
Handbook of Research
on Architectural Trends
in Service-Driven
Computing

Raja Ramanathan
Independent Researcher, USA

Kirtana Raja
IBM, USA

A volume in the Advances in Systems Analysis,
Software Engineering, and High Performance
Computing (ASASEHPC) Book Series

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA, USA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2014 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.
 Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

For electronic access to this publication, please contact: eresources@igi-global.com.

Handbook of research on architectural trends in service-driven computing / Raja Ramanathan and Kirtana Raja, editors.
 pages cm
 Includes bibliographical references and index.
 ISBN 978-1-4666-6178-3 (hardcover) -- ISBN 978-1-4666-6179-0 (ebook) -- ISBN 978-1-4666-6181-3 (print & perpetu-
al access) 1. Service-oriented architecture (Computer science) 2. Computer network architectures. 3. Enterprise applica-
tion integration (Computer systems) I. Ramanathan, Raja, 1958- editor. II. Raja, Kirtana, 1987- editor.
 TK5105.5828.H356 2014
 004.6’54--dc23
 2014013829

This book is published in the IGI Global book series Advances in Systems Analysis, Software Engineering, and High Perfor-
mance Computing (ASASEHPC) (ISSN: 2327-3453; eISSN: 2327-3461)

Managing Director:
Production Editor:
Development Editor:
Acquisitions Editor:
Typesetter:
Cover Design:

Lindsay Johnston
Jennifer Yoder
Erin O’Dea
Kayla Wolfe
Kaitlyn Kulp
Jason Mull

661

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 26

DOI: 10.4018/978-1-4666-6178-3.ch026

Building Elastic Java
Application Services

Seamlessly in the Cloud:
A Middleware Framework

ABSTRACT

Cloud computing is gaining increasing attention from the industry and research; however, there is a lack
of advanced Cloud software development tools. While Platform as a Service (PaaS) brings convenient
software development platform for application development, it often comes with limitations in terms
of application architecture functionality and requires provider lock-in. The Infrastructure as a Service
(IaaS) model may sound like a solution to these problems by enabling application development freedom;
however, it necessitates operation at the lower level of virtual machines and snapshots. In this chapter,
the authors present CloudScale: a low-overhead middleware framework that migrates Java applications
seamlessly to the Cloud with minimal changes in the application code. They focus on the main ideas
behind CloudScale and its influence on solving Cloud software development and deployment problems
with minimal overhead and Cloud-awareness required from developers.

Rostyslav Zabolotnyi
Vienna University of Technology, Austria

Philipp Leitner
University of Zurich, Switzerland

Schahram Dustdar
Vienna University of Technology, Austria

662

Building Elastic Java Application Services Seamlessly in the Cloud

INTRODUCTION

In the past few years, the advancement of Cloud
computing (Mell & Grance, 2011) has transformed
the IT industry, and has given new opportunities
and abilities to developers and users. Moreover,
Cloud computing simplifies the implementation
of innovative ideas for small companies or indi-
viduals, and lowers production and maintenance
costs for industrial applications (Armbrust et al.,
2010). Applications designed with the Cloud in
mind (so-called Cloud-native applications) allow
developers to elastically adapt to market changes
and optimize resource consumption.

Developers can adapt to the Cloud computing
model at different levels. The most basic Cloud
service model is the IaaS (Infrastructure as a
Service) (Mell & Grance, 2011) approach. At
this level, Cloud service providers offer virtual-
ized resources with requested configuration and
operating system (usually in the form of hard drive
images and virtual machines) to satisfy applica-
tion computation requirements (Bhardwaj, Jain,
& Jain, 2010). For many use cases, this layer is
preferable to PaaS (Platform as a Service), as it
gives more freedom to the developers, requires
less migration effort, and is better standardized
than PaaS.

However, building IaaS-based elastic Cloud
applications is not an easy task, and requires devel-
opers to face an entirely new range of challenges.
For instance, developers have to introduce a sig-
nificant amount of platform-dependent boilerplate
code that allows them to control virtual machines
rented from the Cloud, monitor the state of virtual
machines, and elastically scale applications up
and down according to the current or future load.
These tasks are orthogonal to the mission of the
applications, introduce significant complications,
and bury the application’s actual business logic
deep under a mountain of platform-dependent

code. This boilerplate code has to be developed
over and over again for each new application
or platform version. In addition, this platform-
dependent integration code not only slows down
application development, but also causes vendor
lock-in, as each Cloud service provider has its
own API that developers have to use to be able
to interact with the Cloud.

In this chapter, we describe how the Cloud-
Scale1 research prototype (Leitner, Satzger,
Hummer, Inzinger, & Dustdar, 2012) solves the
challenges described above. The CloudScale
framework allows developers to declare ap-
plication Cloud scaling and interaction rules
declaratively with the help of Java annotations,
thus allowing developers to focus on the busi-
ness logic of the application. The CloudScale
framework injects the IaaS platform-dependent
code necessary to scale the application over the
Cloud via bytecode manipulation. This approach
significantly simplifies the development of Java-
based Cloud-native applications and avoids vendor
lock-in, as the Cloud-specific code is separated
from the application business logic and can be
easily changed.

The content of this chapter is structured as
follows. In the next section, we provide some
background information on the current state-
of-the-art research and development attempts to
simplify Cloud software development without
losing control over the available equipment and
infrastructure resources. Next, we introduce our
illustrative example application and describe
the CloudScale architecture, as well as main
design decisions and limitations by presenting
the research idea and application development
process that enables the development of Cloud
applications transparently and seamlessly, with-
out thinking about platform-dependent code and
Cloud performance monitoring.

663

Building Elastic Java Application Services Seamlessly in the Cloud

Diving deeper into the scope of possibili-
ties provided by CloudScale, we describe how
CloudScale implements accurate and effective
class loading on demand (Zabolotnyi, Leitner, &
Dustdar, 2013), software state monitoring (Leitner,
Inzinger, Hummer, Satzger, & Dustdar, 2012), and
how multiple Cloud providers can be targeted in
parallel by using the Cloud bursting model (Mell
& Grance, 2011). Further, we illustrate how Java
applications are built on top of CloudScale in
an evaluation section and compare CloudScale
with available modern Cloud platforms. Next, we
discuss the amount of computational overhead
introduced by CloudScale, and present numeri-
cal evaluation results of the platform (Leitner,
Zabolotnyi, Hummer, Inzinger, & Dustdar, 2013).
Finally, we conclude our chapter with an overview
of future work and open research issues.

BACKGROUND

Elastic Cloud application development is a broad
topic, with a significant amount of research related
to it. According to the taxonomy represented by
the survey (Vaquero, Rodero-Merino, & Buyya,
2011), CloudScale can be classified as container-
level scalability system in the platform layer (where
CloudScale plays the role of a container for user’s
application). Similar solutions from this category
are AppScale (Krintz, 2013) and Aneka (Calhei-
ros, Vecchiola, Karunamoorthy, & Buyya, 2012).

AppScale targets Online Transaction Process-
ing (OLTP) style enterprise applications. Ap-
pScale is an open source implementation of GAE
(Google App Engine), and is interface-compatible
to GAE. Aneka, on the other hand, is a .NET-
based platform with a focus on enabling hybrid
Cloud applications. Contrasting with CloudScale,
Aneka is more similar to traditional Grid comput-
ing middleware, providing a relatively low-level
abstraction based on the message passing interface

(MPI). In general, Aneka appears to be suitable
for building scientific computing applications,
but does not fit well for enterprise applications.

