
A Framework for Model-Driven Execution
of Collaboration Structures

Christoph Mayr-Dorn(B) and Schahram Dustdar

Distributed Systems Group, TU Wien, 1040 Vienna, Austria
{mayr-dorn,dustdar}@dsg.tuwien.ac.at

Abstract. Human interaction-intensive process environments need col-
laboration support beyond traditional BPM approaches. Process primi-
tives are ill suited to model and execute collaborations for shared artifact
editing, chatting, or voting. To this end, this paper introduces a frame-
work for specifying and executing such collaboration structures. The
framework explicitly supports the required human autonomy in shap-
ing the collaboration structure. We demonstrate the application of our
framework to an exemplary collaboration-intensive hiring process.

Keywords: human Architecture Description Language · Collaboration
patterns · Collaboration configuration · Scripting collaborations

1 Introduction

Medical diagnosis, paper authoring, and peer reviewing are examples of
collabora-tion-intensive tasks. Such tasks increasingly require multiple partic-
ipants who benefit more from dedicated collaboration support than from rigid
control and data flow specification. Collaboration support ranges across distinct
forms and patterns [11] such as Shared Artifact, Social Network, Secretary/Prin-
cipal, Master/Worker, or Publish/Subscribe. Contemporary process technology
is ill equipped to provide such collaboration support in a general manner.

Business Process Management (BPM) approaches traditionally assume a sin-
gle executing entity per task or activity. In the rare cases where multiple human
process participants work on a joint task [12,20,21], process specifications per
se contain no details with respect to the applicable communication, coordina-
tion, or collaboration structures. The core question we address in this paper is
thus: how can we set-up and control flexible collaboration instances at runtime
in support of joint task execution?

Our solution is a framework for model-driven execution of collaboration
mechanisms. A collaboration model specifies an arbitrary combination of collab-
oration mechanisms such as shared artifacts, messages, streams, requests, and
the corresponding user roles expressed in the human Architecture Description
Language (hADL) [9]. At runtime, a client (i.e., a process) requests instantiation
of a hADL model with actual users and maintains control over the collaboration
instance via our framework.
c© Springer International Publishing Switzerland 2016
S. Nurcan et al. (Eds.): CAiSE 2016, LNCS 9694, pp. 18–32, 2016.
DOI: 10.1007/978-3-319-39696-5 2



A Framework for Model-Driven Execution of Collaboration Structures 19

Our approach is complementary to existing process modeling and execution
techniques. We don’t need to awkwardly model collaboration aspects in terms of
fine-grained task, control flow, or data flow primitives. Instead, we specify how
a process obtains control over who, when, and how to involve particular users in
a particular collaboration.

The evaluation use case demonstrates how our proof-of-concept framework
may facilitate the collaboration in multi-participant tasks. Our approach thus
provides processes along the specificity frontier [2]—from rigorously defined
workflows to ad-hoc activities—a novel capability for configuring collaborations
depending on process context: from automatically wiring up process participants
and collaboration objects to providing collaboration guidance.

The remainder of this paper is structured as follows. Section 2 motivates our
work based on a running scenario. We provide necessary background information
in Sect. 3. Section 4 outlines the architecture, models, and internal workings of
our framework. Section 5 demonstrates the application of our framework to a
use case from the motivating scenario. We discuss related work in Sect. 6 before
concluding this paper with a summary and outlook on future work in Sect. 7.

2 Motivating Scenario

Assume a collaborative employment process for a vacant post-doc position at a
university department. The department is interested in obtaining consensus on
the set of candidates invited for interviews and aims at executing the decision
process in a transparent manner. The hiring committee establishes a set of cri-
teria against which to evaluate the candidates. Each application is assigned to
a team of two department members for preparing a detailed assessment report.
All department members may give comments on any applicant such as whether
they know them from conferences, co-authoring, etc.

All assessment reports are discussed by the hiring committee. Committee
members are expected to prepare by reading through the reports prior to the
meeting. The university’s minority awareness officer inspects every assessment
for ensuring that evaluations are free from bias and that a sufficiently diverse
candidate set is considered for interviewing. When supported by a traditional
process-centric system without integrated collaboration support, such a process
very probably causes awkward handling of feedback into assessments, partici-
pants lacking process awareness and thus missing out on discussions or working
on out-dated information, as well as delays due to limited potential for parallel
work.

