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Building Elastic Java 
Application Services 

Seamlessly in the Cloud:
A Middleware Framework

ABSTRACT

Cloud computing is gaining increasing attention from the industry and research; however, there is a lack 
of advanced Cloud software development tools. While Platform as a Service (PaaS) brings convenient 
software development platform for application development, it often comes with limitations in terms 
of application architecture functionality and requires provider lock-in. The Infrastructure as a Service 
(IaaS) model may sound like a solution to these problems by enabling application development freedom; 
however, it necessitates operation at the lower level of virtual machines and snapshots. In this chapter, 
the authors present CloudScale: a low-overhead middleware framework that migrates Java applications 
seamlessly to the Cloud with minimal changes in the application code. They focus on the main ideas 
behind CloudScale and its influence on solving Cloud software development and deployment problems 
with minimal overhead and Cloud-awareness required from developers.
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INTRODUCTION

In the past few years, the advancement of Cloud 
computing (Mell & Grance, 2011) has transformed 
the IT industry, and has given new opportunities 
and abilities to developers and users. Moreover, 
Cloud computing simplifies the implementation 
of innovative ideas for small companies or indi-
viduals, and lowers production and maintenance 
costs for industrial applications (Armbrust et al., 
2010). Applications designed with the Cloud in 
mind (so-called Cloud-native applications) allow 
developers to elastically adapt to market changes 
and optimize resource consumption.

Developers can adapt to the Cloud computing 
model at different levels. The most basic Cloud 
service model is the IaaS (Infrastructure as a 
Service) (Mell & Grance, 2011) approach. At 
this level, Cloud service providers offer virtual-
ized resources with requested configuration and 
operating system (usually in the form of hard drive 
images and virtual machines) to satisfy applica-
tion computation requirements (Bhardwaj, Jain, 
& Jain, 2010). For many use cases, this layer is 
preferable to PaaS (Platform as a Service), as it 
gives more freedom to the developers, requires 
less migration effort, and is better standardized 
than PaaS.

However, building IaaS-based elastic Cloud 
applications is not an easy task, and requires devel-
opers to face an entirely new range of challenges. 
For instance, developers have to introduce a sig-
nificant amount of platform-dependent boilerplate 
code that allows them to control virtual machines 
rented from the Cloud, monitor the state of virtual 
machines, and elastically scale applications up 
and down according to the current or future load. 
These tasks are orthogonal to the mission of the 
applications, introduce significant complications, 
and bury the application’s actual business logic 
deep under a mountain of platform-dependent 

code. This boilerplate code has to be developed 
over and over again for each new application 
or platform version. In addition, this platform-
dependent integration code not only slows down 
application development, but also causes vendor 
lock-in, as each Cloud service provider has its 
own API that developers have to use to be able 
to interact with the Cloud.

In this chapter, we describe how the Cloud-
Scale1 research prototype (Leitner, Satzger, 
Hummer, Inzinger, & Dustdar, 2012) solves the 
challenges described above. The CloudScale 
framework allows developers to declare ap-
plication Cloud scaling and interaction rules 
declaratively with the help of Java annotations, 
thus allowing developers to focus on the busi-
ness logic of the application. The CloudScale 
framework injects the IaaS platform-dependent 
code necessary to scale the application over the 
Cloud via bytecode manipulation. This approach 
significantly simplifies the development of Java-
based Cloud-native applications and avoids vendor 
lock-in, as the Cloud-specific code is separated 
from the application business logic and can be 
easily changed.

The content of this chapter is structured as 
follows. In the next section, we provide some 
background information on the current state-
of-the-art research and development attempts to 
simplify Cloud software development without 
losing control over the available equipment and 
infrastructure resources. Next, we introduce our 
illustrative example application and describe 
the CloudScale architecture, as well as main 
design decisions and limitations by presenting 
the research idea and application development 
process that enables the development of Cloud 
applications transparently and seamlessly, with-
out thinking about platform-dependent code and 
Cloud performance monitoring.
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Diving deeper into the scope of possibili-
ties provided by CloudScale, we describe how 
CloudScale implements accurate and effective 
class loading on demand (Zabolotnyi, Leitner, & 
Dustdar, 2013), software state monitoring (Leitner, 
Inzinger, Hummer, Satzger, & Dustdar, 2012), and 
how multiple Cloud providers can be targeted in 
parallel by using the Cloud bursting model (Mell 
& Grance, 2011). Further, we illustrate how Java 
applications are built on top of CloudScale in 
an evaluation section and compare CloudScale 
with available modern Cloud platforms. Next, we 
discuss the amount of computational overhead 
introduced by CloudScale, and present numeri-
cal evaluation results of the platform (Leitner, 
Zabolotnyi, Hummer, Inzinger, & Dustdar, 2013). 
Finally, we conclude our chapter with an overview 
of future work and open research issues.

BACKGROUND

Elastic Cloud application development is a broad 
topic, with a significant amount of research related 
to it. According to the taxonomy represented by 
the survey (Vaquero, Rodero-Merino, & Buyya, 
2011), CloudScale can be classified as container-
level scalability system in the platform layer (where 
CloudScale plays the role of a container for user’s 
application). Similar solutions from this category 
are AppScale (Krintz, 2013) and Aneka (Calhei-
ros, Vecchiola, Karunamoorthy, & Buyya, 2012).

