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Glossary

Actor: Entity (human or
computer) possessing a
capability to act
intelligently and process
specific assignments
(activities/tasks).

Atomic task: Task that can be handled
by an individual actor.

CAS: Collective adaptive
system.

Collaboration
system (platform):

Information system
supporting execution of
collaborative processes.

Collaborative
process
(collaboration):

Joint effort of a (limited)
number of actors with the
goal of performing a task.
A collaborative process
has a limited duration and
requires coordination
among actors (due to task
dependencies).

Composite task: Task that must be handled
by multiple actors due to
size or complexity.
A composite task can be
broken down into atomic
tasks.

CSCW: Computer-supported
cooperative work.

HBS: Human-based service.
Metric: Precisely defined,

context-specific measure
of some properties.

QoD: Quality of data.
QoS: Quality of service.
SOA: Service-oriented

architecture.
SOC: Service-oriented

computing.
Task assignment: The art to divide a

(composite) task into
(sub)tasks and assign
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them to appropriate
actors.

Task: Piece of work to be
solved, typically complex
enough to require
knowledge or processing
power of a large number
of individual actors.

Team formation: Process consisting of
identifying appropriate
actors for performing all
atomic tasks and
establishing of internal
coordination and
functioning rules in
the team.

Team: Set of actors taking part in
a collaborative process.
Team lifetime is
considered equal to the
lifetime of the
collaborative process.

WS: Web service.

Definition

In this article, we look into different types of
collaboration systems. We describe team struc-
tures and discuss different forms of collaborations
they support. In particular, we focus on interaction
processes that are supported by the system and
discuss different metrics used to describe and
analyze such systems. We discuss three main
team collaboration types: static, ad hoc, and
open collaboration. We then focus on interaction
analysis and discuss appropriate interaction
metrics.

Introduction

With the advent of Web 2.0 and social networks,
millions of users around the world were given the
opportunity to collaborate, share ideas, and coor-
dinate their efforts easier than ever before. These
developments lead to an increased interest to

exploit these opportunities, both in the research
community and in the industry. Such collabora-
tive efforts are supported by different types of
collaboration systems, providing automated or
semiautomated actor management (e.g., model-
ing, reputation, and rewarding), task management
(e.g., modeling, creation, division, scheduling,
aggregation, and monitoring), and process execu-
tion environment (including actor communication
and coordination).

Collaboration systems enable different collab-
oration types. Depending on the type of system
and type of problem to be solved, different team
structures are possible. The team structure guides
the interactions and collaboration among team
members and consequently plays an important
role in a team’s performance. Figure 1 depicts
the fundamental elements of a collaboration sys-
tem that we discuss in this article.

Key Points

• Human computation systems – Systems in
which human actors perform assigned tasks in
a precisely defined sequence (e.g., by follow-
ing an algorithm). The execution is explicitly
controlled and coordinated by the system and
expected to yield precise results (Law 2011).

• Workflow management systems – Systems that
allow modeling of tasks and their execution
scenarios. Notable representatives of such sys-
tems are the various business process manage-
ment (BPM) systems. Although tasks can be
performed by human actors, the traditional
understanding of the notion of a workflow
system does not include an integrated manage-
ment of human-performed tasks.

• Mixed systems – Systems where both human
and computer actors process the tasks. Humans
are deeply integrated into the system, making
both types of actors first-class citizens of
it. The decision on who processes a particular
task can be made by the system. While
computer-performed tasks are accurate,
employing humans for certain tasks requires
dealing with uncertainties both in terms of
human behavior and the quality of results.

2 Social Interaction Analysis for Team Collaboration



• Crowdsourcing systems – Systems in which
the task is offered, rather than assigned explic-
itly, to an unknown and usually large group of
people who can freely accept and perform the
tasks.

Historical Background

The idea of combining research on how humans
work, communicate, and cooperate and the
research on how computer systems can efficiently
support such collaborations led to the creation of
an interdisciplinary research area known as
computer-supported cooperative work (CSCW)
in the 1980s (Grudin 1994). Initially, the research
was focused on small-scale collaborations, e.g.,
within companies or interest groups. With the
wide adoption of Internet technologies, service-
oriented architectures (SOA), mobile and cloud
computing, and especially social networks, now-
adays it is possible to carry out large-scale collab-
orations, possibly involving thousands of
collaborators across boundaries of multiple orga-
nizations and countries. In the absence of an
agreed naming taxonomy, a number of nuanced
terms are commonly used in literature to generally
denote systems and platforms for managing col-
laborations: social computing systems, socio-
technical systems, hybrid collective adaptive

systems (hCAS), and cyber-human systems.
Some examples of today’s well-established types
of such collaboration systems are given as
follows.