There is no single mechanism for collaboration that would fit the overall
process. We exemplify the benefit of introducing shared artifacts (here docu-
ments that allow synchronous editing and commenting) as well as communi-
cation streams (here chat rooms) for discussions (Fig. 1). Shared artifacts pri-
marily enable parallel work while limiting the potential for write conflicts and
access to out-dated information. Chat rooms provide a well-known, well-scoped
mechanism for discussing, enabling late participants to quickly catch up with



20 C. Mayr-Dorn and S. Dustdar

Fig. 1. Excerpt of a collaboration-intensive hiring process applying shared documents
(shaded) and chat rooms (with dashed, horizontal life-lines). Process language specific
details are omitted on purpose in order to abstract from integrations details and focus
on the collaboration aspects and their potential impact instead.

the current state of the collaboration. The minority awareness officer may start
early inspecting the reports without waiting for their finalization thus avoiding
an overload on the assessment due date. Additionally, and more importantly,
rather than escalating biased assessments after the deadline, any such concerns
can be swiftly dealt with through timely feedback on a continuous basis. Simi-
larly, the hiring committee can access the assessment reports early and just need
to read-up on any last changes after the deadline (ultimately reducing the time
needed to prepare for the application selection meeting). Realizing such a sce-
nario requires a dedicated framework for managing the collaboration structure.

3 The human Architecture Description Language

We provide a brief introduction to hADL [9] as our approach makes heavy use of
it. hADL provides a collaboration-centric equivalent of a software architecture
“component & connector” view. A hADL model describes a collaboration struc-
ture in terms of interacting user roles and their available collaboration mecha-
nisms. Figure 2 provides the hADL meta model (elements in italics). Figure 3
depicts the hADL model for the collaboration-intensive aspects of our motivating
scenario (elements in teletype). Note that hADL’s canonical representation
is provided as an XML schema, available for download among the supporting
online material (SOM) at http://wp.me/P1xPeS-6L.

hADL distinguishes between HumanComponents (e.g., DocUser and
ChatUser) and CollaborationConnectors to emphasize the difference between the
primary collaborating users and non-essential, replaceable users that facilitate
the collaboration. Collaboration connectors are responsible for the efficient and
effective interaction among human components, respectively ensuring desirable
collaboration outcome.

http://wp.me/P1xPeS-6L


A Framework for Model-Driven Execution of Collaboration Structures 21

Fig. 2. Simplified and condensed hADL meta model displaying the elements relevant
for the execution framework.

Fig. 3. hADL model excerpt that describes the main collaborators, collaboration
objects and capabilities involved in the motivating scenario. DocUsers have either the
capabilities to own, to edit, or to read Folders and Docfiles, or additionally to comment
on the latter. ChatUsers have the ability to coordinate or to chat in a ChatRoom.

Humans employ diverse collaboration mechanisms that range from emails,
shared wiki pages, social network activity streams, to Q&A forums and vote col-
lection. These means implement vastly different interaction semantics: a message
is sent and received, a shared artifact is edited, a vote can be cast. hADL makes
these differences explicit by means of CollaborationObjects. CollaborationOb-
jects are first class modeling constructs which abstract from concrete interaction
tools and capture the semantic differences in various subtypes such as Message,
Stream (e.g., ChatRoom), or SharedArtifact (e.g., DocFile).

hADL Actions specify what capabilities a HumanComponent or Collabor-
ationConnector requires for fulfilling their associated role, e.g., document author-
ing or providing comments. Complementary, actions on CollaborationObjects
determine the offered capabilities. For example, editing a shared document (i.e.,
DocFile) requires the ability of performing a DocUser’s edit action, while a
ChatRoom offers the coordinate and chat actions. Additionally, hADL distin-
guishes among create (C), read (R), update (U), and delete (D) primitives to
indicate the intended effect of an action. Further, action cardinalities specify the
upper and lower boundaries on the number of collaborators which may simul-
taneously have obtained the action’s capabilities. For example, exactly one user
might own a document {1..1}, but many users might edit it {0..∗}. Collabora-
tionLinks subsequently connect actions that belong to HumanComponents or
CollaborationConnectors to actions that belong to CollaborationObjects.



22 C. Mayr-Dorn and S. Dustdar

The human Architecture Description Language provides CollabRelations
for modeling relations among HumanComponents and CollaborationConnectors
as well as ObjectRelations among CollaborationObjects. For example, the spe-
cific templateOf relation may be applied for modeling that one DocFile depend-
sOn another DocFile which serves as template. Other relation types include
references for specifying uni-directional relations between CollaborationObjects
and contains for modeling hierarchical substructures.

Together, all these elements establish the blueprint of a collaboration struc-
ture. Note that hADL specifies the a-priori defined collaboration object types to
be used at runtime (e.g., a DocFile), rather than their specific purpose within
the (process) context (e.g., an assessment report).