AppScale targets Online Transaction Process-
ing (OLTP) style enterprise applications. Ap-
pScale is an open source implementation of GAE 
(Google App Engine), and is interface-compatible 
to GAE. Aneka, on the other hand, is a .NET-
based platform with a focus on enabling hybrid 
Cloud applications. Contrasting with CloudScale, 
Aneka is more similar to traditional Grid comput-
ing middleware, providing a relatively low-level 
abstraction based on the message passing interface 

(MPI). In general, Aneka appears to be suitable 
for building scientific computing applications, 
but does not fit well for enterprise applications.

Another significant segment of distribution 
platforms is represented by solutions for Ma-
pReduce data processing (Gunarathne, Wu, Qiu, 
& Fox, 2010). BOOM (Alvaro, et al., 2010) also 
belongs to the data processing platforms and 
builds on a custom, declarative programming 
model that targets data analytics. CloudScale, 
in comparison to the platforms presented above, 
has a more general claim, and is able to handle 
an extensive variety of elastic application types, 
including processing-intensive, data-intensive, 
and OLTP style Web applications.

The project Contrail (Contrail Open Comput-
ing Infrastructure for Elastic Services), funded 
by the European commission (Contrail, 2013), 
represents another PaaS (called ConPaaS) for 
hosting flexible elastic applications (Pierre & 
Stratan, 2012). ConPaaS is supposed to support 
Web and high-performance applications built in 
Java or PHP, and may be used in combination 
with Cloud platforms such as Amazon EC2 or 
OpenNebula. However, ConPaaS operates on a 
lower level of abstraction than CloudScale. Its 
environment is focused on integration of existing 
stand-alone components such as database services 
or Web services.

As our work is also related to a set of frame-
works for Cloud deployment, we have to mention 
some of the most prominent examples from this 
category. Cloud deployment is the process of pro-
visioning the required resources from the Cloud, 
installing and running required software on each 
virtual machine, and starting the application. One 
of the first research frameworks that addressed 
this problem was Cafe (Mietzner, Unger, & Ley-
mann, 2009). Many ideas of Cafe have migrated 
into the TOSCA OASIS specification (Paul & 
Simon, 2013). A reference implementation of 
TOSCA is currently being implemented under 
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the name “OpenTOSCA” (Binz, Breiter, Leyman, 
& Spatzier, 2012). These tools focus on resource 
provisioning and application deployment only, 
while CloudScale provides a complete runtime 
platform. Hence, these tools do not enable elas-
ticity as such.

Related Tools and 
Commercial Approaches

Many core features of CloudScale introduced 
above are similar to well-known Java remote 
procedure call technology, e.g., Java RMI or En-
terprise Java Beans (EJB). However, note that the 
main contribution of CloudScale is not assisting 
with remoting (as RMI and EJB do), but rather 
enabling elasticity. Therefore, the actual intersec-
tion between CloudScale and these technologies 
is not particularly large.

The market of commercial PaaS solutions 
which provide scalable platforms on top of the 
Cloud is quite significant. A service named 
CloudBeesRUN@Cloud (CloudBees, 2013) has 
a strong similarity to our work. It provides con-
tinuous integration and an elastic platform for 
hosting EJB applications. There are some other 
PaaS platforms with Java language support, such 
as the already mentioned GAE, Amazon’s Elastic 
Beanstalk Services, and Microsoft’s Azure.

Outside of the Java biosphere, Heroku2 is 
gaining traction as a provider of PaaS for dynamic 
scripting languages, such as Ruby or Python. All 
these systems imply significant limitations and 
loss of control for the developer. They typically 
lock users into a given public Cloud (typically 
provided by the same vendor), provide propri-
etary APIs, and restrict the types of applications 
that are supported (typically, only Tomcat-based 
OLTP style systems).

Contrarily, CloudScale provides developers 
full control over the application and does not tie 
to any specific Cloud provider, allowing easy 

migration and hybrid Cloud support, while still 
providing an abstraction comparable to commer-
cial PaaS solutions.

CLOUDSCALE MIDDLEWARE 
PLATFORM

CloudScale is a middleware that takes Java-based 
applications to the Cloud. The main goal of Cloud-
Scale is to allow developers to build local, multi-
threaded applications (in this chapter referenced 
to as “target applications”) that can be distributed 
over the available Cloud resources with minimum 
application distribution knowledge required by the 
developers. This means that developers design 
their applications while focusing on the business 
logic and paying minimal attention to the distri-
bution that will happen at runtime. CloudScale 
seamlessly takes care of the technicalities of 
elasticity, such as virtual machine management, 
performance monitoring, load balancing, and 
program code distribution.

Example Case

Imagine a Web startup with the JSTaaS (“JavaS-
cript Testing as a Service”) business idea. JSTaaS 
represents a Cloud service for JavaScript applica-
tion testing. JSTaaS allows clients to register test 
suites, which will be executed periodically. Service 
load produced by the different tests varies widely, 
and clients are billed accordingly. Execution results 
are stored in a database, which can be accessed 
by the clients (see Figure 1).

To reduce needed initial funding, hosts used for 
test execution should be utilized as highly as pos-
sible. This means that tests should be co-located on 
the same machines as much as possible. Therefore, 
the core of JSTaaS needs to continuously monitor 
the utilization of all hosts, as well as the execution 
time of tests. To reduce infrastructure costs, the 
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company decides to deploy the initial version of 
JSTaaS as a Java-based service on Amazon’s EC2 
public IaaS cloud3.

This application is not trivial to implement 
with standard tools. Developers have to setup 
virtual machines, install the necessary application 
components on these virtual machines and use 
monitoring tools to ensure appropriate resource 
provisioning. Application must be split into task 
manager, load balancer, and workers to execute 
the tests. To some extent, AWS Elastic Beanstalk 
can be used to simplify deployment, and Cloud-
Watch can handle monitoring, but these tools do 
not solve the core obstacles in the way of running 
the application.

