the definition of
abstract Web service interfaces, specifies the XML
documents being exchanged and the allowed sequencing.
As any other Web service standard, WSCL themselves
consists of XML documents and can be used in
conjunction with WSDL to specify abstract interfaces or
binding information.

3. Composition Issues

Complex software systems consist of a huge number of
software components and modules or classes in object
oriented terms. In order to build large and powerful
distributed applications out of Web services, we need to
consider the task of service composition. Composite or
aggregated services may recursively contain elementary
services and other composite services. Service
composition attempts to combine the functionality of
many different Web services by progressively aggregating
components at higher levels of abstraction.

In [5] we identified several issues that have an
important impact on performing service composition. In
the previous section we discussed service coordination
protocols, including Web service transaction and
conversation modeling referring to currently proposed
standards. When dealing with service coordination
aspects, the term context plays a highly crucial role,
although a wide variety of different definitions exist in
literature. In terms of Web services, context is often
understood as information used by a Web service to adjust
execution and output to provide the client with a
customized and personalized behavior. Context may refer
to information about client location, hard- and software
used on the client device, network and protocol data or
preference settings. In Section 2 we briefly mentioned
WS-CTX by Sun in this context.

When considering service composition it is also
necessary to think about composite service execution
management and monitoring. Composite service execution
flow may be scheduled centralized or distributed via
several interacting service execution monitors.
Furthermore, Web services may be provided in
architectures different from the traditional Web service
model introduced in Section 1, for example, in a P2P
manner. Thus service infrastructure is another aspect that
affects the service composition process. Since Web
services not just introduce a new communication pattern

on an XML basis but may revolutionize the way in which
software is being designed and implemented comparable
to the object oriented paradigm, Web service technologies
enjoy an immense research effort and investments in order
to facilitate Web service composition. In literature a
variety of different approaches are documented that
should facilitate the service composition process.

4. Composition Strategies

Static service composition deals with composition
issues during design time of service based software.
Software is being designed by identifying necessary
modules, their functionalities and their interdependencies.
Static service composition is rather trivial since it depicts
the traditional software development process.
Modifications on the software itself that may occur in case
of changing user requirements have to be performed on
the design level. The code has to be adapted, recompiled
and redeployed. Although this does not imply any further
complications besides any usual, well-known, problems
that arise during the design decision making phase,
changes that occur in the Web service environment during
run time, require increasingly costly adaptation efforts in
order to make the software executable. The reaction time
to any anticipated or unanticipated events is very high,
making the static composition approach truly inflexible.
Hence, it is much more interesting to deal with dynamic
service composition to enable software reacting
autonomously in case of exceptions occurring in the
execution environment. Apart from changes that may
occur, it would be nice if there was a way to describe Web
service functionality in a way that a service interface
could be discovered and bound by other services or clients
dynamically. Of course, service discovery plays an
enormously important role when speaking of service
composition. Obviously, when investigating currently
existing Web service registry technologies, such as UDDI
or ebXML, data structures used for storing the service
information are insufficient, since they lack of functional
description and QoS information. By now it is still an
unsolved problem to describe software components that
they could be discovered and used regarding their
functionality. Several attempts have been made to enhance
existing Web service standards with additional
information to facilitate service discovery, including
WSDL add-ons or storing supplementary data in service
registries. To make dynamic service composition work,
this would require the development of a system that is
intelligent enough to decompose user requirements into
machine-readable commands, compare them to Web
service descriptions based on the desired features, such as
QoS or functionality as previously mentioned, and is able

to make autonomous decisions on whether a service suits
the user’s needs and can be used or not.

Model driven service composition is supposed to support
the dynamic composition process using UML as high level
abstraction to enable the direct mapping to other
standards, such as the Business Process Execution
Language for Web Services (BPEL4WS) [9]. BPEL
enables the composition of Web services to realize
business processes. Because of the close relation to
workflow management, composition elements are seen as
equivalent to the business process elements activity,
representing a well-defined business function, condition,
constraining the behavior of the composition by adding
pre- and post-conditions, event, describing occurrences
during the process of service composition, flow, defining
a block of activities, message, containing input- or output
information, provider, describing a party offering concrete
services, and the abstract class role, describing a party
participating in the service composition process. Rules
can be modelled by the Object Constraint Language
(OCL) constraints and can be structured into structural
rules guide the process of structuring, scheduling and
prioritizing within service composition, data rules control
the use of data and message relations, behavioral rules to
control event occurrences and enforce integrity
constraints, resource rules to guide the use of resources,
such as service selection, providers and event raisers, and,
tinally, exception rules to guide exceptional behavior in
the service composition process. Similar to model driven
composition is the business rule driven approach, which
defines four components mapping the single phases of the
service composition process: definition, scheduling,
construction and execution. An individual rule model
assists the service developer by introducing a
classification scheme for business rules: structure related
rules facilitate the specification of the way in which
service composition is to be carried out, role related rules
govern the participants involved in the service
composition process, message related rules regulate the
use of information, event related rules govern the behavior
of service composition in reaction to expected and
unexpected events and constraint related rules represent
conditions in service composition.