Team Collaboration Analysis

Team Properties
We consider three important team properties:
(a) actorsmaking up the team, with their different
skills, qualities, and personalities; (b) structure,
representing the relationships, interactions, scale,
and elasticity of the actor population; and
(c) different forms of collaboration among the
actors.

Actors and Team Structure
Actor teams are usually modeled as undirected or
directed (multi)graphs with nodes representing
people or teams of people and edges representing
relationships between them (Newman 2010).
Often, the edge is associated with a set of proper-
ties quantifying the interaction between the two
nodes it connects and annotated with a context,
representing the type of the relationship (e.g.,
social, professional collaboration, trust). There-
fore, a team network can be modeled as a graph
consisting of nodes representing actors, sets of
skills forming their profiles, and edges

TEAM TASK

Actors

Structure

Forms of
Collabora�on

Team Forma�on Descrip�on

Structure/
Complexity

Task Assignment &
Delega�on

Monitoring & Analysis

Structural Metrics Interac�on Metrics

Quality Metrics

Collabora�on System

Team Proper�es Task Proper�esInterac�on Processes

Metrics

Interac�on Analysis

Social Interaction
Analysis for Team
Collaboration,
Fig. 1 Elements of a
collaboration system

Social Interaction Analysis for Team Collaboration 3



representing relationships and associated contexts
of relationships (Caverlee et al. 2008).

Depending on the lifetime and the scale of the
observed actor set, we can consider different
structural properties with varying relevance.
Small-scale actor teams are usually assembled
relying on the compatibility of the actors and
their relationships, allowing the delegation of
task coordination to the actors themselves. Typi-
cal examples are expert teams where actors have
previous mutual collaboration experience, of
friend cliques, where the common social fabric is
a promise of a successful collaboration. The life-
time of such teams is short, and the structure is
mostly static and determined at assembly time.
Large-scale collaborations exhibit properties of
populations – an extended lifetime and complex
structure changing dynamically throughout exe-
cution time, thus requiring efficient automated
mechanisms for coordination. Scale and turnover
(Lee and Paine 2015) are metrics used to describe
the magnitude and volatility (or stability) of such
collaborations. For open collaborations, the turn-
over represents the rate of actors joining/leaving
the collaboration. For managed collaborations,
the scale and turnover are important inputs for
determining the next elastic actions to take
(Riveni et al. 2014).

Forms of Computer-Supported Team
Collaboration

Static Collaboration Static collaboration is
characterized by well-defined, long-lasting/
repetitive processes (tasks), executed by human
actors with specific assigned roles. Such kind of
collaborations is usually found in companies that
encode and execute their daily business use cases
as business processes by using workflow technol-
ogies. This collaboration type makes no use of the
underlying social networks connecting the actors
to alter or enhance the collaboration in any way.
As such, this approach works well only in cases
where the predictability of the process execution
is high and where no adaptability is required.

Ad Hoc Collaboration Unlike static collabora-
tion, the ad hoc collaboration is suitable when

performing highly dynamic tasks that change in
time or complex tasks that occur only once and are
not repeated. In this type of collaboration, tasks
are initially defined, but the actors performing
them are provisioned only at runtime. Ad hoc
collaborations often cross organizational bound-
aries and are distributed in nature – in terms of
software services used, in terms of actors execut-
ing the tasks, as well as in terms of control. Actor
provisioning can be fully automated or partially
performed by the actors themselves, often relying
on social and other underlying networks
connecting the actors.

Open Collaboration In open collaborations, a
task can be actively shaped by the actors. The
actors (often belonging to a professional commu-
nity or an interest-based community) contribute
freely to the task resolution during runtime. A task
is not strictly assigned to a particular actor, but
instead it is editable by (m)any community mem-
bers upon their wish. In this case, the coordination
between the actors can affect the quality of the
task (Kittur and Kraut 2008). Data quality is con-
trolled by the system itself and/or by a designated
entity, often relying on the feedback information
from data users. Open collaboration is particularly
suitable for longer running, best-effort tasks, with
no strict quality and time constraints, but requiring
distributed know-how.

Open-source development, Wikipedia, and
community-based Q&A websites are among the
best examples of open collaboration. Examples of
open collaboration enabling technologies and
platforms include cloud services (e.g., Amazon
EC2), sharing and collaboration platforms (e.g.,
Dropbox, Google Docs, Mendeley, and some
more secure and private ones such as ownCloud
and ownDrive), and open-source repositories
(e.g., GitHub, GitLab, SourceForge).