The popular way to build a distributed sys-
tem is to hide the complexity of the distribution 
behind convenient abstractions, such as remote 
procedure call systems. Some claim that such 

abstractions always will be leaky, and hence, 
should be avoided altogether (Vinoski, 2008). In 
our work, we stick to this abstraction approach, 
and claim that CloudScale represents an effective 
and convenient abstraction on top of IaaS, that 
simplifies Cloud application development. In the 
following sections, we discuss the concepts of 
CloudScale to establish the place of CloudScale 
within the domain of Cloud computing, and show 
how it is different from other approaches available 
on the market.

Basic Notions in CloudScale

CloudScale is weaved into the target application 
based on a set of Java annotations combined 
with compile-time bytecode modification. From 
the developer’s point of view, CloudScale usage 
requires adding a new library dependency, some 

Figure 1. JavaScript Testing as a Service application overview
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Java annotations to mark distribution points, and a 
post-compilation step to weave the necessary dis-
tribution code. At this point, the contrast between 
CloudScale and industrial PaaS solutions is clearly 
visible. Usually, modern PaaS platforms require 
developers to design the application according to 
their architecture and proprietary API, along with 
a set of limitations on the possible functionality 
of the application. Such PaaS applications are 
usually not executable or debuggable outside of 
the targeted PaaS environment, while solutions 
based on CloudScale can be executed and tested 
without access to the IaaS platform, or entirely 
even without CloudScale.

The core concept of CloudScale is a notion of 
Cloud Objects. Cloud Objects represent instances 
of classes to be executed on Cloud hosts. Cloud 
hosts are represented by virtual machines from the 
IaaS Cloud with CloudScale server component 
running on them. During the application execution, 
Cloud Objects are deployed on the appropriate 
Cloud hosts and all further interactions are treated 
as remote invocations. CloudScale intercepts each 

interaction with Cloud Object, routes request to the 
appropriate Cloud host that executes the operation 
and returns the result. Because of this, it makes 
sense to keep Cloud Objects as loosely coupled to 
the rest of the application as possible, as otherwise 
the application’s performance may suffer.

In the JSTaaS example introduced above, the 
wrapping objects that execute user tests are good 
candidates for Cloud Objects. Test execution usu-
ally produces a long-running and computation-
intensive load, while there’s little or no interaction 
between the separate tests. Figure 2 illustrates 
how tests are being executed by the application. 
White boxes represent the code written by devel-
oper, while gray boxes stand for code injected by 
CloudScale after application compilation. The 
application developer does not see this code and 
can solely focus on business logic implementation, 
while application distribution and interaction is 
handled by CloudScale in the background.

Figure 3 shows a high-level overview of an 
application that uses CloudScale. Components 
injected by CloudScale are within the gray box 

Figure 2. Basic interaction with Cloud Objects
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of application’s JVM, while Cloud hosts with 
CloudScale code are indicated by the dashed boxes 
named “IaaS Virtual Machine”. It is clearly vis-
ible that Cloud hosts are reasonably lightweight, 
minimizing performance impact and memory foot-
print on remote machines. Cloud hosts consist of 
a simple communication interface and code cache, 
described in more detail below. While CloudScale 
currently does not explicitly target multi-tenancy 
(Bezemer, Zaidman, Platzbeecker, Hurkmans, 
& Hart, 2010), each Cloud Object’s execution 
is sandboxed and handled by different custom 
class loaders. The client-side of CloudScale is 

responsible for maintaining a set of available and 
used Cloud hosts and deployed Cloud Objects. In 
addition, it also collects the monitoring data and 
controls further scaling of the system.

Interaction Patterns

Cloud Objects are declared by developers with 
the help of simple Java annotations (see Listing 
1). Applications can interact with Cloud Objects 
in the same way as with any other object in Java: 
invoking methods and getting or setting member 
fields. As it was described above, CloudScale 

Figure 3. System deployment view

Listing 1. Declaring Cloud Objects in target applications

@CloudObject 

  public class TestRunner { 

      @CloudGlobal 

            private static String testRunnerName; 

      @DataSource(name = “couchdb”) 

            private DataStore datastore; 

      @EventSink 

            private EventSink eventsink; 

       public TestResult runSuite (@ByValueParameter TestSuite tests) { 

             ...  

       } 

 }
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intercepts each interaction with Cloud Object, 
routes request to the appropriate Cloud host that 
executes the operation and returns the result. 
During this process, the target application is 
blocked to simulate standard Java behavior for 
such interactions.

Classes with @CloudObject annotation may 
contain static fields and methods. Operations on 
them are not intercepted by CloudScale by default, 
as it is not clear on which host these operations 
should be executed. If an interaction with static 
members is stateless (e.g., it does not change 
the static state of the application), this default 
CloudScale behavior is the best solution as it 
introduces no overhead. However, if the applica-
tion state is changed, this can cause a problem 
that we call a JVM-local update: if the Cloud 
Object changes the value of the static field, this 
update will be available only on the host where 
this change occurred, while other Cloud hosts and 
target application’s JVM will not be aware of this 
change. To prevent this problem, static fields can 
be annotated with the @CloudGlobal annotation 
(see Listing 1). Interactions with such fields are 
intercepted by CloudScale and forwarded to the 
target application JVM, causing some overhead, 
but leading to all hosts operating on the same 
actual field value. This behavior is not default 
because of performance reasons, and should be 
used only if JVM-local updates are not possible.