Another significant segment of distribution
platforms is represented by solutions for Ma-
pReduce data processing (Gunarathne, Wu, Qiu,
& Fox, 2010). BOOM (Alvaro, et al., 2010) also
belongs to the data processing platforms and
builds on a custom, declarative programming
model that targets data analytics. CloudScale,
in comparison to the platforms presented above,
has a more general claim, and is able to handle
an extensive variety of elastic application types,
including processing-intensive, data-intensive,
and OLTP style Web applications.

The project Contrail (Contrail Open Comput-
ing Infrastructure for Elastic Services), funded
by the European commission (Contrail, 2013),
represents another PaaS (called ConPaaS) for
hosting flexible elastic applications (Pierre &
Stratan, 2012). ConPaaS is supposed to support
Web and high-performance applications built in
Java or PHP, and may be used in combination
with Cloud platforms such as Amazon EC2 or
OpenNebula. However, ConPaaS operates on a
lower level of abstraction than CloudScale. Its
environment is focused on integration of existing
stand-alone components such as database services
or Web services.

As our work is also related to a set of frame-
works for Cloud deployment, we have to mention
some of the most prominent examples from this
category. Cloud deployment is the process of pro-
visioning the required resources from the Cloud,
installing and running required software on each
virtual machine, and starting the application. One
of the first research frameworks that addressed
this problem was Cafe (Mietzner, Unger, & Ley-
mann, 2009). Many ideas of Cafe have migrated
into the TOSCA OASIS specification (Paul &
Simon, 2013). A reference implementation of
TOSCA is currently being implemented under

664

Building Elastic Java Application Services Seamlessly in the Cloud

the name “OpenTOSCA” (Binz, Breiter, Leyman,
& Spatzier, 2012). These tools focus on resource
provisioning and application deployment only,
while CloudScale provides a complete runtime
platform. Hence, these tools do not enable elas-
ticity as such.

Related Tools and
Commercial Approaches

Many core features of CloudScale introduced
above are similar to well-known Java remote
procedure call technology, e.g., Java RMI or En-
terprise Java Beans (EJB). However, note that the
main contribution of CloudScale is not assisting
with remoting (as RMI and EJB do), but rather
enabling elasticity. Therefore, the actual intersec-
tion between CloudScale and these technologies
is not particularly large.

The market of commercial PaaS solutions
which provide scalable platforms on top of the
Cloud is quite significant. A service named
CloudBeesRUN@Cloud (CloudBees, 2013) has
a strong similarity to our work. It provides con-
tinuous integration and an elastic platform for
hosting EJB applications. There are some other
PaaS platforms with Java language support, such
as the already mentioned GAE, Amazon’s Elastic
Beanstalk Services, and Microsoft’s Azure.

Outside of the Java biosphere, Heroku2 is
gaining traction as a provider of PaaS for dynamic
scripting languages, such as Ruby or Python. All
these systems imply significant limitations and
loss of control for the developer. They typically
lock users into a given public Cloud (typically
provided by the same vendor), provide propri-
etary APIs, and restrict the types of applications
that are supported (typically, only Tomcat-based
OLTP style systems).

Contrarily, CloudScale provides developers
full control over the application and does not tie
to any specific Cloud provider, allowing easy

migration and hybrid Cloud support, while still
providing an abstraction comparable to commer-
cial PaaS solutions.

CLOUDSCALE MIDDLEWARE
PLATFORM

CloudScale is a middleware that takes Java-based
applications to the Cloud. The main goal of Cloud-
Scale is to allow developers to build local, multi-
threaded applications (in this chapter referenced
to as “target applications”) that can be distributed
over the available Cloud resources with minimum
application distribution knowledge required by the
developers. This means that developers design
their applications while focusing on the business
logic and paying minimal attention to the distri-
bution that will happen at runtime. CloudScale
seamlessly takes care of the technicalities of
elasticity, such as virtual machine management,
performance monitoring, load balancing, and
program code distribution.

Example Case

Imagine a Web startup with the JSTaaS (“JavaS-
cript Testing as a Service”) business idea. JSTaaS
represents a Cloud service for JavaScript applica-
tion testing. JSTaaS allows clients to register test
suites, which will be executed periodically. Service
load produced by the different tests varies widely,
and clients are billed accordingly. Execution results
are stored in a database, which can be accessed
by the clients (see Figure 1).

To reduce needed initial funding, hosts used for
test execution should be utilized as highly as pos-
sible. This means that tests should be co-located on
the same machines as much as possible. Therefore,
the core of JSTaaS needs to continuously monitor
the utilization of all hosts, as well as the execution
time of tests. To reduce infrastructure costs, the

665

Building Elastic Java Application Services Seamlessly in the Cloud

company decides to deploy the initial version of
JSTaaS as a Java-based service on Amazon’s EC2
public IaaS cloud3.

This application is not trivial to implement
with standard tools. Developers have to setup
virtual machines, install the necessary application
components on these virtual machines and use
monitoring tools to ensure appropriate resource
provisioning. Application must be split into task
manager, load balancer, and workers to execute
the tests. To some extent, AWS Elastic Beanstalk
can be used to simplify deployment, and Cloud-
Watch can handle monitoring, but these tools do
not solve the core obstacles in the way of running
the application.

The popular way to build a distributed sys-
tem is to hide the complexity of the distribution
behind convenient abstractions, such as remote
procedure call systems. Some claim that such

abstractions always will be leaky, and hence,
should be avoided altogether (Vinoski, 2008). In
our work, we stick to this abstraction approach,
and claim that CloudScale represents an effective
and convenient abstraction on top of IaaS, that
simplifies Cloud application development. In the
following sections, we discuss the concepts of
CloudScale to establish the place of CloudScale
within the domain of Cloud computing, and show
how it is different from other approaches available
on the market.

Basic Notions in CloudScale

CloudScale is weaved into the target application
based on a set of Java annotations combined
with compile-time bytecode modification. From
the developer’s point of view, CloudScale usage
requires adding a new library dependency, some

Figure 1. JavaScript Testing as a Service application overview

666

Building Elastic Java Application Services Seamlessly in the Cloud

Java annotations to mark distribution points, and a
post-compilation step to weave the necessary dis-
tribution code. At this point, the contrast between
CloudScale and industrial PaaS solutions is clearly
visible. Usually, modern PaaS platforms require
developers to design the application according to
their architecture and proprietary API, along with
a set of limitations on the possible functionality
of the application. Such PaaS applications are
usually not executable or debuggable outside of
the targeted PaaS environment, while solutions
based on CloudScale can be executed and tested
without access to the IaaS platform, or entirely
even without CloudScale.

The core concept of CloudScale is a notion of
Cloud Objects. Cloud Objects represent instances
of classes to be executed on Cloud hosts. Cloud
hosts are represented by virtual machines from the
IaaS Cloud with CloudScale server component
running on them. During the application execution,
Cloud Objects are deployed on the appropriate
Cloud hosts and all further interactions are treated
as remote invocations. CloudScale intercepts each

interaction with Cloud Object, routes request to the
appropriate Cloud host that executes the operation
and returns the result. Because of this, it makes
sense to keep Cloud Objects as loosely coupled to
the rest of the application as possible, as otherwise
the application’s performance may suffer.