Most existing systems employ a combination
of different collaboration types, attempting to
reduce the respective limitations of individual
types and offer more versatile collaborations.
CrowdLang platform (Minder and Bernstein
2012) combines static and ad hoc collaboration
by integrating human-provided services into
workflow systems. The workflow is not fully
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static but can be designed as needed by (re)com-
bining a number of generic (simple) collaborative
patterns (e.g., iterative, contest, collection, divide
and conquer). The CrowdComputer platform
(Tranquillini et al. 2015) combines static and
open collaboration. The tasks are executed fol-
lowing a workflow, but the tasks are split into
atomic tasks offered to individual workers
through different “tactics” (e.g., marketplace, auc-
tion, mailing list). The SmartSociety platform
(Scekic et al. 2015) supports combining all three
collaboration types, allowing the actors to actively
participate in determining and executing the team
and the workflow (collaboration plan).

Task Properties

Task Description
Considering the general nature of the tasks that
can be handled by a team composed of human
actors, describing tasks precisely and unambigu-
ously is extremely challenging. The difficulty lies
in expressing the information that needs to be
interpreted by each actor in the same way. At the
same time, the effort required to properly interpret
a task’s objectives must be considerably smaller
compared to the effort required to perform the task
itself. In practice, the tasks can be described,
informally and formally:

• Informally describing tasks means expressing
the required outcomes in natural language,
accompanied with simple examples. This
approach is usually taken by today’s
crowdsourcing platforms that handle simple
tasks. Also, informal description may be pre-
ferred in cases where tasks require aesthetic
judgment or when the required outcome of
the task is too vague to be expressed more
precisely (e.g., on websites running creativity
contests).

• Formally describing tasks means employing a
specific notation that precisely defines how the
task should be processed and what should the
outcome be. Formal task description is usually
used in specific environments, most notably in
business process modeling (BPM). Initial ver-
sions of the most prominent business control-

flow languages, such as BPEL, did not support
specification and invocation of human interac-
tions. An extension to BPEL, known as
BPEL4People, was proposed in 2005 to allow
modeling of human interactions within busi-
ness processes by introducing the concept of
people activities. A people activity can be
described according to the WS-HumanTask
specification. In this way, humans can be inter-
nally represented as Web services and inte-
grated into the system.

Task Structure and Complexity
Task structure directly influences the team struc-
ture. Different task structures and complexities
demand specific types of collaboration in terms
of communication form, coordination protocols,
adaptation schemes, and outcome type. Subtask
interdependencies are one of the fundamental fac-
tors determining the task structure and task com-
plexity. One basic task structure categorization is
that into parallel and sequential tasks. Parallel
tasks contain subtasks that can be executed inde-
pendently in parallel, while a sequential task is
composed of subtasks whose execution must fol-
low a strict order. A subtype of sequential tasks is
iterative tasks, where the output of one actor is
given as input to another actor for subsequent task
execution. An experiment and analysis of parallel
and iterative approaches in open systems can be
found in Little et al. (2010).

Apart from subtask interdependencies, other
nonstructural factors can influence a task’s com-
plexity, such as the following: (a) number of
atomic tasks, (b) growth (Dustdar and
Bhattacharya 2011) (the number of atomic tasks
can grow in runtime, necessitating team-size
adaptability), and (c) task cardinality (tasks can
be designed to be executed by one or many actors
in one-to-one, many-to-one, many-to-many, and
few-to-one fashion). See Quinn and Bederson
(2011) for details and examples.

Interaction Processes

Team Formation
The problem of team formation consists of
selecting suitable actors to perform a given task
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(out of a larger group of available actors) and
organizing them in a collaborative structure. The
first problem with identifying “suitable” actors is
that suitability is highly context dependent and
difficult to define precisely. Furthermore, suitabil-
ity can have many different aspects. For example,
the minimal suitability requirement for an actor is
to possess the skills to perform the task. But, at the
same time, for a successful teamwork, factors like
trust, motivation, experience, and personal rela-
tions with other team members can be equally
important.

Initially, the research focused on locating indi-
vidual best-matching actors for a required set of
skills and other individual properties. However, a
group of top individuals does not guarantee the
quality of their collaboration. Subsequent
research efforts began taking into account the
underlying social relations among the actors
(e.g., friendships, managerial relations, previous
business interactions, interests, connectedness,
and social trust). Finally, recent systems aim to
include human actors as first-class citizens allo-
wing them to actively influence at runtime the
team formation process (Rovatsos et al. 2015).