Some method invocations require other objects 
or values to be passed to or from the invoked 
method. Such methods are legal in Cloud Objects, 
but as passed objects have to be transferred between 
the JVMs, some specific rules apply. As the com-

mon purpose of such passed objects is usually to 
transport data, we refer to them as Data Objects. 
CloudScale distinguishes three different Data 
Object passing strategies, summarized in Table 1.

Small, primitive Data Objects are usually 
passed by-value. Objects passed by-value have to 
support the Java serialization mechanisms. User-
defined classes and all other complex types by 
default are passed by-reference. This approach is 
more powerful, as it simulates the same shared ob-
ject modification pattern as default object passing 
behavior in Java. It behaves similarly to the Cloud 
object interception mechanism described above 
and allows Cloud Objects to interact with each 
other or pass dynamic information between them. 
However, it introduces a significant overhead and 
if it is not required, developers can declare passed 
object as passed by-value. Finally, the shared 
strategy allows accessing Data Objects stored 
in a persistent data store, shared between Cloud 
hosts and the target application. This approach is 
beneficial if large chunks of data must be passed 
within invocations multiple times, or updates to 
these data structures must be synchronized. This 
approach is also beneficial if data must be avail-
able to external applications.

Data Object’s passing strategy is declared via 
annotations applied to field, method parameter, 
or method’s return type. In Listing 1, the result of 
runSuite method call is passed by-reference, while 
the method’s parameter “tests” is passed by-value 
because of the @ByValueParameter annotation. 
Shared data passing strategy has to be triggered 
explicitly on the connection handle injected by 
CloudScale. In the discussed example (see Listing 

Table 1. Data Object passing strategies 

Strategy Description

By-value Sends a deep copy of the object. Changes in the copy will not be reflected in the original object.

By-reference Sends a proxy object (by-reference proxy) instead of a copy. Invocations of the proxy are redirected back to the 
original object.

Shared Data Objects are exchanged by storing them in a shared data store. Application and all Cloud hosts operate on the 
same copy of the data (ensured by transactional mechanisms and concurrency control of the database).
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1), a CouchDB NoSQL data store (Cattell, 2011) 
is injected into the private field datastore. During 
execution, the application has to explicitly read 
and write data into the data store.

Internally, CloudScale uses special data map-
ping framework that allows serialization and de-
serialization of Plain Old Java Objects (POJO), and 
supports a range of relational and non-relational 
data stores such as CouchDB, Riak, HBase and 
any SQL database compatible with the Java 
Persistence API (JPA). The shared data passing 
strategy allows benefiting from database-specific 
features, such as concurrent access control (Kung 
& Robinson, 1981), data backup, or conflict reso-
lution. For other Data Object passing strategies 
(passing by-value and by-reference), developers 
have to handle concurrent data access themselves.

Class Loading on Demand

Whenever a new host has to be used for target 
application execution, there is the problem of 
code availability on the new machine. To be able 
to execute Cloud Objects on the new host, Cloud-
Scale has to ensure that the same code version is 
available in both JVMs. The trivial approach is 
to either send the correct code version to each 
machine on every request or expect Cloud hosts 
to start with application code already preloaded. 
The first approach introduces significant overhead 
for application performance, while the second one 
causes difficulties for the developers and maintain-
ers. In that case, whenever any change occurs to 
the codebase, new version of Cloud host images 
has to be built, significantly slowing down devel-
opment and deployment process. It becomes even 
more complicated if we consider a situation when 
multiple different code versions can be operating 
on the same machine over time or even in parallel. 
The only possible alternative to handle all these 
issues seamlessly for the developer and ensure 
codebase integrity is to implement a dynamic 
code search and distribution functionality at the 
middleware level.

Program Code Distribution 
Challenges

Dynamic code search and distribution middle-
ware faces a number of challenges that must be 
solved in order to be useful and effective. Firstly, 
the framework needs to detect when the code is 
missing or available version is inconsistent with 
the one required. Secondly, the appropriate ver-
sion of the code has to be found and deployed 
to the target host prior to execution. To simplify 
suitable code search, target application itself can 
act as a code server, but a separate low-latency 
access server may also be used to improve per-
formance. Thirdly, efficient and secure means of 
communication need to be used to transfer the 
code to the Cloud machine.

Fourthly, for performance reasons, only the 
necessary code should be transmitted using an 
effective batching strategy. For example, the 
performance impact will increase dramatically if 
each class will be transmitted separately, while a 
similarly negative impact on performance can be 
experienced if Cloud hosts have to wait for all code 
to be transmitted before starting any execution. 
Fifthly, to minimize memory and storage usage, 
the middleware has to ensure that received code 
is stored not longer than it is actually needed to 
avoid storage bloating and recurrent code transmis-
sions. Particularly, whenever the code is changed 
in the target application, the old version should 
be discarded as outdated, while allowing multiple 
code versions to exist in parallel as long as they are 
used. These challenges are summarized in Table 2.

CloudScale Code 
Distribution Framework

In this section, we describe how CloudScale 
achieves efficient and seamless code distribution, 
solving the challenges described above.

On every interaction with a Cloud Object, 
CloudScale forwards the request to the appropriate 
Cloud host and starts awaiting execution comple-
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tion. On the Cloud host, the invocation is fired 
while a special Java classloader maintains and 
fetches all required code on the fly. Due to this 
approach, the application that is being executed 
does not have to care about code availability 
and versioning, as the underlying infrastructure 
handles these problems seamlessly and transpar-
ently. To provide an appropriate level of code en-
capsulation and allow multiple parallel executions 
with a different code base, CloudScale creates a 
separate classloader for each client request and 
treats them independently. This allows encapsula-
tion of separate requests and provides the ability 
to load multiple different versions of the code at 
the same time.