4 The hADL Execution Framework

4.1 Architectural Overview

The primary purpose of model-driven collaboration execution is separating the
specification of a collaboration structure (the what) from its realization on spe-
cific collaboration platforms (the how). This enables the hADL client—such as a
process—to focus on the desired structure, the involved collaborators, and how
the overall collaboration should evolve. Low-level details such as interacting with
the various collaboration platforms through their APIs, maintaining collabora-
tion state throughout the process’ lifetime, or adaptation due to platform API
changes remain hidden. Figure 4 depicts this separation of concerns. The main
architectural elements and their duties are:

– the hADL client: requests instances of hADL elements to be created, re/wired,
and released.

– the hADL Collaboration Linkage Connector (CLC): manages the collabora-
tion structure, ensures valid client requests, and forwards those to surrogates
for enactment.

– the Surrogates: translate hADL-centric client requests into invocations of the
collaboration platforms.

– the hADL Runtime View: stores the current collaboration structure.

A hADL model describes the available element types (e.g., ChatUser,
DocUser, ChatRoom, etc.) and their possible wiring but not an actual run-
time topology involving actual humans. It’s up to the hADL client to specify
what instances of hADL elements from a particular hADL model it requires
and how and when to wire them. To this end, the hADL client issues “acquisi-
tion” requests to the CLC which concrete users to involve in what collaboration-
specific role (i.e., HumanComponent or CollaborationConnector) and what col-
laboration mechanism (i.e., CollaborationObjects) to utilize. A hADL client,
for example, requests to involve user Bob as Chat User, and acquire a Chat
Room with name PreMeeting. Here Bob and PreMeeting represent so-called
ResourceDescriptors that describe identity and properties of users and collabora-
tion mechanisms (see Fig. 5 middle). Once acquired, the hADL client determines



A Framework for Model-Driven Execution of Collaboration Structures 23

Fig. 4. Conceptual architecture of the hADL execution framework.

the wiring among instances of human component, collaboration connectors, and
collaboration objects according to hADL actions, links, or relations. Wiring, gor
example, ChatUser Bob to ChatRoom PreMeeting via action coordinate.

The hADL Collaboration Linkage Connector (CLC) takes the client’s
acquisition and rewiring requests and ensures they are valid according to the
underlying hADL model. Its main purpose is maintaining the “prescribed” view
of the current collaboration structure, i.e., creating, updating, and removing
hADL element instances of the hADL Runtime View as pending to existing
(i.e., prescribed) or pending to be released (i.e., prescribed removed) (see Fig. 5
right). Elements remain in the prescribed state until the corresponding change
at the collaboration platform has occurred and then enter the described state.
To this end, the CLC doesn’t invoke the collaboration platforms directly but
delegates any valid client request to surrogates (see below) which ultimately
update the instances’ status from prescribed to described.

Note that the CLC remains external to the actual ongoing collaboration. It’s
limited to setting up and evolving the collaboration structure. The collaboration
itself, such as joint content production, chat discussions, or message authoring
and dispatching, is subject to the involved users via the respective collaboration
platforms. The CLC’s name is inspired by software architecture terminology as
it assumes the role of a linkage connector but at the level of collaboration entities
rather than software components:

Linkage connectors are used to tie the system components together and hold
them in such a state during their operation. [...] a linkage connector may disap-
pear from the system or remain in place to assist in the system’s evolution [26,
p. 168].

We introduce Surrogates as the key mechanism for mapping a high-level col-
laboration model in hADL to the implementation-level collaboration platforms.
Typically, a hADL model will specify a separate surrogate for each HumanCom-
ponent, CollaborationConnector, and CollaborationObject (see Fig. 5 left). A
surrogate is responsible for acquiring access to a collaborator (i.e., a ChatUser),



24 C. Mayr-Dorn and S. Dustdar

respectively creating an instance of a CollaborationObject (e.g., a ChatRoom),
wiring up these elements, and eventually releasing them again. To this end, surro-
gates exhibit sophisticated capabilities around a collaboration platform’s (web)
API. A DocFile surrogate, for example, knows which GoogleDrive collaboration
platform API methods to invoke in order to establish/remove a own, edit, read,
and comment link with a DocUser as well as templateFile and fileInFolder rela-
tions. In contrast, the DocUser surrogate encapsulates all logic required to con-
tact a user and invite him/her to join the collaboration structure such as becom-
ing editor of a document, and so on. It is up to the surrogate’s implementation
what communication protocol to use for interacting with a collaboration plat-
form (typically JSON/XML over HTTP) and users (typically SMTP, XMPP, or
SMS). Eventually, at runtime, there exists a surrogate instance for each instance
of HumanComponent, CollaborationConnector, and CollaborationObject.