After selecting suitable actors, the following
step in ensuring a successful collaboration is set-
ting up a collaborative organization and environ-
ment. Although collaboration patterns in a team
often resemble those in the underlying social net-
works, other factors like coordination cost, user
preferences, and context are also important.

Whichever the properties considered, they are
always measurable and quantifiable, meaning that
the problem of team formation can be ultimately
expressed as an optimization problem where we
want to optimize certain performance aspects of
the team as a whole (speed, quality, cost, and
response time) while respecting the fixed
constraints.

In general, team formation can be:

• Self-organizing – The actors themselves lead
the team formation in a collective-intelligence
fashion and set up the collaboration environ-
ment. The system assists the process (e.g., by
enforcing negotiation rules, counting the

votes) but does not make decisions on actor
participation.

• Centralized – Team formation and setting up of
collaborative environment is managed by the
system, including the decision on participating
actors.

Wikipedia and open-source community are
striking examples of how self-organizing teams
can perform well. The assumption is that the
actors taking part in collaboration will perform
best if they are given the possibility to modify
and adapt the collaborative environment. This
includes also the initial team formation. For exam-
ple, in Gaston and DesJardins (2005) the authors
investigate a system that enables actors to locally
modify their collaborative environment according
to their social network preferences (i.e., to rewire
the local network topology) with the goal of
achieving globally noticeable, collective perfor-
mance improvement.

The most problematic aspect of self-organizing
teams is the discrepancy between local and global
effects. Although we rely on the collective intel-
ligence of the actors, in practice, actors may not
know how or when to modify the local network to
achieve global improvements, since their actions
are based upon their partial views only.

Centralized team formation is entirely handled
by the system. Internally, the system can employ
an algorithm or human actors to assemble the
team:

• Human-managed team formation relies on
human actors offering their referrals and rec-
ommendations via Web services, thus leverag-
ing crowdsourcing techniques to identify the
best candidates from their social networks. An
example of such a system is PeopleCloud
(Lopez et al. 2010).

• Algorithmic team formation relies on an algo-
rithm to select actors and assemble the team.
A lot of research efforts have been directed in
this sense, producing a number of different
algorithms. In Schall and Dustdar (2010) and
Schall et al. (2012), the authors modify the
well-known page ranking algorithms
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PageRank and HITS to identify the best team
members, based on their previous interactions.
In Lappas et al. (2009) and Anagnostopoulos
et al. (2012), the goal is to minimize the total
coordination cost of the newly established
team, while in Dorn and Dustdar (2010), the
optimal team is chosen as a trade-off between
skill coverage and actor connectivity.
Anagnostopoulos in Anagnostopoulos
et al. (2010) presents an algorithm for forming
minimum size teams with minimum workload
that satisfies required team skills. Kargar
et al. present team formation algorithms with
communication and personnel cost minimiza-
tion in An et al. (2013). Sagar in Sagar (2012)
has presented a formal model for task assign-
ment and finding team collaborators in social
networks by using shortest distance in the net-
work. In Caverlee et al. (2010), the social trust
between the team members is regarded as the
most important factor in forming efficient
collaborations.

Task Assignment and Delegation

Routing and Delegations Task delegation
mechanisms are being explored as forms of coor-
dination and load balancing in human computa-
tion. The concept of social routing is introduced
in Dustdar and Gaedke (2011) as a form of dele-
gation of tasks by task owners to actors from their
social, professional, and other context-based com-
munity networks or the crowd. The so-called
social router can be a software service that actu-
ally does the task forwarding across different
types of networks depending on the requirement
of the actor wishing to delegate the task.

Historical data on delegations (e.g., the exe-
cuted/delegated tasks ratio, frequently used dele-
gates) can serve as a good indicator of actor’s role,
performance, and social relationships. For exam-
ple, a high number of task delegations testify a
coordinating/managing role. However, the same
information, if interpreted properly, is a potential
indicator of actor’s laziness. Moreover, it was
shown (Sun et al. 2014) that actors favor the
familiarity with the delegates over their assessed
suitability for the given task. Delegation data can

be used as metrics in actor selection and team
formation algorithms. Moreover, delegation mea-
sures can be used in trust inference mechanisms.
For example, Riveni et al. (2015) present a trust
model where the rate of successfully executed
delegated tasks is included in the definition of an
actor’s reliability metric, which in turn is included
in the actors trust score. On the other hand, if the
receivers of delegated tasks are considered trust-
worthy, new trust-based links will be created
between the delegator and the delegates (Skopik
et al. 2010).

Delegation Patterns in Business Process
Activities The four main delegation patterns,
detailed in Kloppmann et al. (2005), are:

• Nomination pattern allows predefined actor
(s) to decide to whom to assign a task.