Declarative composition translates client requests into
declarative expressions using formal languages. The
architecture is somewhat different from other composition
platforms, since services are typically created on the fly to
satisfy client requests. The request is taken as the initial
situation from which a desired goal and generic plans to
reach the goal are created. One generic plan is chosen and
translated into a workflow definition using planning
languages. After all existing modeling languages, such as
BPEL, can be applied to realize the workflow. The unique

architecture of declarative composition platforms
demands a revision of the aims of basic Web service
concepts, including UDDI as representative of the service
registry entity or WSDL lacking of a description of Web
service attributes and functionalities.

Static, model driven composition as it can be performed
with BPEL can be seen as a manual composition strategy,
since it is done by the service developers during design
time. The final compilation and deployment can be
automated by delegating the translation task from the
model to executable service components to the machine.
In contrast to manual composition, automated
composition is an ontology-based approach. An ontology,
in terms of Web service technology, is a collection of
services that share the same domain of interest, which
means that an online payment service may belong to an
eCommerce domain, for example. Automated service
composition is closely related to issues addressed by the
Semantic Web community. Semantic description
languages, such as the Web Ontology Language (OWL),
DAML-S (DARPA Agent Markup Language for Web
Services) or DAML+OIL including RDF schemas are
quite suitable for organizing Web services into ontologies.
DAML-S divides the service description into three layers,
which are defined by profiles, providing a high level
description of the service, models describing the
execution flow of the service, and groundings providing a
mapping between DAML-S and WSDL in order to
describe how the service has to be invoked. The profile
should contain enough information to actually enable
dynamic Web service discovery, including functional
descriptions of the service, such as input or output
parameters. The description part provides human
understandable information, such as service name and
some textual description. The concept of monitors and
notifiers introduces a notion of evolution management, in
case service definitions change, new services appear, or
services become unavailable. The Web Services Modeling
Ontology (WSMO) working group [23] aims at
developing a language called Web Service Modeling
Language (WSML) that formalizes the WSMO.

Transaction based service composition, as the name
suggests, focuses on the transaction issue of Web service
composition. Service aggregation is performed on a level
deciding whether service operations support the same
transactional behavior or not. Certainly, transaction
semantics cannot be the only relevant feature for service
composition, since functional adequacy is still the top
priority decision criteria to make the software do what it is
supposed to do. At the beginning of this section we
mentioned several issues relevant for service composition
and they all complement one another but do not substitute.

To close this section, the concept of context based
service composition may be introduced as another
significant composition strategy. Recall that we already
discussed context as information that can be used to
provide a client with customized execution settings. For
that reason it is necessary to know about the client
hardware and software, since the appropriate protocols
need top be chosen for message transfer and depending on
the interaction type, different QoS aspects have to be
prioritized. If, for instance, a Web service has been
exposed with the intention to offer real time data, then
enough bandwidth has to be allocated between the service
and the invoking clients. For QoS assurance many
different aspects have to be taken into account. Besides
device dependent information, we must also consider
localization information, which includes location and
local time. For example, some services may only be
available in certain locations at given times of the day or
provide dedicated QoS aspects only at certain locations or
a client may wish to access a service always at a fixed
time a day. These issues are relevant especially for digital
devices in wireless networking environments.

5. Conclusion

Service orientation is a very powerful mechanism for
building Web based applications. Although Web service
technologies, in their current state of development, lack
many features to build complex software systems, the
increasing interest in doing research in order to overcome
the problems that arise when developing distributed large-
scale software systems due to heterogeneity, makes the
service oriented approach a very promising technology in
the future years. With SOAP, WSDL and also UDDI,
three standardization efforts have already been
implemented and realize a Web service environment in its
basic functionalities. We also addressed current lacks of
service oriented architectures and mentioned some
proposals for solving open problems. Service
composition, in fact, is the final step to develop complex
business applications and support the handling of dynamic
changes in the service environment.

6. References

[1] Christensen, Erik, Francisco Curbera, Greg Meredith
and Sanjiva Weerawarana, Web Services Description
Language (WSDL) 1.1, W3C Note, W3C,
http://www.w3.org/TR/wsdl, 15 March 2001.