In the JSTaaS example introduced above, the
wrapping objects that execute user tests are good
candidates for Cloud Objects. Test execution usu-
ally produces a long-running and computation-
intensive load, while there’s little or no interaction
between the separate tests. Figure 2 illustrates
how tests are being executed by the application.
White boxes represent the code written by devel-
oper, while gray boxes stand for code injected by
CloudScale after application compilation. The
application developer does not see this code and
can solely focus on business logic implementation,
while application distribution and interaction is
handled by CloudScale in the background.

Figure 3 shows a high-level overview of an
application that uses CloudScale. Components
injected by CloudScale are within the gray box

Figure 2. Basic interaction with Cloud Objects

667

Building Elastic Java Application Services Seamlessly in the Cloud

of application’s JVM, while Cloud hosts with
CloudScale code are indicated by the dashed boxes
named “IaaS Virtual Machine”. It is clearly vis-
ible that Cloud hosts are reasonably lightweight,
minimizing performance impact and memory foot-
print on remote machines. Cloud hosts consist of
a simple communication interface and code cache,
described in more detail below. While CloudScale
currently does not explicitly target multi-tenancy
(Bezemer, Zaidman, Platzbeecker, Hurkmans,
& Hart, 2010), each Cloud Object’s execution
is sandboxed and handled by different custom
class loaders. The client-side of CloudScale is

responsible for maintaining a set of available and
used Cloud hosts and deployed Cloud Objects. In
addition, it also collects the monitoring data and
controls further scaling of the system.

Interaction Patterns

Cloud Objects are declared by developers with
the help of simple Java annotations (see Listing
1). Applications can interact with Cloud Objects
in the same way as with any other object in Java:
invoking methods and getting or setting member
fields. As it was described above, CloudScale

Figure 3. System deployment view

Listing 1. Declaring Cloud Objects in target applications

@CloudObject

 public class TestRunner {

 @CloudGlobal

 private static String testRunnerName;

 @DataSource(name = “couchdb”)

 private DataStore datastore;

 @EventSink

 private EventSink eventsink;

 public TestResult runSuite (@ByValueParameter TestSuite tests) {

 ...

 }

 }

668

Building Elastic Java Application Services Seamlessly in the Cloud

intercepts each interaction with Cloud Object,
routes request to the appropriate Cloud host that
executes the operation and returns the result.
During this process, the target application is
blocked to simulate standard Java behavior for
such interactions.

Classes with @CloudObject annotation may
contain static fields and methods. Operations on
them are not intercepted by CloudScale by default,
as it is not clear on which host these operations
should be executed. If an interaction with static
members is stateless (e.g., it does not change
the static state of the application), this default
CloudScale behavior is the best solution as it
introduces no overhead. However, if the applica-
tion state is changed, this can cause a problem
that we call a JVM-local update: if the Cloud
Object changes the value of the static field, this
update will be available only on the host where
this change occurred, while other Cloud hosts and
target application’s JVM will not be aware of this
change. To prevent this problem, static fields can
be annotated with the @CloudGlobal annotation
(see Listing 1). Interactions with such fields are
intercepted by CloudScale and forwarded to the
target application JVM, causing some overhead,
but leading to all hosts operating on the same
actual field value. This behavior is not default
because of performance reasons, and should be
used only if JVM-local updates are not possible.

Some method invocations require other objects
or values to be passed to or from the invoked
method. Such methods are legal in Cloud Objects,
but as passed objects have to be transferred between
the JVMs, some specific rules apply. As the com-

mon purpose of such passed objects is usually to
transport data, we refer to them as Data Objects.
CloudScale distinguishes three different Data
Object passing strategies, summarized in Table 1.

Small, primitive Data Objects are usually
passed by-value. Objects passed by-value have to
support the Java serialization mechanisms. User-
defined classes and all other complex types by
default are passed by-reference. This approach is
more powerful, as it simulates the same shared ob-
ject modification pattern as default object passing
behavior in Java. It behaves similarly to the Cloud
object interception mechanism described above
and allows Cloud Objects to interact with each
other or pass dynamic information between them.
However, it introduces a significant overhead and
if it is not required, developers can declare passed
object as passed by-value. Finally, the shared
strategy allows accessing Data Objects stored
in a persistent data store, shared between Cloud
hosts and the target application. This approach is
beneficial if large chunks of data must be passed
within invocations multiple times, or updates to
these data structures must be synchronized. This
approach is also beneficial if data must be avail-
able to external applications.

Data Object’s passing strategy is declared via
annotations applied to field, method parameter,
or method’s return type. In Listing 1, the result of
runSuite method call is passed by-reference, while
the method’s parameter “tests” is passed by-value
because of the @ByValueParameter annotation.
Shared data passing strategy has to be triggered
explicitly on the connection handle injected by
CloudScale. In the discussed example (see Listing

Table 1. Data Object passing strategies

Strategy Description

By-value Sends a deep copy of the object. Changes in the copy will not be reflected in the original object.

By-reference Sends a proxy object (by-reference proxy) instead of a copy. Invocations of the proxy are redirected back to the
original object.

Shared Data Objects are exchanged by storing them in a shared data store. Application and all Cloud hosts operate on the
same copy of the data (ensured by transactional mechanisms and concurrency control of the database).

669

Building Elastic Java Application Services Seamlessly in the Cloud

1), a CouchDB NoSQL data store (Cattell, 2011)
is injected into the private field datastore. During
execution, the application has to explicitly read
and write data into the data store.

Internally, CloudScale uses special data map-
ping framework that allows serialization and de-
serialization of Plain Old Java Objects (POJO), and
supports a range of relational and non-relational
data stores such as CouchDB, Riak, HBase and
any SQL database compatible with the Java
Persistence API (JPA). The shared data passing
strategy allows benefiting from database-specific
features, such as concurrent access control (Kung
& Robinson, 1981), data backup, or conflict reso-
lution. For other Data Object passing strategies
(passing by-value and by-reference), developers
have to handle concurrent data access themselves.

Class Loading on Demand

Whenever a new host has to be used for target
application execution, there is the problem of
code availability on the new machine. To be able
to execute Cloud Objects on the new host, Cloud-
Scale has to ensure that the same code version is
available in both JVMs. The trivial approach is
to either send the correct code version to each
machine on every request or expect Cloud hosts
to start with application code already preloaded.
The first approach introduces significant overhead
for application performance, while the second one
causes difficulties for the developers and maintain-
ers. In that case, whenever any change occurs to
the codebase, new version of Cloud host images
has to be built, significantly slowing down devel-
opment and deployment process. It becomes even
more complicated if we consider a situation when
multiple different code versions can be operating
on the same machine over time or even in parallel.
The only possible alternative to handle all these
issues seamlessly for the developer and ensure
codebase integrity is to implement a dynamic
code search and distribution functionality at the
middleware level.

Program Code Distribution
Challenges

Dynamic code search and distribution middle-
ware faces a number of challenges that must be
solved in order to be useful and effective. Firstly,
the framework needs to detect when the code is
missing or available version is inconsistent with
the one required. Secondly, the appropriate ver-
sion of the code has to be found and deployed
to the target host prior to execution. To simplify
suitable code search, target application itself can
act as a code server, but a separate low-latency
access server may also be used to improve per-
formance. Thirdly, efficient and secure means of
communication need to be used to transfer the
code to the Cloud machine.