Fig. 5. Simplified UML model depicting the extensions to the core hADL model and
example realizations of abstract classes. Surrogates describe what ResourceDescrip-
tors they accept. At runtime, the CLC creates hADLElementInstances with reference
to their type and their ResourceDescriptor. Subclasses of hADLElementInstance are
identical to their counterpart in the hADL core model and thus are depicted as a single
class for sake of brevity.

Our framework is designed to remain independent from specific process lan-
guages and engines. Hence how the process conducts the assignment of actual
tasks to users is out of scope of this paper and requires process-specific mecha-
nisms, e.g., WS-HumanTask [18] or BPMN2 user tasks [1]. In the remainder of
this section, we describe how the framework’s main software components interact
and how to get from model to execution.



A Framework for Model-Driven Execution of Collaboration Structures 25

4.2 hADL Framework Component Interactions

We outline the interaction among our framework’s software components based
on a typical interaction sequence depicted in Fig. 6 (also found in our motivating
scenario and use case implementation).

A interaction session starts with the hADL client acquiring (1) HumanCom-
ponents, CollaborationConnectors, and CollaborationObjects. Specifically, the
client passes one or more tuples specifying which ResourceDescriptor describes
a particular hADL element type. Here the client asks for Bob becoming a Cha-
tUser and a ChatRoom with name PreMeeting. The hADL CLC checks the
request whether hADL element types and ResourceDescriptors match (2), etc.,
and subsequently add instances to the hADL Runtime View (3). These instances
exist in the “descriptive” state, i.e., pending to exist. The CLC then initiates
the matching surrogates that will handle the individual hADL element instances
(4). But first, it returns an “observable” back to the client (5).

An observable is a subscription endpoint for the client to receive events from
the CLC and surrogates. We use this event-driven mechanism for asynchronous
notification of successful and failed request processing. Request processing at a
surrogate usually involves invoking the collaboration platform API and hence
potentially requires a significant amount of time. Request completion takes even
longer when the surrogate contacts a user for confirming the participation in a
collaboration. A client thus doesn’t block on a request but may process results
(e.g., successful setup of a chat room) or react to failures (e.g., user declined to
join a chat room) as these events arrive.

Next, the CLC passes all acquisition request together with the respective
hADL element instance, ResourceDescriptor, and observable to the individ-
ual surrogates who process these in parallel (6,7). Surrogate A for ChatUser
Bob invokes the HipChat API to check whether the user (as described in the
ResourceDescriptor) already exists or has to be invited (8). In the former case the
surrogate can immediately mark the hADL instance element as “descriptive”,
i.e., confirmed to exist (9). Subsequently, the surrogate dispatches an event back
to the client (via the observable mechanism) that the acquiring was successful
and includes a reference to the HumanComponentInstance representing Cha-
tUser Bob (10). Note that the observable mechanism strongly decouples client
and surrogates. The client remains unaware of surrogates—it only cares about
the request outcome—and surrogates remain unaware of event consumers.

Note that from here on, we no longer depict request checks, collaboration
platform invocations, or observables due to space limits.

In our example, the client continues to wireup chat room and chat user. It
does so by passing the source and destination hADL instances, and link type
to be established (14). Remaining at the hADL level, the CLC has no insights
into how a surrogate brings about changes. Hence, for establishing links (or
relations), it always triggers the surrogates of both involved endpoint instances
(16,17). The surrogates’ logic determines whether any action is required. For
example, Surrogate B checks whether the ChatUser Bob may obtain “coordi-
nate” capabilities and signals success (18) while Surrogate A “knows” that in



26 C. Mayr-Dorn and S. Dustdar

this case no action is required (the surrogate implementation assumes here that
the user always agrees to become coordinator of a chat room). Note that no
interaction between any two surrogates occurs for establishing links (or rela-
tions). The surrogates remain completely decoupled and any implicit informa-
tion exchange occurs only via the well defined ResourceDescriptors. That is, for
example, Surrogate B receives a wire request which contains the reference to the
opposite endpoint (a HumanComponentInstance of type ChatUser, here Bob).
It extracts the ResourceDescriptor—Bob’s details—and thus obtains all the nec-
essary information to determine locally (and via the collaboration platform API)
whether the link may be established or not.

Note that so far no actual wiring has occurred. The client has the opportunity
for further rewiring before calling start. Upon start (19), the CLC triggers all
surrogates with pending changes to execute the rewiring (20+). Any subsequent
changes require first calling stop. Stopping (23) signals the CLC and surrogates
that the client is about to request changes to, or final releasing of, the hADL
instances. A surrogate may then decide that its local view of the collaboration
is outdated and pulls in the latest updates from the collaboration platform.