On each class resolution request, CloudScale 
determines if the class has been already loaded 
by the corresponding classloader. In this case, the 
available code can be used without any additional 
checks, as code is not allowed to change during 
the same request execution. Otherwise, the class-
loader gets information about all available code 
versions for required set of classes from the code 
cache and asks the class provider in the target 
application JVM to detect the appropriate one. If 
none of the known code versions are correct, the 
class provider transfers the correct code, which 
can be used for application execution. This pro-
cess is illustrated in Figure 4, where all possible 
classloader behaviors are shown.

Within the code distribution process described 
above, the code versioning problem requires some 
more explanation. Whenever suitable code has 
to be selected, target application has to select the 
appropriate code within available offers from 
cache, or determine that none of them matches. 
The simplest solution would be to send all avail-
able versions of the code itself to the target ap-
plication; however, this introduces significant 
communication overhead and increases the load 
on the application’s host. The best solution would 
be to use some notion of code version, but even 
if there was such a feature provided by Java, it 
would not protect against parallel changes made 
by different developers.

In the current implementation of CloudScale 
classloading framework, class binary size, and last 
modification date are used as version identifiers. 
This allows minimizing communication overhead 
and still lets to determine if the available code is 
the same or different from the one needed. This 
approach is not unique and is used in a set of other 
state-of-the-art applications, where files or docu-
ments have to be in sync (e.g., RSync4, Apache 
Ant5, GNU Make6 and others). Evidently, this is 
not the only possible approach available. A set 
of alternatives was considered (e.g., using hash-
codes, explicit versioning via version numbers, 
or partial code transfer), but we determined the 
selected heuristic approach is the simplest and 

Table 2. Summary of code distribution challenges 

Challenge Name Challenge Synopsis

Missing Code Detection Cloud hosts need to be able to dynamically detect if program code is missing or the version 
is incorrect.

Trusted Code Storage Cloud hosts need to be able to locate the code storage service and query appropriate code.

Communication Middleware Cloud hosts need to have access to a suitable communication middleware that allows them to 
dynamically exchange code.

Batching Strategy Cloud hosts need to be able to load only the necessary code using an efficient batching 
strategy.

Outdated Code Clearance Cloud hosts need to be aware that program code can change or become obsolete, thus that 
loaded program code is not valid indefinitely.
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fastest, while still reliable enough for practical 
applications. In addition, this approach allows 
for easier cache maintenance, as it enables detec-
tion of code updates (if the last modified time is 
newer), detection of older version usages (if the 
last modified time needed is older than the one 
available), and dropping of the old code that was 
not used for a long time.

Whenever a Cloud host faces the situation 
that a class is missing, it queries the client for the 
correct version of the class. While caching elimi-
nates the need to transfer class code if it is already 
known to the Cloud host, the sequence of serial 
class loading request-responses still introduces a 

significant overhead. To reduce this, CloudScale 
classloading infrastructure has to deduce a set of 
possible following requests and batch the responses 
along with the requested class. For example, when 
a class is requested by the Cloud host, it is clear 
that all parent classes and interfaces that this class 
implements will be requested after it as well. In 
addition, when the requested class is available 
within the jar file, other classes from the same jar 
file are likely to be needed in the future. These 
assumptions significantly improve class loading 
performance for some cases, while introducing un-
necessary transfer overhead for others. Currently, 
CloudScale uses classloader that provides the jar 

Figure 4. CloudScale code loading strategy
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files whenever any class from it was requested, 
but we are considering other heuristics to improve 
class loading performance further.

The class loading feature of CloudScale is 
presented in more detail in (Zabolotnyi, Leitner, 
& Dustdar, 2013), which also contains numerical 
evaluation and overhead estimation of different 
class loading strategies and heuristics.

APPLICATION STATE MONITORING

The elastic Cloud computing model requires 
developers to carefully monitor the application’s 
performance and resource demand and acquire 
only the appropriate amount of resources.

While monitoring is always a cornerstone of 
complex enterprise-scale applications, it is clear 
that elastic Cloud computing is effective only with 
smart and powerful monitoring facilities. Without 
appropriate monitoring tools, developers are not 
able to scale distributed applications properly to 
satisfy customers and effectively utilize Cloud 
resources. However, currently, Cloud monitoring 
solutions are not as fine-grained and effective as 
one would expect. Modern industrial solutions 
focus on low-level metrics such as RAM usage 
or CPU utilization, while we claim that applica-
tions should be monitored according to high-level 
metrics that determine how well the stated task 
is accomplished.

For example, for a Web service this is the 
request processing time, while for a Web site 
this is the number of users currently handled or 
the average page generation time. Additionally, 
these high-level metrics can simplify expressing 
and controlling service level agreements (SLA) 
for customers.

The monitoring approach that is used by 
CloudScale is based on the ideas of complex event 
processing (CEP) and event-based monitoring. 

The CloudScale monitoring framework relies on 
application components named event emitters that 
indicate their current status via events. Cloud hosts 
and Cloud Objects are obvious event emitters, 
but any Java code running within the application 
can act as an event emitter by producing events 
to the appropriate event stream. Produced events 
can be aggregated and processed within a CEP 
engine, allowing the definition of higher-level 
complex events.

The overall view of the monitoring framework 
is depicted in Figure 5. The application is running 
over a set of Cloud hosts, each hosting a set of Cloud 
Objects. Each of the shown components can act as 
event emitter. Locally, events are transmitted via 
API calls, but remote communication is handled 
by the same messaging infrastructure as used by 
the rest of CloudScale components.