• Escalation pattern allows transfer of responsi-
bility for task execution to other human actors
when the originally assigned actor cannot meet
task’s time constraints. When an escalation is
triggered, actors designated as escalation recip-
ients are notified and allowed to decide how to
proceed with the task execution, possibly
reassigning it to another actor. When dealing
with uncertainties related to human processing,
this is an inevitable mechanism that must be
supported.

• Chained execution pattern forces the actors to
perform a specific sequence of actions, where
the concrete actions may be determined only in
runtime. The actors can be assigned a new
action only after completing the previously
assigned one. This pattern allows
implementing a “bag of tasks” kind of parallel-
ism, with each actor repeatedly removing tasks
from the bag.

• Four eyes principle pattern allows two actors
to take a public or a private decision on the
same issue independently (separation of
duties).

Algorithmic Task Life Cycle Management In
cases when subtasks are clearly delimited and
subtask dependencies are static and do not change
in time, parallelizing a task execution is fairly
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easy. Some application domains, such as
crowdsourcing systems, are characterized by
exactly such properties.

This has led researchers to dedicate a lot of
effort to automate task life cycle management
transparently for the programmer, by developing
a number of programming language extensions/
libraries that work on top of existing commercial
crowd-sourcing systems, such as Amazon
Mechanical Turk. The extensions are typically
able to automatically split a task; to assign/offer
the subtasks to the actors in the crowd respecting
the dependency, cost, and time constraints; and to
merge the processed subtasks into the final
resulting task. Additionally, automated quality
control processes may be also offered. Most com-
monly, these are based on peer reviews or on a
combination of redundant processing and major-
ity rule. For example, an image that needs to be
tagged may be submitted to multiple actors, but
the aggregated result will contain only tags
suggested by multiple independent actors. The
data quality requirements can have a direct influ-
ence on task assignment, as they may introduce
assignments not explicitly required by the user but
performed transparently by the system. In fact, the
main purpose of algorithmic handling of task
assignment is exactly to move the burden of task
life cycle management from the user to the
system.

Collaboration systems can manage task assign-
ments automatically throughout the entire execu-
tion time, repeating them when needed. For
example, Little et al. (2009) show a system offer-
ing the possibility of iterative task execution, by
reassigning previously processed tasks a number
of times in order to improve the final quality of
work by incrementally building upon previous
work. In Marcus et al. (2011), a system can auton-
omously decide when to assign pleasing tasks to
specific actors in order to motivate/reward them.

Another major advantage of algorithmic task
assignment is the cost optimization. For large-
scale collaborations, the system is able to assign
the tasks in such a way to reduce the coordination
costs better than human managers could do. For
example, the task can be assigned to actors

possessing similar professional skills and back-
grounds, or the system can adjust task prices and
time allotments based on the feedback obtained
from monitoring data (Barowy and Berger 2012).

Collaboration Monitoring and Analysis
Monitoring and analyzing collaborative processes
is necessary to gather important metrics about the
performance of teams and actors and the quality of
processed tasks. Such metrics are then used to
detect bottlenecks, improve performance, and
decide on appropriate compensation of the actors.
As these metrics play a fundamental role in deter-
mining overall collaboration efficiency and costs,
every collaboration system must support some
kind of monitoring and analysis functionalities.

Monitoring can be performed during the
runtime of a collaborative process (active moni-
toring) or it can be performed post-runtime, e.g.,
by log mining. Log mining is usually considered a
part of more complex analysis processes, known
as workflow/process mining (van der Aalst 2011;
Zhang and Serban 2007).

Active monitoring is suitable for detecting
anomalies that require quick responsive actions
and team adaptations. An example of a system
capable of monitoring and analyzing SOA-based
collaborative processes can be found in Truong
and Dustdar (2009).

Log mining, on the other hand, is used to
gather less obvious information about the internal
functioning of the team, since it considers the
backlog of all recorded actions performed during
previous collaborations. This allows discovery
and prediction of critical execution paths,
expected workload distribution, actor perfor-
mance, and identification of previously unknown
collaborative social networks, e.g., the network of
most trusted colleagues or the groups of workers
that together collaborate most efficiently as
a team.

Metrics lie at the very heart of any monitoring
and analysis process. In the following section, we
present an overview of the metrics used by differ-
ent collaboration systems.
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Collaboration Metrics and Patterns
Metrics used in collaboration systems can be
divided into three major categories:

• Structural metrics – defining the mathematical
properties of the social/collaborative network
connecting the actors.

• Interaction metrics – defining various proper-
ties of individual actors or actor groups, emerg-
ing as the result of past interactions.