Fourthly, for performance reasons, only the
necessary code should be transmitted using an
effective batching strategy. For example, the
performance impact will increase dramatically if
each class will be transmitted separately, while a
similarly negative impact on performance can be
experienced if Cloud hosts have to wait for all code
to be transmitted before starting any execution.
Fifthly, to minimize memory and storage usage,
the middleware has to ensure that received code
is stored not longer than it is actually needed to
avoid storage bloating and recurrent code transmis-
sions. Particularly, whenever the code is changed
in the target application, the old version should
be discarded as outdated, while allowing multiple
code versions to exist in parallel as long as they are
used. These challenges are summarized in Table 2.

CloudScale Code
Distribution Framework

In this section, we describe how CloudScale
achieves efficient and seamless code distribution,
solving the challenges described above.

On every interaction with a Cloud Object,
CloudScale forwards the request to the appropriate
Cloud host and starts awaiting execution comple-

670

Building Elastic Java Application Services Seamlessly in the Cloud

tion. On the Cloud host, the invocation is fired
while a special Java classloader maintains and
fetches all required code on the fly. Due to this
approach, the application that is being executed
does not have to care about code availability
and versioning, as the underlying infrastructure
handles these problems seamlessly and transpar-
ently. To provide an appropriate level of code en-
capsulation and allow multiple parallel executions
with a different code base, CloudScale creates a
separate classloader for each client request and
treats them independently. This allows encapsula-
tion of separate requests and provides the ability
to load multiple different versions of the code at
the same time.

On each class resolution request, CloudScale
determines if the class has been already loaded
by the corresponding classloader. In this case, the
available code can be used without any additional
checks, as code is not allowed to change during
the same request execution. Otherwise, the class-
loader gets information about all available code
versions for required set of classes from the code
cache and asks the class provider in the target
application JVM to detect the appropriate one. If
none of the known code versions are correct, the
class provider transfers the correct code, which
can be used for application execution. This pro-
cess is illustrated in Figure 4, where all possible
classloader behaviors are shown.

Within the code distribution process described
above, the code versioning problem requires some
more explanation. Whenever suitable code has
to be selected, target application has to select the
appropriate code within available offers from
cache, or determine that none of them matches.
The simplest solution would be to send all avail-
able versions of the code itself to the target ap-
plication; however, this introduces significant
communication overhead and increases the load
on the application’s host. The best solution would
be to use some notion of code version, but even
if there was such a feature provided by Java, it
would not protect against parallel changes made
by different developers.

In the current implementation of CloudScale
classloading framework, class binary size, and last
modification date are used as version identifiers.
This allows minimizing communication overhead
and still lets to determine if the available code is
the same or different from the one needed. This
approach is not unique and is used in a set of other
state-of-the-art applications, where files or docu-
ments have to be in sync (e.g., RSync4, Apache
Ant5, GNU Make6 and others). Evidently, this is
not the only possible approach available. A set
of alternatives was considered (e.g., using hash-
codes, explicit versioning via version numbers,
or partial code transfer), but we determined the
selected heuristic approach is the simplest and

Table 2. Summary of code distribution challenges

Challenge Name Challenge Synopsis

Missing Code Detection Cloud hosts need to be able to dynamically detect if program code is missing or the version
is incorrect.

Trusted Code Storage Cloud hosts need to be able to locate the code storage service and query appropriate code.

Communication Middleware Cloud hosts need to have access to a suitable communication middleware that allows them to
dynamically exchange code.

Batching Strategy Cloud hosts need to be able to load only the necessary code using an efficient batching
strategy.

Outdated Code Clearance Cloud hosts need to be aware that program code can change or become obsolete, thus that
loaded program code is not valid indefinitely.

671

Building Elastic Java Application Services Seamlessly in the Cloud

fastest, while still reliable enough for practical
applications. In addition, this approach allows
for easier cache maintenance, as it enables detec-
tion of code updates (if the last modified time is
newer), detection of older version usages (if the
last modified time needed is older than the one
available), and dropping of the old code that was
not used for a long time.

Whenever a Cloud host faces the situation
that a class is missing, it queries the client for the
correct version of the class. While caching elimi-
nates the need to transfer class code if it is already
known to the Cloud host, the sequence of serial
class loading request-responses still introduces a

significant overhead. To reduce this, CloudScale
classloading infrastructure has to deduce a set of
possible following requests and batch the responses
along with the requested class. For example, when
a class is requested by the Cloud host, it is clear
that all parent classes and interfaces that this class
implements will be requested after it as well. In
addition, when the requested class is available
within the jar file, other classes from the same jar
file are likely to be needed in the future. These
assumptions significantly improve class loading
performance for some cases, while introducing un-
necessary transfer overhead for others. Currently,
CloudScale uses classloader that provides the jar

Figure 4. CloudScale code loading strategy

672

Building Elastic Java Application Services Seamlessly in the Cloud

files whenever any class from it was requested,
but we are considering other heuristics to improve
class loading performance further.

The class loading feature of CloudScale is
presented in more detail in (Zabolotnyi, Leitner,
& Dustdar, 2013), which also contains numerical
evaluation and overhead estimation of different
class loading strategies and heuristics.

APPLICATION STATE MONITORING

The elastic Cloud computing model requires
developers to carefully monitor the application’s
performance and resource demand and acquire
only the appropriate amount of resources.

While monitoring is always a cornerstone of
complex enterprise-scale applications, it is clear
that elastic Cloud computing is effective only with
smart and powerful monitoring facilities. Without
appropriate monitoring tools, developers are not
able to scale distributed applications properly to
satisfy customers and effectively utilize Cloud
resources. However, currently, Cloud monitoring
solutions are not as fine-grained and effective as
one would expect. Modern industrial solutions
focus on low-level metrics such as RAM usage
or CPU utilization, while we claim that applica-
tions should be monitored according to high-level
metrics that determine how well the stated task
is accomplished.

For example, for a Web service this is the
request processing time, while for a Web site
this is the number of users currently handled or
the average page generation time. Additionally,
these high-level metrics can simplify expressing
and controlling service level agreements (SLA)
for customers.

The monitoring approach that is used by
CloudScale is based on the ideas of complex event
processing (CEP) and event-based monitoring.

The CloudScale monitoring framework relies on
application components named event emitters that
indicate their current status via events. Cloud hosts
and Cloud Objects are obvious event emitters,
but any Java code running within the application
can act as an event emitter by producing events
to the appropriate event stream. Produced events
can be aggregated and processed within a CEP
engine, allowing the definition of higher-level
complex events.

The overall view of the monitoring framework
is depicted in Figure 5. The application is running
over a set of Cloud hosts, each hosting a set of Cloud
Objects. Each of the shown components can act as
event emitter. Locally, events are transmitted via
API calls, but remote communication is handled
by the same messaging infrastructure as used by
the rest of CloudScale components.

Monitoring Event Hierarchy

As the main building blocks of the CloudScale
monitoring framework are events produced by
event emitters, let us describe the structure and
hierarchy of existing events depicted in Figure
6. On the highest level, events split into two
categories: predefined and custom. CloudScale
monitoring framework predefines 15 runtime
events (e.g., hosts and objects lifecycle events or
resource usage events). Lifecycle events are trig-
gered by CloudScale framework itself whenever
the condition is met (e.g., when a Cloud Object
starts to execute or host is shut down). This set
of predefined events is comparable to available
monitoring events in related systems (Michlmayr,
Rosenberg, Leitner, & Dustdar, 2008; Karastoya-
nova, Leymann, Nitzsche, Wetzstein, & Wutke,
2006).