Monitoring Event Hierarchy

As the main building blocks of the CloudScale 
monitoring framework are events produced by 
event emitters, let us describe the structure and 
hierarchy of existing events depicted in Figure 
6. On the highest level, events split into two 
categories: predefined and custom. CloudScale 
monitoring framework predefines 15 runtime 
events (e.g., hosts and objects lifecycle events or 
resource usage events). Lifecycle events are trig-
gered by CloudScale framework itself whenever 
the condition is met (e.g., when a Cloud Object 
starts to execute or host is shut down). This set 
of predefined events is comparable to available 
monitoring events in related systems (Michlmayr, 
Rosenberg, Leitner, & Dustdar, 2008; Karastoya-
nova, Leymann, Nitzsche, Wetzstein, & Wutke, 
2006).

All predefined events contain event-specific 
information, which is omitted from Figure 6. For 
example, Execution Started Event consists of the 
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Figure 5. CloudScale monitoring framework overview

Figure 6. Monitoring event hierarchy in CloudScale



674

Building Elastic Java Application Services Seamlessly in the Cloud
 

identifier of the Cloud Object, the name and pa-
rameters of the method, and generated execution 
identifiers as additional parameters.

With the help of custom events, any applica-
tion-specific event can be emitted, which enables 
reacting to any high-level behavioral change of 
the application. For example, developers can 
control processing speed of the Web application 
by emitting custom events (see Table 3) and scale 
the application up or down, whenever processing 
speed changes. In the context of the example case 
application, developers may emit MyTestStat-
eEvent (see Listing 2) whenever any test starts 
or completes.

CloudScale enables developers to trigger cus-
tom events by publishing events into an instance 
of MonitoringEventSink, injected by CloudScale 
via the @EventSink annotation (see Listing 2).

Scheduling Based on 
Monitored Values

The main use of the monitored values is to allow 
simple, while still expressive, elastic application 
behavior setup. In the case of CloudScale-based 
application, this is done within the scaling policy 
(defined in the Basic Notions section). Scaling 
policies are usually represented by a set of simple 
event-condition-action rules that define whether 
target application should scale up or down depend-
ing on the current or predicted application state.

While CloudScale offers a set of predefined 
scaling policies, currently developers are encour-
aged to write their own scaling policies that would 
fit the target application’s needs and allow the 
best resource usage. At this time, this is a rather 
complicated task that can cause such problems 

Table 3. Example of CloudScale custom events that allow fine-grained application elasticity 

Metric Name Description

RequestProcessingTime Amount of time Cloud Object was processing user request.

RequestQueueLength Current number of queued tasks that are waiting for processing.

AvgRequestsPerSecond Average number of user requests arriving each second.

AvgDatabaseRequestTime Average amount of time taken by the database query.

AvgTaskProcessingTime Average time required to perform a particular task (e.g., logging).

WriteConflictsCount Number of conflicts in database writes.

AbortedTransactionsCount Number of aborted database transactions.

Listing 2. Triggering custom events

public class MyTestEventEmitter {   

     @EventSink 

     MonitoringEventSink eventSink; 

     ... 

     private void triggerEventOnTestStatus (TestState state) { 

            CustomEvent myEvent = new MyTestStateEvent(...); 

            eventSink.emitEvent(myEvent);   

    }   

 ...  

 }
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as synchronization issues, conflicting rules or 
oscillation (i.e., continuously triggering up- and 
down-scaling within short periods of time), but we 
are working on further ideas on how this can be 
simplified or even automated, while still achieving 
current levels of flexibility and control.

HYBRID CLOUD SUPPORT

Currently, two Cloud deployment models are 
popular: private and public Cloud deployment. 
Private Cloud deployment represents the usage of 
the private virtualized data center that is owned 
by the same company that owns the underlying 
infrastructure or provisioned by a vendor, spe-
cifically for the company. Public Clouds stand 
for the services that are available for the general 
public and offered by a separate provider (Mell & 
Grance, 2011). While private Clouds are usually of 
a limited size, public Cloud solutions are usually 
represented on such a huge scale that customers can 
assume it offers an infinite amount of resources.

As the core idea of CloudScale is to conceal 
the Cloud management code from the target ap-
plication and allow developers to focus on the 
business logic, CloudScale provides an efficient, 
fast and convenient way to switch between Cloud 
environments. While the Cloud management code 
is injected into the application after the compi-
lation, CloudScale allows selecting the Cloud 
platform during application runtime. This allows 
avoiding Cloud provider API lock-in and being 
able to switch between different providers for 
testing and deployment purposes. As discussed 
earlier, this prevents from cluttering the business 
logic of the application and avoids writing the 
same Cloud-management boilerplate code in each 
target application.

Considering modern Cloud environments, due 
to API variance and resource management dif-

ferences, applications have to be modified prior 
to running within the different environments. 
Because of this, the concept of the Cloud burst-
ing is mainly a research idea that is quite hard to 
implement in practical applications. Cloud burst-
ing represents the capability of an application to 
scale according to the demand not only within the 
available single Cloud resources, but over mul-
tiple Clouds as well. During low load conditions, 
such application can scale down to a single host, 
while as the load increases, additional resources 
are used from the set of private or public Clouds 
(see Figure 7).