In our example, the client intends to release ChatUser Bob (26). The CLC
marks this human component instance and all its links as “removed prescriptive”
(27) and first requests all links to be removed (28,29). Unwiring works exactly like
wiring. Only then does the CLC ask the surrogate to release ChatUser Bob (32).
For the various CollaborationObject types, releasing typically means closing a
stream, deleting or archiving a shared artifact, aborting a request, or removing a
message channel. For HumanComponents and CollaborationConnectors, on the
other hand, releasing implies notifying them on the ending collaboration and
removing their access rights to the various collaboration object instances. Finally,
upon completing the release procedure, the surrogate instance terminates (34).

4.3 From Model to Execution

From a developer’s perspective, model-driven execution of collaboration struc-
tures consists of three phases: modeling the collaboration types, scripting the
hADL client, and executing the collaboration structure at runtime.

The modeling phase comprises all activities necessary to (i) create the
hADL model, (ii) specify the collaboration platform-specific ResourceDescriptors
(i.e., GoogleUser, DriveFile, HipChatRoom), (iii) implement the corresponding
surrogates (i.e., surrogates for DocUser, ChatUser, DocFile, Folder, and Chat-
Room), and (iv) extend the hADL model with surrogate and ResourceDescriptor
details (see Fig. 5). We assume in this bottom-up approach, that the utilized col-
laboration platforms (i.e., HipChat and GoogleDrive) already exist and expose
an API suitable for invocation by the surrogates. The methodology for specifying
the hADL model and aligning the surrogates is out of scope of this paper.

In the scripting phase, the developer implements the hADL client’s logic
as a set of steps that setup and modify the collaboration structure. Typically
each step defines the required input (e.g., the ResourceDescriptors of the users
to invite to a chat room and the chatroom’s name) and the expected output,



A Framework for Model-Driven Execution of Collaboration Structures 27

Fig. 6. Simplified sequence chart of an example interaction among hADL framework
components. The hADL client requests a user and chat room, wires the user to the
chat room, and ultimately removes the user again. The sequence chart is available in
high resolution among the supporting material at http://wp.me/P1xPeS-6L.

http://wp.me/P1xPeS-6L


28 C. Mayr-Dorn and S. Dustdar

i.e., the hADL element instances for use in subsequent steps (e.g., the chat user
instance and chat room instance). The developer inspects the extended hADL
model to learn what elements are available, how these can be linked (i.e., actions,
links, and relations), and which resource descriptors match. S/he subsequently
extracts the element identifiers for invoking the hADL CLC. For example, the
developer learns that a GoogleUser ResourceDescriptor may be used to acquire a
ChatUser and a DocUser. No insights into surrogate implementation or collabo-
ration platform API are required. Listing 1 demonstrates how to invoke the CLC
purely using model information. Note that in this listing all steps are condensed
into a single script for sake of brevity. The resulting hADL client script (cur-
rently plain java) becomes integrated into the application’s logic or a business
process specification.

Finally, in the execution phase the hADL client script is executed as regular
source code, requiring only that the surrogate implementations are accessible to
the CLC for instantiation.

5 Use Case Implementation

We demonstrate the basic capabilities of our framework and the feasibility of our
approach through the proof-of-concept implementation of a use case and hADL
execution platform. Specifically, we showcase the setup, rewiring, and releasing of
two distinctly different collaboration mechanisms—Google Drive documents and
HipChat chat rooms—as described in the example process1 in Fig. 1. We provide
all hADL models, extensions, source code, and configurations for replicating
the use case as supporting online material (SOM) available at http://wp.me/
P1xPeS-6L.

We implemented surrogates for Google Drive files and HipChat chat rooms.
The file surrogate makes use of the official java client for Google Drive2, while we
extended a third-party java library3 for implementing the chat room surrogate.
Both platforms automatically send notification emails to users when they obtain
access to files, respectively chat rooms. Hence our HumanComponent surrogates
are minimal implementations. The use case introduces ResourceDescriptors for
the Google Drive file (id, name, and mime type), the HipChat chat room (id,
name, and topic), and user identification (by email address, applied for Google
Drive and HipChat users); see also Fig. 5 middle. Setup includes registration of
the same five users for Google Drive and HipChat: two committee members, two
assessment team members (for one exemplary job application), and the minority
officer.

Listing 1 summarizes the hADL framework client pseudo code for supporting
the process in the motivating scenario. The pseudo code lacks use of our frame-
work’s asynchronous communication mechanism (i.e., observables and events)
1 No process engine was used for our use case implementation as this paper addresses
the collaboration structure execution aspect only.