All predefined events contain event-specific
information, which is omitted from Figure 6. For
example, Execution Started Event consists of the

673

Building Elastic Java Application Services Seamlessly in the Cloud

Figure 5. CloudScale monitoring framework overview

Figure 6. Monitoring event hierarchy in CloudScale

674

Building Elastic Java Application Services Seamlessly in the Cloud

identifier of the Cloud Object, the name and pa-
rameters of the method, and generated execution
identifiers as additional parameters.

With the help of custom events, any applica-
tion-specific event can be emitted, which enables
reacting to any high-level behavioral change of
the application. For example, developers can
control processing speed of the Web application
by emitting custom events (see Table 3) and scale
the application up or down, whenever processing
speed changes. In the context of the example case
application, developers may emit MyTestStat-
eEvent (see Listing 2) whenever any test starts
or completes.

CloudScale enables developers to trigger cus-
tom events by publishing events into an instance
of MonitoringEventSink, injected by CloudScale
via the @EventSink annotation (see Listing 2).

Scheduling Based on
Monitored Values

The main use of the monitored values is to allow
simple, while still expressive, elastic application
behavior setup. In the case of CloudScale-based
application, this is done within the scaling policy
(defined in the Basic Notions section). Scaling
policies are usually represented by a set of simple
event-condition-action rules that define whether
target application should scale up or down depend-
ing on the current or predicted application state.

While CloudScale offers a set of predefined
scaling policies, currently developers are encour-
aged to write their own scaling policies that would
fit the target application’s needs and allow the
best resource usage. At this time, this is a rather
complicated task that can cause such problems

Table 3. Example of CloudScale custom events that allow fine-grained application elasticity

Metric Name Description

RequestProcessingTime Amount of time Cloud Object was processing user request.

RequestQueueLength Current number of queued tasks that are waiting for processing.

AvgRequestsPerSecond Average number of user requests arriving each second.

AvgDatabaseRequestTime Average amount of time taken by the database query.

AvgTaskProcessingTime Average time required to perform a particular task (e.g., logging).

WriteConflictsCount Number of conflicts in database writes.

AbortedTransactionsCount Number of aborted database transactions.

Listing 2. Triggering custom events

public class MyTestEventEmitter {

 @EventSink

 MonitoringEventSink eventSink;

 ...

 private void triggerEventOnTestStatus (TestState state) {

 CustomEvent myEvent = new MyTestStateEvent(...);

 eventSink.emitEvent(myEvent);

 }

 ...

 }

675

Building Elastic Java Application Services Seamlessly in the Cloud

as synchronization issues, conflicting rules or
oscillation (i.e., continuously triggering up- and
down-scaling within short periods of time), but we
are working on further ideas on how this can be
simplified or even automated, while still achieving
current levels of flexibility and control.

HYBRID CLOUD SUPPORT

Currently, two Cloud deployment models are
popular: private and public Cloud deployment.
Private Cloud deployment represents the usage of
the private virtualized data center that is owned
by the same company that owns the underlying
infrastructure or provisioned by a vendor, spe-
cifically for the company. Public Clouds stand
for the services that are available for the general
public and offered by a separate provider (Mell &
Grance, 2011). While private Clouds are usually of
a limited size, public Cloud solutions are usually
represented on such a huge scale that customers can
assume it offers an infinite amount of resources.

As the core idea of CloudScale is to conceal
the Cloud management code from the target ap-
plication and allow developers to focus on the
business logic, CloudScale provides an efficient,
fast and convenient way to switch between Cloud
environments. While the Cloud management code
is injected into the application after the compi-
lation, CloudScale allows selecting the Cloud
platform during application runtime. This allows
avoiding Cloud provider API lock-in and being
able to switch between different providers for
testing and deployment purposes. As discussed
earlier, this prevents from cluttering the business
logic of the application and avoids writing the
same Cloud-management boilerplate code in each
target application.

Considering modern Cloud environments, due
to API variance and resource management dif-

ferences, applications have to be modified prior
to running within the different environments.
Because of this, the concept of the Cloud burst-
ing is mainly a research idea that is quite hard to
implement in practical applications. Cloud burst-
ing represents the capability of an application to
scale according to the demand not only within the
available single Cloud resources, but over mul-
tiple Clouds as well. During low load conditions,
such application can scale down to a single host,
while as the load increases, additional resources
are used from the set of private or public Clouds
(see Figure 7).

Any application running over multiple Cloud
platforms is not technically different from the
one operating only in a single Cloud. However,
there are a set of practical problems that have to
be solved in order to operate in such heteroge-
neous environments. For example, firewalls are
usually neglected within the homogenous Cloud
environment, while it becomes quite problematic
to configure communication between Cloud hosts
deployed in a different environment, introducing
the need of some tunneling to be able to commu-
nicate between hosts. Secondly, communication
delay also has to be addressed. While within
the Cloud, communication overhead is mostly
homogenous and can be considered as constant;
however, this overhead has to be considered if
multiple Clouds are operated at the same time
and resource access time is different depending
on the Cloud they are deployed into. In addition,
host performance is also different within the dif-
ferent Cloud environments (Li, Yang, Kandula,
& Zhang, 2010).

With the architecture presented in CloudScale,
it can be easily extended to operate over multiple
Clouds. All CloudScale communication goes
through the message server that can be instantiated
within each Cloud platform. This allows running
any CloudScale-based application in the Cloud

676

Building Elastic Java Application Services Seamlessly in the Cloud

given that target application can connect to the
message server. To seamlessly transfer information
between the Clouds, CloudScale uses the target
application’s host as a communication node be-
tween the hosts located in different environments.

While the complexity of operating with the
different Cloud environments is hidden from the
target application developer within CloudScale
core code, there is one thing that developers have
to consider while developing and running such
applications. To successfully and efficiently run
target applications in the Cloud bursting mode,
scaling policy has to be written in awareness of
the fact of multiple Cloud platform usage. Within
the scaling policy, the scaling rules (discussed in
more detail in section “Application State Moni-
toring”) have to specify which actions have to be
performed on each of the Cloud environments
separately. However, the complexity of this task
grows linearly with the number of environments
that are being used as the same monitoring tools

and metrics can be used to make a decision. More
details regarding the implementation, usage and
evaluation of Cloud bursting with CloudScale
framework is described in (Leitner, Rostyslav,
Gambi, & Dustdar, 2013).

APPLICATION DEVELOPMENT
PROCESS

To illustrate the development process of Cloud-
Scale-based applications, we go through the set
of steps necessary to bring Maven7-based applica-
tions to the Amazon EC2 Cloud. In more detail,
this process is described in the CloudScale online
documentation8. This process consists of three
fundamental steps: at first we have to change
the project setup to include CloudScale, then
we have to select Cloud Objects and apply any
other necessary annotations, and lastly, we have
to configure CloudScale to scale the application

Figure 7. Basic three-phase Cloud Bursting model

677

Building Elastic Java Application Services Seamlessly in the Cloud

according to our needs. The first step does not
present any difficulties: pom.xml file has to be
modified in order to specify dependencies to the
CloudScale project and apply AspectJ annotations
to the user code.