Any application running over multiple Cloud 
platforms is not technically different from the 
one operating only in a single Cloud. However, 
there are a set of practical problems that have to 
be solved in order to operate in such heteroge-
neous environments. For example, firewalls are 
usually neglected within the homogenous Cloud 
environment, while it becomes quite problematic 
to configure communication between Cloud hosts 
deployed in a different environment, introducing 
the need of some tunneling to be able to commu-
nicate between hosts. Secondly, communication 
delay also has to be addressed. While within 
the Cloud, communication overhead is mostly 
homogenous and can be considered as constant; 
however, this overhead has to be considered if 
multiple Clouds are operated at the same time 
and resource access time is different depending 
on the Cloud they are deployed into. In addition, 
host performance is also different within the dif-
ferent Cloud environments (Li, Yang, Kandula, 
& Zhang, 2010).

With the architecture presented in CloudScale, 
it can be easily extended to operate over multiple 
Clouds. All CloudScale communication goes 
through the message server that can be instantiated 
within each Cloud platform. This allows running 
any CloudScale-based application in the Cloud 
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given that target application can connect to the 
message server. To seamlessly transfer information 
between the Clouds, CloudScale uses the target 
application’s host as a communication node be-
tween the hosts located in different environments.

While the complexity of operating with the 
different Cloud environments is hidden from the 
target application developer within CloudScale 
core code, there is one thing that developers have 
to consider while developing and running such 
applications. To successfully and efficiently run 
target applications in the Cloud bursting mode, 
scaling policy has to be written in awareness of 
the fact of multiple Cloud platform usage. Within 
the scaling policy, the scaling rules (discussed in 
more detail in section “Application State Moni-
toring”) have to specify which actions have to be 
performed on each of the Cloud environments 
separately. However, the complexity of this task 
grows linearly with the number of environments 
that are being used as the same monitoring tools 

and metrics can be used to make a decision. More 
details regarding the implementation, usage and 
evaluation of Cloud bursting with CloudScale 
framework is described in (Leitner, Rostyslav, 
Gambi, & Dustdar, 2013).

APPLICATION DEVELOPMENT 
PROCESS

To illustrate the development process of Cloud-
Scale-based applications, we go through the set 
of steps necessary to bring Maven7-based applica-
tions to the Amazon EC2 Cloud. In more detail, 
this process is described in the CloudScale online 
documentation8. This process consists of three 
fundamental steps: at first we have to change 
the project setup to include CloudScale, then 
we have to select Cloud Objects and apply any 
other necessary annotations, and lastly, we have 
to configure CloudScale to scale the application 

Figure 7. Basic three-phase Cloud Bursting model
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according to our needs. The first step does not 
present any difficulties: pom.xml file has to be 
modified in order to specify dependencies to the 
CloudScale project and apply AspectJ annotations 
to the user code.

Applying CloudScale Annotations

The idea of the CloudScale is based on the notion 
of Cloud Objects. Cloud Objects are instances 
of resource-demanding classes that have to be 
distributed over the network. As the main task of 
JSTaaS application is to execute customer tests, 
the class that wraps each test suite execution is a 
good candidate for such a resource-intensive class. 
Furthermore, this class is strongly decoupled and 
requires minimal interaction with other compo-
nents of the application.

Listing 3 shows the test execution class that 
is being distributed by CloudScale. It consists of 

mainly application-specific business logic with a 
number of CloudScale annotations added. As the 
TestSuiteCloudObject class is annotated with @
CloudObject, all interactions with the instances 
of this class are intercepted by CloudScale and 
scheduled to the appropriate Cloud hosts. In ad-
dition, to optimize performance, some method’s 
parameters and return values are annotated with 
appropriate parameter passing annotations (see 
Interaction Patterns section) that allow treating 
parameters either as by-value or as by-reference. 
For example, as the statuses parameter of the 
runCloudObject method is not annotated by any 
specific annotation, it is treated as by-reference and 
all changes applied to this object are retransmitted 
to the target application.

Another important annotation is @Destruct-
CloudObject on the runCloudObject method. This 
annotation specifies that this is the last invoca-
tion on this Cloud Object and after invocation of 

Listing 3. The skeleton of the Test Execution Class

@CloudObject 

 public class TestSuiteCloudObject { 

       @CloudObjectId 

       private UUID coId; 

      

       @DataSource(name = “testresults”) 

       private Datastore datastore; 

           

       public @ByValueParameter UUID getId() { 

     return coId; 

      } 

      public void setSuite (@ByValueParameter TestSuite suite, int testId) { 

          ... 

      } 

      @DestructCloudObject 

       public void runCloudObject (TestSuiteExecution statuses, int suiteNr){ 

          ... 

       } 

 }
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this method is finished, this Cloud Object can be 
destroyed. This allows optimizing resource us-
age and cleaning unnecessary objects from the 
Cloud hosts.

Separately, we would like to note the depen-
dency injection feature of CloudScale. Two fields 
of this class (coId and datastore) are annotated 
with appropriate annotations to allow additional 
interaction with CloudScale framework. For 
example, the field annotated with @DataSource 
annotation enables the use of shared data passing 
mechanisms through the code of the class.

Configuring CloudScale

At this point, the JSTaaS application is already dis-
tributed by CloudScale. However, the distribution 
is happening in the so-called debug mode: instead 
of using separate Cloud hosts, CloudScale spawns 
new JVMs on the same host that the application 
is started. This mode is perfect for debugging 
and ensuring that everything works as expected 
prior to deploying the application to the Cloud. In 
order to deploy the application on the real Cloud, 
an appropriate configuration has to be provided.