• Quality metrics – defining quality criteria for
actor performance and for task outcome data.

Structural Metrics and Network Patterns
Structural metrics and network patterns are based
on mathematical properties of the social graph
connecting the actors in a collaboration network
(team). They provide useful insights into the func-
tioning and self-organization of actors in a team.
Structural metrics are well researched. In the fol-
lowing, we briefly mention some of main struc-
tural metrics:

• Centrality measures – include various metrics
that identify the importance of an actor within a
network in different contexts of importance.
Some of the most important centrality metrics
are degree centrality, closeness centrality,
betweenness centrality, and eigenvector.

• Structural groups – They refer to various
group patterns that can be identified within
networks, such as core (denoting a subset of
actors within a network where each actor is
connected to at least k other actors within the
same subset), k-component (denoting a subset
of actors in which each two actors are
connected by at least k independent paths),
and clique (denoting a subset of actors all
directly connected to each other).

• Transitivity and reciprocity – Transitivity
reflects the “friend-of-a-friend” concept, i.e.,
if an actor a is connected by an edge to another
actor b, and b is connected to c, then a is also
connected to c. Reciprocity, on the other hand,
denotes the probability that actor b points to
actor a if actor a points to b.

• Similarity – It is defined by structural equiva-
lence and regular equivalence metrics. See
Newman (2010).

Details about all these and other metrics, as
well as about ranking algorithms, can be found
in Newman (2010).

Interaction Metrics
Interaction metrics can be defined at two levels:
individual level (targeting individual actors) and
group level (targeting multiple actors or the entire
team). Individual interaction metrics describe a
property of an individual actor that is shaped by
the interaction in which the actor has participated.
Group interaction metrics describe properties of
particular interactions between actors, possibly
including the collaboration as a whole.

Certainly, the most important actor-level met-
rics are skill coverage and trust. Skill coverage
represents a degree to which an actor or a team
possesses necessary skills to perform a task. This
metric is important because it describes howmuch
a team’s set of skills deviates from the optimal one
for a given task. The problem of matching skills is
equivalent to the problem of functional matching
in Web service compositions.

Trust, as a computational concept, was formal-
ized in Marsh (1994) and since then it has been
seen as a metric of great importance for selection
of appropriate actors during the team formation
phase. Trust is defined as an indicator of an actor’s
expectation about another actor’s future behavior
based on knowledge from previous interactions,
and which inherently involves a degree of uncer-
tainty about this behavior and its outcomes. Trust
is highly context dependent, and one actor may
have information about several scope-specific
trust values for another actor. A scope can be the
membership in a professional network, social net-
work, or a collaboration team. Inferring trust is
important in several cases:

• For actor discovery and team formation algo-
rithms, when determining actor suitability for
specific tasks
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• For team optimization, adaptation, and risk
management purposes

• For delegation mechanisms, e.g., when
selecting a collaborator that may be a part of
the extended team structure for the purpose of
load balancing in cases of unexpected load

We can distinguish three types of trust based on
the types of actors and interactions that are taken
into account for its inference:

• Local trust or direct trust (sometimes also
called private reputation) – firsthand trust,
inferred from the outcome of an actor’s previ-
ous interactions with the trustee

• Recommendations – secondhand trust inferred
from the outcome of past interactions between
a well-trusted entity and the trustee

• Global trust or reputation – aggregated com-
munity trust, inferred from outcomes of past
interactions between third-party actors and the
trustor (Skopik et al. 2009)

Other actor-level metrics include task familiar-
ity and team familiarity (Espinosa et al. 2007).
These are especially important for open collabo-
ration where the system cannot assign a task to
appropriate and trusted actors. If some of the
actors within an open collaboration are already
familiar with other actors, the coordination will
be positively affected.

Team familiarity is important in large teams
where effective team coordination is more diffi-
cult. Team familiarity is a function of multiple
other metrics such as quality of prior interactions
with a coworker, prior belonging to the same
team, and prior experience with the same team
structure and organization. Hence, this measure
is closely related to trust.

Homophily is another metric closely related to
team familiarity, where an actor chooses a collab-
orator based on profile similarity. Fazel-Zarandi
et al. (2011) conclude that homophily (e.g., gen-
der, same interests, tenure status) is considered
more important in choosing research collaborators
than, for example, their qualification level.

Task familiarity is best explained with an
example of open source software development
team. The bigger the number of interdependent
modules, the more complex is the task. This
increases the amount of information to be pro-
cessed by human actors; thus, it is important that
actors have a reasonable amount of task familiar-
ity. Details of a model for performance analysis of
teams based on task familiarity and team familiar-
ity can be found in Espinosa et al. (2007).