Applying CloudScale Annotations

The idea of the CloudScale is based on the notion
of Cloud Objects. Cloud Objects are instances
of resource-demanding classes that have to be
distributed over the network. As the main task of
JSTaaS application is to execute customer tests,
the class that wraps each test suite execution is a
good candidate for such a resource-intensive class.
Furthermore, this class is strongly decoupled and
requires minimal interaction with other compo-
nents of the application.

Listing 3 shows the test execution class that
is being distributed by CloudScale. It consists of

mainly application-specific business logic with a
number of CloudScale annotations added. As the
TestSuiteCloudObject class is annotated with @
CloudObject, all interactions with the instances
of this class are intercepted by CloudScale and
scheduled to the appropriate Cloud hosts. In ad-
dition, to optimize performance, some method’s
parameters and return values are annotated with
appropriate parameter passing annotations (see
Interaction Patterns section) that allow treating
parameters either as by-value or as by-reference.
For example, as the statuses parameter of the
runCloudObject method is not annotated by any
specific annotation, it is treated as by-reference and
all changes applied to this object are retransmitted
to the target application.

Another important annotation is @Destruct-
CloudObject on the runCloudObject method. This
annotation specifies that this is the last invoca-
tion on this Cloud Object and after invocation of

Listing 3. The skeleton of the Test Execution Class

@CloudObject

 public class TestSuiteCloudObject {

 @CloudObjectId

 private UUID coId;

 @DataSource(name = “testresults”)

 private Datastore datastore;

 public @ByValueParameter UUID getId() {

 return coId;

 }

 public void setSuite (@ByValueParameter TestSuite suite, int testId) {

 ...

 }

 @DestructCloudObject

 public void runCloudObject (TestSuiteExecution statuses, int suiteNr){

 ...

 }

 }

678

Building Elastic Java Application Services Seamlessly in the Cloud

this method is finished, this Cloud Object can be
destroyed. This allows optimizing resource us-
age and cleaning unnecessary objects from the
Cloud hosts.

Separately, we would like to note the depen-
dency injection feature of CloudScale. Two fields
of this class (coId and datastore) are annotated
with appropriate annotations to allow additional
interaction with CloudScale framework. For
example, the field annotated with @DataSource
annotation enables the use of shared data passing
mechanisms through the code of the class.

Configuring CloudScale

At this point, the JSTaaS application is already dis-
tributed by CloudScale. However, the distribution
is happening in the so-called debug mode: instead
of using separate Cloud hosts, CloudScale spawns
new JVMs on the same host that the application
is started. This mode is perfect for debugging
and ensuring that everything works as expected
prior to deploying the application to the Cloud. In
order to deploy the application on the real Cloud,
an appropriate configuration has to be provided.

There are a number of ways to configure
CloudScale, described in more detail in the on-
line documentation. Here, we will configure the

framework through system properties. In order
to configure CloudScale, the system property
Cloudscale.configuration has to specify either
the path to an XML file containing a serialized
CloudScale configuration, or the name of a class
that has a static method with the @CloudScale-
ConfigurationProvider annotation. This method
should return an instance of CloudScaleConfigu-
ration. During application runtime, on the first
interaction, CloudScale will load its configuration
from the specified place.

If the appropriate Amazon EC2 configuration
is specified, the application can already be distrib-
uted in Amazon EC2 Cloud. This EC2 configu-
ration specifies platform-dependent parameters
important for CloudScale. For example, developers
can specify required size of the instance to start
or the virtual host image id with preconfigured
CloudScale service that will be used for spawning
new cloud hosts. CloudScale online documenta-
tion describes how such image can be built on any
platform and provides a reference to the public
image in Amazon EC2 cloud.

However, the default host managing policy
will not be optimal for this application. In order
to optimize it, we have to create our own scaling
policy (see Listing 4) based on the monitoring
information described in the section on Appli-

Listing 4. A scaling policy example

public class ScalingPolicy implements IScalingPolicy {

 @Override

 public boolean scaleDown (IHost host, IHostPool hostPool) {

 ...// here we define if the specified host should be shut down

 }

 @Override

 public IHost selectHost (ClientCloudObject co, IHostPool host-

Pool) {

 ... // here we define where to deploy the new Cloud object

 }

 }

679

Building Elastic Java Application Services Seamlessly in the Cloud

cation State Monitoring, and specify it in the
configuration. After these changes, our JSTaaS
application is fully capable of running over the
Amazon EC2 Cloud, where we can further adapt
it to suit our needs.

CLOUDSCALE EVALUATION

In this section, we will briefly contrast application
development using CloudScale with building an
IaaS application directly on top of Amazon EC2
(without specific tooling outside of the EC2 API)
and using a PaaS service, such as Google AppEn-
gine. Our goal here is to show what advantages a
“middle-of-the-road” solution such as CloudScale
provides.

Starting with API complexity, CloudScale
requires knowledge of a reasonably small amount
of API functions, while offering large capabilities
for application development. This is mainly due
to the way applications are built on top of Cloud-
Scale and the amount of necessary changes to the
target application. While both EC2 and AppEngine
assume that developers will create applications
specifically for their platforms using the provided
API, CloudScale aims at seamless development
and ease of taking existing Java based distributed
applications to the Cloud.

In addition to that, Cloud application debug-
ging is somewhat simpler with CloudScale than
with EC2 or AppEngine. This is mostly due to the
special scaling debug mode of CloudScale, which
scales applications in the sandbox on the local
machine, while developers of applications for EC2
or AppEngine can only debug application while
the target platform is available and only through
the limited set of tools available for the selected
platform. It should be noted that an emulator for
AppEngine is available, but practical experience
has shown that most testing still needs to be car-
ried out in the real PaaS environment.

A core advantage of the IaaS approach is that
it always provides complete freedom as to which
frameworks and application architecture designs
are supported. CloudScale, on the other hand, is
by its nature restricted to the Java programming
language. Other than that, the restrictions imposed
by CloudScale are minimal. AppEngine, on the
other hand, induces quite significant limitations
on application design, and restricts application
developers, both with regard to what API functions
they can use and what architecture the application
needs to follow. Another thing that IaaS approach
is good is for providing full access to the backend
servers, thus enabling developers with complete
flexibility and control over the resource usage and
operating system configuration.

CloudScale aims to hide the complexity of vir-
tual machines so that the developers can build the
Cloud application without even controlling virtual
machines; however, it does not forbid developers
to modify the virtual machine as long as the core
components of the CloudScale are still running.
The online documentation also has instructions
available on how to build custom CloudScale
server images which can be modified in any way.

However, clearly the AppEngine model has sig-
nificant advantages as well. One example of such
a benefit of AppEngine is code distribution and
application scalability. While AppEngine scales
applications mostly automatically, for EC2-based
applications, developers have to create their own
rules and approaches to achieve elastic applica-
tion scaling. From this point of view, CloudScale
provides a reasonable alternative. Scalability
is achieved by injected code and appears to be
seamless to the developer, while the scaling rules
can be provided separately within the convenient
and powerful instrument based on the flexible
monitoring framework that allows controlling
not only basic parameters such as CPU load and
memory usage, but also high-level application-
specific metrics.