2 https://developers.google.com/api-client-library/java/apis/drive/v2.
3 https://github.com/evanwong/hipchat-java/tree/java7.

http://wp.me/P1xPeS-6L
http://wp.me/P1xPeS-6L
https://developers.google.com/api-client-library/java/apis/drive/v2
https://github.com/evanwong/hipchat-java/tree/java7


A Framework for Model-Driven Execution of Collaboration Structures 29

for sake of clarity and brevity. Note how collaboration changes are typically
enforced at the begin and end of process steps: lines 1–4 describe preparations
for the Evaluation Criteria Meeting, lines 5–11 list the post-meeting changes to
document and chatroom. Lines 12–22 show the setup of the assessment team and
department members with access to report and chatroom. Lines 23–28 reduce
access upon the assessment deadline, and lines 29–33 setup the Applicant Selec-
tion Meeting, then the listing skips a few steps before lines 34–35 completely
close down the collaboration instance. The full script is available in the SOM.

Listing 1. Pseudo code for managing collaboration structures in support of
a hiring process: variables with ‘I’-postfix are hADL model runtime instances;
resource descriptors are reduced to simple strings, e.g., ‘Bob’.
1: file1I = acquire(Model.DOCFILE,′ EvalCriteriaReport′) {prepare meeting}
2: users1I[] = acquire(Model.DOCUSER, [′Alice′,′ Bob′]) {hiring committee}
3: link(users1I, file1I,Model.EDITING)
4: start() {ready for meeting}
5: stop() {upon meeting end}
6: unlink(users1I, file1I,Model.EDITING)
7: link(users1I, file1I,Model.COMMENTING)
8: room1I = acquire(Model.CHATROOM,′ CriteriaDiscussionRoom′)
9: users2I[] = acquire(Model.CHATUSER, [′Alice′,′ Bob′])

10: link(users2I, room1I,Model.CHATTING)
11: start() {chatroom setup completed}
12: stop() {assessment phase begins}
13: file2I = acquire(Model.DOCFILE,′ Assessment1′) {for job application 1}
14: users3I[] = acquire(Model.DOCUSER, [′Carol′,′ Dave′]) {assessment team}
15: user5I = acquire(Model.DOCUSER,′ Eve′) {minority officer}
16: link(users3I, file1I,Model.READING) {access to eval criteria}
17: link(users3I, file2I,Model.EDITING) {access to assessment report}
18: link(users1I + user5I, file2I,Model.COMMENTING) {commenting access for department members and

minority officer}
19: room2I = acquire(Model.CHATROOM,′ Application1DiscussionRoom′) {application specific discussion

room}
20: users4I[] = acquire(Model.CHATUSER, [′Carol′,′ Dave′]) {acquire remaining department members}
21: link(users2I + users4I, room2I,Model.CHATTING) {all department member may discuss}
22: start() {assessment scope setup completed}
23: stop() {assessment deadline reached}
24: unlink(users3I, file2I,Model.EDITING)
25: unlink(users1I, file2I,Model.COMMENTING)
26: link(user1I+users3I, file2I,Model.READING) {read access for department members, commenting remains

for officer}
27: release(room2I) {close chatroom for application 1}
28: start() {execute changes}
29: stop() {before selection meeting}
30: file2I = acquire(Model.DOCFILE,′ CandidateList′)
31: link(users1I, file3I,Model.EDITING)
32: link(user5I, file3I,Model.COMMENTING) {minority officer can comment before meeting completion}
33: start() {execute changes}
34: stop() {skipping steps here ...}
35: releaseAll() {... ultimately, shutting down collaboration: files and chatroom}

6 Related Work

Managing human work dependencies is not limited to processes. Brambilla and
Mauri integrate social network-centric actions into web applications via social
primitives [5]. Their focus is on making commenting, posting, voting, and search-
ing capabilities of public social platforms available as WebML operations. Our
approach, in contrast, focuses on specifying and executing the collaboration
structures, leaving the actual collaboration per se to the users via the actual,
underlying platforms. Activity-centric approaches such as [2,12] put control into
the hands of users for flexibly defining and deviating from (ad-hoc) processes.



30 C. Mayr-Dorn and S. Dustdar

Human and Artifact-centric BPM. Even traditional workflow description
languages dedicated to modeling human involvement such as Little-JIL [6],
BPEL4People [15], or WS-HumanTask [18] foresee no explicit communication
among process participants outside of tasks. Although BPEL4people supports
four eyes, nomination, escalation, and chained execution scenarios—and WS-
HumanTask allows attaching comments to tasks—all interaction is purely task-
centric. Similarly, La Rosa et al. [20] demonstrate how EPC-based models may
involve multiple users in a task including artifacts but neither how multiple par-
ticipants collaborate, nor their capabilities on the artifacts. In contrast, Liptchin-
sky et al. model the impact of social relations on software artifacts and the
respective engineering process [21]. The collaboration mechanisms that give rise
to social relations and process execution support remain out of scope. Subject-
oriented BPM [14] models all data flow exclusively with messages between
process participants. Hence other collaboration mechanisms such as shared arti-
facts, chat rooms, etc. are extremely awkward to represent.