Group-level metrics describe performance
properties of a collaboration. One of the funda-
mental metrics describing collaborations is the
team size. The bigger the number of collaborating
actors, the more communication and coordination
among them is needed. For example, in Kittur and
Kraut (2008), the authors use Wikipedia to ana-
lyze how the number of editors and the coordina-
tion methods affect the article quality in terms of
accuracy, completeness, and clarity.

A metric indicating interaction intensity
between an actor and other important actors is
measured in specific interaction contexts. It is
used in the aforementioned DSARank ranking
algorithm (Schall and Dustdar 2010).

The relevance of the connections to important
actors is the most important factor in determining
the reputation of an actor. The reliability of the
feedback information in reputation systems
depends on the reputation of actors providing the
feedback. Reputation information is valuable
when an actor lacks information based on direct
experiences with another actor. However, when
this information is available and appropriate, the
private or direct trust weights more than trust
values based on reputation data. In this case the
weight of data from direct interactions should be
determined by calculating the minimum number
of direct/local trust or rating values that should be
maintained by an actor for the actor providing the
service/executing a task (Noorian et al. 2012).

Collaboration cost is an important metric
because of its direct business influence. This met-
ric takes into account not only the price of task
processing paid to the actors, but rather the total
costs, including the communication and coordina-
tion costs. It is used as the basis for the cost
optimization algorithms, as shown in the
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following systems – Quirk (Marcus et al. 2011)
and AUTOMAN (Barowy and Berger 2012).

Automatically discovering collaboration pat-
terns naturally occurring among actors opens up a
possibility to identify particularly (un)successful
collaboration groups or execution sequences. This
information can in turn be used to optimize col-
laborative process. Identifying collaboration pat-
ters is one of the central topics of process mining.

Quality Metrics
Quality of Data (QoD) Metrics As collaboration
systems deal with various human-performed
tasks, and the data quality primarily depends on
the type of tasks, trying to develop a general set of
quality metrics makes little sense. For example,
metrics listed in Table 1, such as data complete-
ness, freshness, and accuracy, are well-known
metrics, but their definition is highly dependent
on the goal of their use. Instead, different metrics
are developed for particular application domains
(e.g., Hu et al. (2007) and de La Robertie
et al. (2015) present models to assess article qual-
ity in Wikipedia). However, it is exactly the fact
that humans participate in the collaborative pro-
cesses that introduces a concept common to all the

application areas – that of uncertainty or inaccu-
racy (Parameswaran and Polyzotis 2011). The
main sources of uncertainty are caused by the
dynamic and unexpected behavior of humans:
humans make mistakes, are subjective, and
exhibit malicious/dysfunctional behavior. Thus,
approaches for dealing with uncertainty should
be included in supporting systems.

Different research communities deal with uncer-
tainty differently. However, all approaches rely on
some probability metrics that quantify our belief
that a single task is performed correctly. In prin-
ciple, all approaches can be divided into two
categories:

• Optimistic approaches – Processed tasks are
returned along with a confidence (accuracy)
estimate. The data user accepts the results but
must be aware that a certain percentage of the
results will be wrong.

• Pessimistic approaches – The system applies
various mechanisms for error detection and
correction and usually resubmits the task to
multiple actors until the merged result satisfies
the required quality threshold.

Social Interaction Analysis for TeamCollaboration, Table 1 Overview of metrics and patterns used in collaboration
systems

Structural metrics Centrality measures
(Degree, closeness, betweenness, eigenvector, etc.)

Structural groups
(Cores, components, cliques)

Transitivity, reciprocity

Similarity, equivalence

Interaction
metrics

Actor level Trust, reputation functional/skill coverage

Task familiarity, team familiarity

Group level Structural groups

Team size

Link quality, interaction intensity

Collaboration patterns
(Delegations, escalations, redundant processing, iterative processing,
etc.)

Quality metrics Quality of data (QoD) Uncertainty, completeness, accuracy, freshness, relevancy etc.

Performance Availability, response time, success rate, etc.

Rewarding and
incentives

Effort, productivity, quality of work
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Actor performance quality metrics are similar
to the “traditional”Web service metrics, like aver-
age execution time, number of invocations, and
availability. On the group and collaboration level,
these metrics measure and predict the existence of
various invocation patterns, i.e., the probabilities
that certain services will be called in a particular
order with respect to other services. A detailed
discussion on interaction metrics can be found in
Truong and Dustdar (2009).