680

Building Elastic Java Application Services Seamlessly in the Cloud

Finally, CloudScale offers support for ap-
plications that are scaling over multiple Clouds
(forming so-called hybrid Clouds), which allows
minimizing application operating costs and ex-
tends application flexibility beyond the limits of
one Cloud provider. This model is not supported
by AppEngine at all. Using an IaaS service such as
EC2, it is possible to implement hybrid Clouds, but
this requires a significant amount of development
and configuration work. In contrast, setting up a
hybrid Cloud with CloudScale comes at almost
no effort to the developer.

In Table 4, we present a qualitative summary
of the features that we consider significant for
application development. We claim that Cloud-
Scale significantly simplifies the application
development process, hides complexity of code
distribution and Cloud management, while pro-
viding convenient and configurable debugging
and development experience. Therefore, we think
that developers (especially the ones new to Cloud
computing) will benefit from using CloudScale
and will be able to develop applications and take
them to the Cloud faster than with existing tools.

Every platform provides some benefits to de-
velopers, while introducing measurable overhead
to the developed system. To investigate the extent
to which the descriptive approach offered by
CloudScale influences application performance,
we performed a numerical evaluation, which was
originally presented in a separate paper, currently
available as a technical report (Leitner, Zabolotnyi,
Hummer, Inzinger, & Dustdar, 2013).

The main goal of our numerical evaluation is
to compare the performance of the same applica-
tion built on top of CloudScale and on an IaaS
platform (e.g., OpenStack) directly. To investigate
this, we developed the core functionality of the
JSTaaS application introduced in Example Case
section above. As the main goal was to evaluate
overhead introduced by CloudScale, we designed
both applications to have same behavior and reuse
as much business logic code as possible. Addition-
ally, we focused on scenarios where the number
of Cloud hosts (CH) is fixed.

Each solution was tested in the same environ-
ment with the equivalent test setup consisting of
20 parallelizable long-running test suites, sched-

Table 4. Feature comparison of CloudScale and alternative solutions

Feature Amazon EC2 CloudScale Google AppEngine

Complexity of API Small Small Significant

Amount of Platform Interaction Code Significant Very small Small

Application Debugging Simplicity Complicated Simple Reasonable

Architecture Limitations None Small Significant

Scaling Configuration Convenience Manual/None Good Basic

Code Distribution and Update Manual/None Semi-Automatic Automatic

Monitoring Features Manual/None Advanced Basic

Backend Server Access Full Restricted None

Hybrid Cloud Support Manual Built-in None

Programming Language Support Any Java Java, Python, PHP

Provider Lock-in Small Very small Significant

681

Building Elastic Java Application Services Seamlessly in the Cloud

uled evenly over the available set of Cloud hosts.
Figure 8 illustrates mean results of running test
setup described above with the different numbers
of Cloud hosts available to the application. From
this figure, one notices that CloudScale (blue dot-
ted line) indeed introduces a significant overhead
in comparison to pure OpenStack implementation
(red line). However, after some investigation, we
discovered that this overhead is mainly caused by
remote classloading feature in CloudScale.

However, in OpenStack implementation,
classloading is unnecessary, as all code is already
available in Cloud hosts. Hence, to make our
comparison fairer, we decided to run CloudScale
version of the JSTaaS with all code pre-cached on

the Cloud hosts. This evaluation run (green dotted
line) appeared to be as fast as the OpenStack-based
implementation of the application.

This evaluation allowed us to conclude that
CloudScale does introduce some overhead, which
is mainly due to remote classloading feature. To
further improve user experience, we decided to
explore the ways to optimize this in our future work.

FUTURE RESEARCH DIRECTIONS

While the current version of CloudScale is already
stable and has a significant number of features,
we are still actively working on further improve-

Figure 8. Total test runtime dependency with number of Cloud hosts used

682

Building Elastic Java Application Services Seamlessly in the Cloud

ments. From a technical point of view, we still need
to improve the code base, fix known issues and
improve the documentation. To extend function-
ality of CloudScale, we are trying to add support
of additional IaaS Cloud providers and improve
general performance and stability of CloudScale.

From the research point of view, we continue
to investigate the ways to automate the steps that
currently have to be done manually and find new
possible applications for the CloudScale frame-
work. For example, we are working on the smart
profiling system that may allow us to profile a
Java application to detect classes that can be used
as Cloud Objects. Another direction is to improve
monitoring behavior to simplify creation of scaling
policies and allow automatic application scaling
according to historical load and predicted behavior.
In addition, we are working on ways to further
integrate shared data passing model and make
it as seamless as the other two. Finally, we are
developing a useful and convenient Cloud Object
migration mechanism that will provide developers
a way to balance current load on the Cloud hosts
and migrate Cloud Objects between hosts.

To receive more usage feedback, we are cur-
rently popularizing CloudScale among research-
ers, students, and developers. This will allow us
to verify our claims, collect feedback and improve
the overall CloudScale usage experience. In the
future, we also plan to release a hosted demo
version of CloudScale, which will allow potential
users to verify if CloudScale fits their needs. Ad-
ditionally, to distinguish CloudScale from other
tools and platforms with the same name, we plan
to rebrand CloudScale to JCloudScale and move
our public repository to GitHub.

Finally, we are applying CloudScale as a Cloud
migration tool for a number of existing popular

applications and frameworks, including service
composition engine JOpera (Pautasso & Alonso,
2005) and Apache JMeter (Halili, 2008).

CONCLUSION

CloudScale facilitates the simplification of Cloud
IaaS-based application development by handling
most of the infrastructure and distribution-related
issues under the hood, allowing developers to focus
on the application’s business logic implementa-
tion. CloudScale is injected into application code
after compilation based on the Java annotations,
that enables isolating application’s business logic
from the boilerplate of Cloud interaction and
communication code. Therefore, CloudScale
code injection can be simply enabled or disabled
depending on the situation.

While CloudScale tries to be as seamless for
developers as possible, it can be flexibly con-
figured to fit developer needs. Following this
ideology, CloudScale is configured by Java an-
notations or system properties, which eliminates
any influence on the application execution logic
and behavior. In this chapter, we introduced the
main ideas and concepts behind CloudScale, illus-
trated how important Cloud distribution problems
are solved seamlessly for target applications, and
demonstrated the main steps of distributing ap-
plications with CloudScale. While CloudScale is
reasonably stable and easy to use, it is still under
development and we are continuing to work on
further improvements to be able to take user
applications into the Cloud as seamlessly and
flexibly as possible.

683

Building Elastic Java Application Services Seamlessly in the Cloud

REFERENCES

Alvaro, P., Condie, T., Conway, N., Elmeleegy, K.,
Hellerstein, J. M., & Sears, R. (2010). Boom Ana-
lytics: Exploring Data-Centric, Declarative Pro-
gramming for the Cloud. In Proceedings of the 5th
European Conference on Computer Systems, (pp.
223-236). ACM. doi:10.1145/1755913.1755937

Armbrust, M., Fox, A., Griffith, R., Joseph, A.,
Katz, R., & Konwinski, A. et al. (2010). A View of
Cloud Computing. Communications of the ACM,
53(4), 50–58. doi:10.1145/1721654.1721672

Bezemer, C.-P., Zaidman, A., Platzbeecker, B.,
Hurkmans, T., & Hart, A. (2010). Enabling
multi tenancy: An industrial experience report.
In Proceedings of the IEEE International Con-
ference on Software Maintenance. Washington,
DC: IEEE Computer Society. doi:10.1109/
ICSM.2010.5609735

Bhardwaj, S., Jain, L., & Jain, S. (2010). Cloud
Computing: A Study of Infrastructure as a Service
(IaaS). International Journal of Engineering and
Information Technology, 2(1), 60–63.