[2] Gudgin, Martin, Marc Hadley, Noah Mendelsohn,
Jean-Jacques Moreau and Henrik Frystyk Nielsen, SOAP

Version 1.2 Part 1: Messaging Framework, W3C
Recommendation, W3C http://www.w3.org/TR/soap12-
partl/, 24 June 2003.

[3] OASIS Open 2005, UDDI: Advancing Web Services
Discovery Standard, OASIS, http://www.uddi.org/, 2005.

[4] Alonso, Gustavo, Fabio Casati, Harumi Kuno and
Vijay Machiraju, Web Services: Concepts, Architectures
and Applications, Springer-Verlag, Berlin Heidelberg
New York, 2004,

[5] Dustdar, Schahram and Wolfgang Schreiner, A Survey
on Web Services Composition, International Journal of
Web and Grid Services (ITWGS), January 2005.

[6] Cabrera, Luis Felipe et al., Web Services Coordination
(WS-Coordination), BEA, IBM, Microsoft, http://www-
106.ibm.com/developerworks/library/specification/ws-tx/,
September 2003.

[7] Cabrera, Luis Felipe et al., Web Services Atomic
Transaction (WS-AtomicTransaction), BEA, 1BM,
Microsoft,
ftp://wwwo.software.ibm.com/software/developer/library/
WS-AtomicTransaction.pdf, November 2004.

[8] Cabrera, Luis Felipe et al., Web Services Business
Activity Framework (WS-BusinessActivity), BEA, 1BM,
Microsoft,
ftp://wwwo6.software.ibm.com/software/developer/library/
ws-busact200401.pdf, 2004.

[9] Andrews, Tony et al., Specification: Business Process
Execution Language for Web Services Version 1.1, BEA,
IBM, Microsoft, SAP, Siebel, http://www-
106.ibm.com/developerworks/webservices/library/ws-
bpel/, May 2003.

[10] Arkin, Assaf et al., Web Service Choreography
Interface (WSCI) 1.0, W3C Note, W3C,
http://www.w3.0org/TR/wsci/, 8 August 2002.

[11] Austin, Daniel, Abbie Barbir, Ed Peters and Steve
Ross-Talbot, Web Services Choreography Requirements,
Ww3cC Working Draft, W3C,
http://www.w3.0org/TR/2004/WD-ws-chor-reqs-
20040311/, 11 March 2004.

[12] Burdett, David and Nickolas Kavantzas, WS
Choreography Model Overview, W3C Working Draft,
W3C, http://www.w3.0rg/TR/2004/WD-ws-chor-model-
20040324/, 24 March 2004.

[13] Kavantzas, Nickolas, David Burdett, Gregory
Ritzinger, Tony Fletcher and Yves Lafon, Web Services
Choreography Description Language Version 1.0, W3C
Working Draft, W3C, http://www.w3.0org/TR/2004/WD-
ws-cdl-10-20041217/, 17 December 2004.

[14] Bunting, Doug et al., Web Services Composite
Application Framework (WS-CAF) Verl.0, Sun
Microsystems,
http://developers.sun.com/techtopics/webservices/wscaf/p
rimer.pdf, 28 July 2003.

[15] Bunting, Doug et al., Web Services Context (WS-
Context) Verl.0, Sun Microsystems,
http://developers.sun.com/techtopics/webservices/wscat/w
sctx.pdf, 28 July 2003.

[16] Bunting, Doug et al., Web Services Coordination
Framework (WS-CF) Verl.0, Sun Microsystems,
http://developers.sun.com/techtopics/webservices/wscaf/w
scf.pdf, 28 July 2003.

[17] Bunting Doug et al., Web Services Transaction
Management (WS-TXM) Verl.0, Sun Microsystems,
http://developers.sun.com/techtopics/webservices/wscaf/w
stxm.pdf, 28 July 2003.

[18] Banerji, Arindam et al., Web Services Conversation
Language (WSCL) 1.0, W3C Note, HP,
http://’www.w3.0rg/TR/2002/NOTE-wscl10-200203 14/,

14 March 2002

[19] xCBL.org, http://www.xcbl.org/, February 2005.
[20] ebXML, http://www.ebxml.org/, February 2005.

[21] OASIS Electronic Business Service Oriented
Architecture (ebSOA) TC, OASIS, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=ebsoa,
February 2005.

[22] Srivastava, Biplav and Jana Koehler, Web Service
Composition — Current Solutions and Open Problems,
IBM, http://www.zurich.ibm.com/pdf/ebizz/icaps-ws.pdf

[23] WSMO Working Group, Web Service Modeling
Ontology, http://www.wsmo.org/, February 2005.