Artifact-centric BPM approaches [17] (aka document-centric, data-centric, or
object-centric) focus on specifying artifact structure, states, and access rights.
Examples such as the Business Entity Definition Language [23], Philharmon-
icflows [19], FlexConnect [24] or ad-hoc processes driven by documents [8] remain
restricted to artifacts and leave aside other collaboration mechanisms such as
chatting, voting, or direct messaging. These approaches, however, model arti-
facts in much more detail compared to hADL.

Social BPM and Crowd Sourcing. Recent research efforts started explic-
itly targeting the integration of social media into business process manage-
ment (BPM) technology. Brambilla et al. present design patterns for integrating
social network features in BPMN [4]. A social network user may engage in task-
centric actions such as voting, commenting, reading a message, or joining a task.
Böhringer utilizes tagging, activity streams, and micro-blogging for merging ad-
hoc activities into case management [3]. Dengler et al. utilize Wikis and social
networks for coordinating process activities [7]. oBPM [16] relies on task and
artifact abstractions for coordinating business process modelling.

These approaches differ in several crucial aspects from our work: (i) they
integrate collaboration mechanisms only in single tasks, (ii) these mechanisms
are typically hard-wired social media connectors with no abstraction, (iii) and/or
collaboration aspects support the process design phase [13] only.

To the best of our knowledge, no contemporary research approaches address
the issue of modeling and executing collaboration structures. We focused in our
own, previous work on establishing a passive runtime view of the ongoing col-
laboration from monitoring a system’s software architecture [10] and addressed
the aspect of configuration and deployment of collaboration systems, i.e., pro-
visioning the technical infrastructure [25]. Our approach in this paper is com-
pletely independent of either works. The discussed work above presents primarily
orthogonal approaches worthwhile investigating for future integration.



A Framework for Model-Driven Execution of Collaboration Structures 31

7 Conclusions and Outlook

In this paper4, we presented a first framework for model-driven execution of col-
laboration structures. We demonstrated how to specify collaboration structures
on an abstract level subsequently grounded in concrete collaboration platforms
via surrogates. The preliminary evaluation use case demonstrated the application
of our framework for supporting a hiring process via Google Drive documents
and HipChat chat rooms. The current implementation puts a significant burden
on the framework client for error handling and correct model usage. Future work
will explores the use of a Domain-Specific Language for expressing and gener-
ating the source code for type safe collaboration modification. Additionally, we
will focus on adding sophisticated error handling strategies and investigating the
integration with a process engine.

References

1. BPMN 2.0. http://www.omg.org/spec/BPMN/2.0/PDF/
2. Bernstein, A.: How can cooperative work tools support dynamic group process?

bridging the specificity frontier. In: Proceedings of ACM Conference on Computer
Supported Cooperative Work, CSCW 2000, pp. 279–288. ACM, New York (2000)

3. Böhringer, M.: Emergent case management for ad-hoc processes: a solution based
on microblogging and activity streams. In: zur Muehlen and Su [22], pp. 384–395

4. Brambilla, M., Fraternali, P., Vaca, C.: BPMN and design patterns for engineer-
ing social BPM solutions. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM
Workshops 2011, Part I. LNBIP, vol. 99, pp. 219–230. Springer, Heidelberg (2012)

5. Brambilla, M., Mauri, A.: Model-driven development of social network enabled
applications with WebML and social primitives. In: Grossniklaus, M., Wimmer, M.
(eds.) ICWE Workshops 2012. LNCS, vol. 7703, pp. 41–55. Springer, Heidelberg
(2012)

6. Cass, A.G., Lerner, B.S., Sutton Jr., S.M., McCall, E.K., Wise, A.E., Osterweil,
L.J.: LittleJIL/Juliette: a process definition language and interpreter. In: Ghezzi,
C., Jazayeri, M., Wolf, A.L. (eds.) ICSE, pp. 754–757. ACM (2000)

7. Dengler, F., Koschmider, A., Oberweis, A., Zhang, H.: Social software for coordi-
nation of collaborative process activities. In: zur Muehlen and Su [22], pp. 396–407

8. Dorn, C., Dustdar, S.: Supporting dynamic, people-driven processes through self-
learning of message flows. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011.
LNCS, vol. 6741, pp. 657–671. Springer, Heidelberg (2011)