Incentives and rewarding are important and
effective mechanisms for indirectly influencing
quality and motivation of human actors in collab-
orations. The principal metrics in use in today’s
computer-supported collaboration systems are:

• Effort – It measures an actor’s determination to
perform a task. The main purpose of this metric
is to provide a way to compare the performance
of both experienced and inexperienced actors.
For example, an inexperienced actor may put
in a lot of his time and resources only to per-
form a task worse or slower than an experi-
enced actor. However, for the purpose of
incentivizing, a higher effort level should be
compensated with a higher reward, because it
will ultimately lead to better experienced
actors.

• Productivity – It expresses the number of units
processed in a time period. This metric is suit-
able for piecework and easily quantifiable tasks
(e.g., bug reporting, image tagging, text trans-
lation). Kasunic (2008) has defined effort and
productivity metrics for software projects.

• Quality of work – This metrics expresses the
quality of the working process of an actor. It
should not be confused with the quality of data
(QoD) of processed tasks. This metric is used
to assess actors when the task’s QoD cannot be
easily determined or when it cannot say much
about the actor. For example, actors that help
other actors, waste less resources, provide cre-
ative ideas, or take responsibility should be
also rewarded. In such cases, the subjective
opinions of other relevant actors (i.e., peers)
can be used to quantify these elusive actor
qualities.

In order to acquire the rewarding metrics, col-
laborative systems use different evaluation
methods, relying both on human and machine
actors:

• Individual evaluation methods
– Quantitative methods – They represent a

quantitative measurement of an individual
actor’s contribution as measured by the sys-
tem itself. Such metrics can represent the
number of processed tasks, average speed,
responsiveness, acceptance rate, etc. These
methods are considered fair and cheap to
implement, but unfortunately they are appli-
cable only in cases where actors work on
easily quantifiable tasks.

– Subjective methods – In cases where the
quality of work is a property understandable
to humans only, a quantitatively expressed
subjective assessment by a human actor
replaces a quantitative metric measured by
the system itself. This is the case with artis-
tic, design, and engineering tasks. The
advantages are the simplicity and cost, but
a serious drawback is the inevitable lack of
objectivity.

• Group evaluation methods
– Peer evaluation methods – They are used to

express an aggregated opinion of an interest
group. The members of evaluation group
usually express their votes by scoring tasks
or actors on a fixed scale or by investing
amounts of virtual credits expressing their
confidence (placing bets). The quality and
effectiveness of these methods are
influenced by the size of the composition
of the evaluation group.

– Indirect evaluation methods – In certain
situations, human actors can be evaluated
by comparing the status of the artifacts they
previously produced with the status of the
artifacts produced by other members of the
same community. The artifacts can be Web
pages, projects, articles, photos, and pro-
gramming code. These comparisons are
usually performed with the help of sophis-
ticated algorithms. An example is the
Google’s PageRank algorithm, impact
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factor for scientific publications, or Klout’s
algorithm for measuring social network
influence. Advantages and disadvantages
of these methods are dependent on the prop-
erties of the algorithm.

Key Applications

Taken individually, many of the described tech-
niques and algorithms have found practical used
in today’s systems: Structural and interaction met-
rics are used in social network platforms and
recommender systems for determining trusted
groups, which in turn are used for improving the
quality of recommendations. The same techniques
are at the same time a useful tool for sociological,
ethnological, medical, and forensic research. The
described evaluation methods are used in software
development industry and crowdsourcing plat-
forms, where a nonautomated evaluation would
be impractical due to the scale of the collaborative
effort. The task assignment and delegation pat-
terns are used in workflow management systems,
which are standard tools for automating complex
or critical business processes in medium and large
companies. Many of the team formation algo-
rithms are adapted from the algorithms originally
used in service-oriented architectures for service
composition.

The wish of the authors of this article was to
draw attention to the prospective benefits that
these techniques can bring when used together in
the context of emerging collaborative systems.
These systems (e.g., Scekic et al. 2015; Minder
and Bernstein 2012; Tranquillini et al. 2015) need
to manage the entire cycle of human participation
and will thus require in future Kittur et al. (2013)
application of many of the presented methods and
metrics and will hopefully drive the development
of novel ones.

Future Directions

Although a considerable amount of work is done
in the area of interaction analysis in social net-
works, there is much less work conducted on

team-based metrics and analysis. Many open
questions still remain to be tackled. Some of
them are (i) understanding the interdependencies
between metrics for better analysis of different
collaboration systems, testing, and evaluating
these team-based metrics and (ii) utilizing these
metrics in the most appropriate way for task adap-
tation. Another future research direction in team
collaboration in mixed systems is to develop met-
rics that can be used to compare human and
software-based actors.
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