Binz, T., Breiter, G., Leyman, F., & Spatzier,
T. (2012). Portable Cloud Services Using TO-
SCA. IEEE Internet Computing, 16(3), 80–85.
doi:10.1109/MIC.2012.43

Calheiros, R. N., Vecchiola, C., Karunamoorthy,
D., & Buyya, R. (2012). The Aneka platform and
QoS-driven resource provisioning for elastic ap-
plications on hybrid Clouds. Future Generation
Computer Systems, 28(6), 861–870. doi:10.1016/j.
future.2011.07.005

Cattell, R. (2011). Scalable SQL and NoSQL
Data Stores. SIGMOD Record, 39(4), 12–27.
doi:10.1145/1978915.1978919

CloudBees. (2013). CloudBees: The Java PaaS
Company. Retrieved from http://www.cloudbees.
com/

Contrail. (2013). Contrail Open Computing In-
frastructure for Elastic Services. Retrieved from
http://contrail-project.eu/

Gunarathne, T., Wu, T.-L., Qiu, J., & Fox, G.
(2010). MapReduce in the Clouds for Science.
In Proceedings of the 4th IEEE International
Conference on Cloud Computing Technology
and Science. Los Alamitos, CA: IEEE Computer
Society.

Halili, E. (2008). Apache JMeter: A Practical
Beginner’s Guide to Automated Testing and per-
formance measurement for your websites. Packt
Publishing.

Karastoyanova, D., Leymann, F., Nitzsche, J.,
Wetzstein, B., & Wutke, D. (2006). Parameterized
BPEL Processes: Concepts and Implementation.
In Proceedings of the International Conference
Business Process Management. Academic Press.

Krintz, C. (2013). The AppScale Cloud Platform:
Enabling Portable, Scalable Web Application De-
ployment. IEEE Internet Computing, 17(2), 72–75.
doi:10.1109/MIC.2013.38 PMID:23828721

Kung, H. T., & Robinson, J. T. (1981). On Opti-
mistic Methods for Concurrency Control. ACM
Transactions on Database Systems, 6(2), 213–226.
doi:10.1145/319566.319567

Leitner, P., Inzinger, C., Hummer, W., Satzger,
B., & Dustdar, S. (2012). Application-Level Per-
formance Monitoring of Cloud Services Based
on the Complex Event Processing Paradigm. In
Proceedings of the IEEE International Conference
on Service-Oriented Computing and Applications.
IEEE. doi:10.1109/SOCA.2012.6449437

684

Building Elastic Java Application Services Seamlessly in the Cloud

Leitner, P., Rostyslav, Z., Gambi, A., & Dustdar,
S. (2013). A Framework and Middleware for
Application-Level Cloud Bursting on Top of
Infrastructure-as-a-Service Clouds. In Proceed-
ings of the 6th IEEE/ACM Utility and Cloud
Computing Conference. IEEE/ACM. doi:10.1109/
UCC.2013.39

Leitner, P., Rostyslav, Z., Waldemar, H., Inzinger,
C., & Dustdar, S. (2013). CloudScale: Efficiently
Implementing Elastic Applications for Infrastruc-
ture-as-a-Service Clouds. Vienna University of
Technology. Retrieved from http://stockholm.
vitalab.tuwien.ac.at:8090/TechReportGenerator/
reports/TUV-1841-2013-1.pdf

Leitner, P., Satzger, B., Hummer, W., Inzinger,
C., & Dustdar, S. (2012). CloudScale - A Novel
Middleware for Building Transparently Scaling.
In Proceedings of the ACM Symposium on Applied
Computing. ACM. doi:10.1145/2245276.2245360

Li, A., Yang, X., Kandula, S., & Zhang, M. (2010).
CloudCmp: Comparing public cloud providers. In
Proceedings of the 10th ACM SIGCOMM Confer-
ence on Internet Measurement, (pp. 1-14). ACM.

Mell, P., & Grance, T. (2011). The NIST Defini-
tion of Cloud Computing (draft). NIST Special
Publication, 800, 145.

Michlmayr, A., Rosenberg, F., Leitner, P., &
Dustdar, S. (2008). Advanced Event Processing
and Notifications in Service Runtime Environ-
ments. In Proceedings of the 2nd International
Conference on Distributed Event-Based Systems.
Academic Press. doi:10.1145/1385989.1386004

Mietzner, R., Unger, T., & Leymann, F. (2009).
Cafe: A Generic Configurable Customizable
Composite Cloud Application Framework. Lec-
ture Notes in Computer Science, 5870, 357–364.
doi:10.1007/978-3-642-05148-7_24

Paul, L., & Simon, M. (2013). OASIS Topol-
ogy and Orchestration Specification for Cloud
Applications (TOSCA) TC. Retrieved from
https://www.oasisopen.org/committees/tc_home.
php?wg_abbrev=tosca

Pautasso, C., & Alonso, G. (2005). JOpera: A
Toolkit for Efficient Visual Composition of Web
Services. International Journal of Electronic
Commerce, 9(2), 107–141.

Pierre, G., & Stratan, C. (2012). ConPaaS: A Plat-
form for Hosting Elastic Cloud Applications. IEEE
Internet Computing, 16(5), 88–92. doi:10.1109/
MIC.2012.105

Vaquero, L. M., Rodero-Merino, L., & Buyya,
R. (2011). Dynamically scaling applications
in the cloud. SIGCOMM Computer Commu-
nicaitons Review, 41(1), 45-52. http://doi.acm.
org/10.1145/1925861.1925869

Vinoski, S. (2008). Convenience Over Correct-
ness. IEEE Internet Computing, 12(4), 89–92.
doi:10.1109/MIC.2008.75

Zabolotnyi, R., Leitner, P., & Dustdar, S. (2013).
Dynamic Program Code Distribution in Infra-
structure-as-a-Service Clouds. In Proceedings
of the 5th International Workshop on Principles
of Engineering Service Oriented Systems. San
Francisco, CA: Academic Press. doi:10.1109/
PESOS.2013.6635974

KEY TERMS AND DEFINITIONS

Cloud Bursting: The application behavior that
provides scalability according to demand, not just
within the available single Cloud resources, but
over multiple Clouds as well.

685

Building Elastic Java Application Services Seamlessly in the Cloud

Cloud Computing: The elastic computing
over virtualized resources, provided via pay-as-
you-go model.

Cloud Host: The virtual machine in the Cloud
operated by CloudScale.

Cloud Object: An instance of a resource-
demanding class that is distributed by CloudScale
over the Cloud hosts.

Data Object: The object that is used to transfer
data between classes or application components.

IaaS: Infrastructure as a service level of Cloud
computing.

PaaS: Platform as a service level of Cloud
computing.

Target Application: The application distrib-
uted by CloudScale.

ENDNOTES

1 http://code.google.com/p/cloudscale/
2 https://www.heroku.com/
3 http://aws.amazon.com/
4 http://rsync.samba.org/
5 http://ant.apache.org/
6 http://www.gnu.org/software/make/
7 http://maven.apache.org/
8 http://code.google.com/p/cloudscale/wiki/

FirstSteps