9. Dorn, C., Taylor, R.N.: Architecture-driven modeling of adaptive collaboration
structures in large-scale social web applications. In: Wang, X.S., Cruz, I., Delis, A.,
Huang, G. (eds.) WISE 2012. LNCS, vol. 7651, pp. 143–156. Springer, Heidelberg
(2012)

10. Dorn, C., Taylor, R.N.: Coupling software architecture and human architecture for
collaboration-aware system adaptation. In: Notkin, D., Cheng, B.H.C., Pohl, K.
(eds.) ICSE, pp. 53–62. IEEE/ACM (2013)

11. Dorn, C., Taylor, R.N.: Analyzing runtime adaptability of collaboration patterns.
Concurrency Comput. Pract. Experience 27(11), 2725–2750 (2015)

4 This research was partially supported by the EU FP7 SmartSociety project (600854).

http://www.omg.org/spec/BPMN/2.0/PDF/


32 C. Mayr-Dorn and S. Dustdar

12. Dustdar, S.: Caramba process-aware collaboration system supporting ad hoc and
collaborative processes in virtual teams. Distrib. Parallel Databases 15(1), 45–66
(2004)

13. Erol, S., Granitzer, M., Happ, S., Jantunen, S., Jennings, B., Johannesson, P.,
Koschmider, A., Nurcan, S., Rossi, D., Schmidt, R.: Combining BPM and social
software: contradiction or chance? J. Softw. Maint. Evol. Res. Pract. 22(6–7), 449–
476 (2010)

14. Fleischmann, A., Schmidt, W., Stary, C., Obermeier, S., Börger, E.: Subject-
Oriented Business Process Management. Springer, Heidelberg (2012)

15. Ford, M., Endpoints, A., Keller, C.: WS-BPEL extension for people
(BPEL4People), version 1.0 (2007)

16. Grünert, D., Brucker-Kley, E., Keller, T.: oBPM an opportunistic approach to
business process modeling and execution. In: Workshop on Business Process Man-
agement and Social Software (BPMS2 2014) (2014)

17. Hull, R.: Artifact-centric business process models: brief survey of research results
and challenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS, vol.
5332, pp. 1152–1163. Springer, Heidelberg (2008)

18. Ings, D., Clement, L., König, D., Mehta, V., Mueller, R., Rangaswamy, R., Rowley,
M., Trickovic, I.: Web services human task (WS-HumanTask) specification version
1.1. Technical report, OASIS, July 2012. http://docs.oasis-open.org/bpel4people/
ws-humantask-1.1.html

19. Künzle, V., Reichert, M.: Philharmonicflows: towards a framework for object-aware
process management. J. Softw. Maint. Evol. Res. Pract. 23(4), 205–244 (2011)

20. La Rosa, M., Dumas, M., ter Hofstede, A.H.M., Mendling, J., Gottschalk, F.:
Beyond control-flow: extending business process configuration to roles and objects.
In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp.
199–215. Springer, Heidelberg (2008)

21. Liptchinsky, V., Khazankin, R., Truong, H.-L., Dustdar, S.: A novel approach to
modeling context-aware and social collaboration processes. In: Ralyté, J., Franch,
X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 565–580.
Springer, Heidelberg (2012)

22. zur Muehlen, M., Su, J. (eds.): BPM Workshops. LNBIP, vol. 66. Springer,
Heidelberg (2011)

23. Nandi, P., Koenig, D., Moser, S., Hull, R., Klicnik, V., Claussen, S., Kloppman,
M., Vergo, J.: Data4BPM, part 1: introducing business entities and the business
entity definition language (BEDL), April 2010. http://ibm.co/1QTR0IH

24. Redding, G., Dumas, M., ter Hofstede, A.H.M., Iordachescu, A.: A flexible, object-
centric approach for business process modelling. SOCA 4(3), 191–201 (2010)

25. Sungur, C.T., Dorn, C., Dustdar, S., Leymann, F.: Transforming collaboration
structures into deployable informal processes. In: Cimiano, P., Frasincar, F.,
Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS, vol. 9114, pp. 231–250.
Springer, Heidelberg (2015)

26. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,
Theory, and Practice. Wiley Publishing, New York (2009)

http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.html
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.html
http://ibm.co/1QTR0IH

	A Framework for Model-Driven Execution of Collaboration Structures
	1 Introduction
	2 Motivating Scenario
	3 The human Architecture Description Language
	4 The hADL Execution Framework
	4.1 Architectural Overview
	4.2 hADL Framework Component Interactions
	4.3 From Model to Execution

	5 Use Case Implementation
	6 Related Work
	7 Conclusions and Outlook
	References