There are a number of ways to configure 
CloudScale, described in more detail in the on-
line documentation. Here, we will configure the 

framework through system properties. In order 
to configure CloudScale, the system property 
Cloudscale.configuration has to specify either 
the path to an XML file containing a serialized 
CloudScale configuration, or the name of a class 
that has a static method with the @CloudScale-
ConfigurationProvider annotation. This method 
should return an instance of CloudScaleConfigu-
ration. During application runtime, on the first 
interaction, CloudScale will load its configuration 
from the specified place.

If the appropriate Amazon EC2 configuration 
is specified, the application can already be distrib-
uted in Amazon EC2 Cloud. This EC2 configu-
ration specifies platform-dependent parameters 
important for CloudScale. For example, developers 
can specify required size of the instance to start 
or the virtual host image id with preconfigured 
CloudScale service that will be used for spawning 
new cloud hosts. CloudScale online documenta-
tion describes how such image can be built on any 
platform and provides a reference to the public 
image in Amazon EC2 cloud.

However, the default host managing policy 
will not be optimal for this application. In order 
to optimize it, we have to create our own scaling 
policy (see Listing 4) based on the monitoring 
information described in the section on Appli-

Listing 4. A scaling policy example

public class ScalingPolicy implements IScalingPolicy { 

      @Override 

      public boolean scaleDown (IHost host, IHostPool hostPool) { 

     ...// here we define if the specified host should be shut down 

      } 

      @Override 

      public IHost selectHost (ClientCloudObject co, IHostPool host-

Pool)     { 

     ... // here we define where to deploy the new Cloud object 

      } 

 }
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cation State Monitoring, and specify it in the 
configuration. After these changes, our JSTaaS 
application is fully capable of running over the 
Amazon EC2 Cloud, where we can further adapt 
it to suit our needs.

CLOUDSCALE EVALUATION

In this section, we will briefly contrast application 
development using CloudScale with building an 
IaaS application directly on top of Amazon EC2 
(without specific tooling outside of the EC2 API) 
and using a PaaS service, such as Google AppEn-
gine. Our goal here is to show what advantages a 
“middle-of-the-road” solution such as CloudScale 
provides.

Starting with API complexity, CloudScale 
requires knowledge of a reasonably small amount 
of API functions, while offering large capabilities 
for application development. This is mainly due 
to the way applications are built on top of Cloud-
Scale and the amount of necessary changes to the 
target application. While both EC2 and AppEngine 
assume that developers will create applications 
specifically for their platforms using the provided 
API, CloudScale aims at seamless development 
and ease of taking existing Java based distributed 
applications to the Cloud.

In addition to that, Cloud application debug-
ging is somewhat simpler with CloudScale than 
with EC2 or AppEngine. This is mostly due to the 
special scaling debug mode of CloudScale, which 
scales applications in the sandbox on the local 
machine, while developers of applications for EC2 
or AppEngine can only debug application while 
the target platform is available and only through 
the limited set of tools available for the selected 
platform. It should be noted that an emulator for 
AppEngine is available, but practical experience 
has shown that most testing still needs to be car-
ried out in the real PaaS environment.

A core advantage of the IaaS approach is that 
it always provides complete freedom as to which 
frameworks and application architecture designs 
are supported. CloudScale, on the other hand, is 
by its nature restricted to the Java programming 
language. Other than that, the restrictions imposed 
by CloudScale are minimal. AppEngine, on the 
other hand, induces quite significant limitations 
on application design, and restricts application 
developers, both with regard to what API functions 
they can use and what architecture the application 
needs to follow. Another thing that IaaS approach 
is good is for providing full access to the backend 
servers, thus enabling developers with complete 
flexibility and control over the resource usage and 
operating system configuration.

CloudScale aims to hide the complexity of vir-
tual machines so that the developers can build the 
Cloud application without even controlling virtual 
machines; however, it does not forbid developers 
to modify the virtual machine as long as the core 
components of the CloudScale are still running. 
The online documentation also has instructions 
available on how to build custom CloudScale 
server images which can be modified in any way.

However, clearly the AppEngine model has sig-
nificant advantages as well. One example of such 
a benefit of AppEngine is code distribution and 
application scalability. While AppEngine scales 
applications mostly automatically, for EC2-based 
applications, developers have to create their own 
rules and approaches to achieve elastic applica-
tion scaling. From this point of view, CloudScale 
provides a reasonable alternative. Scalability 
is achieved by injected code and appears to be 
seamless to the developer, while the scaling rules 
can be provided separately within the convenient 
and powerful instrument based on the flexible 
monitoring framework that allows controlling 
not only basic parameters such as CPU load and 
memory usage, but also high-level application-
specific metrics.
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Finally, CloudScale offers support for ap-
plications that are scaling over multiple Clouds 
(forming so-called hybrid Clouds), which allows 
minimizing application operating costs and ex-
tends application flexibility beyond the limits of 
one Cloud provider. This model is not supported 
by AppEngine at all. Using an IaaS service such as 
EC2, it is possible to implement hybrid Clouds, but 
this requires a significant amount of development 
and configuration work. In contrast, setting up a 
hybrid Cloud with CloudScale comes at almost 
no effort to the developer.

In Table 4, we present a qualitative summary 
of the features that we consider significant for 
application development. We claim that Cloud-
Scale significantly simplifies the application 
development process, hides complexity of code 
distribution and Cloud management, while pro-
viding convenient and configurable debugging 
and development experience. Therefore, we think 
that developers (especially the ones new to Cloud 
computing) will benefit from using CloudScale 
and will be able to develop applications and take 
them to the Cloud faster than with existing tools.

Every platform provides some benefits to de-
velopers, while introducing measurable overhead 
to the developed system. To investigate the extent 
to which the descriptive approach offered by 
CloudScale influences application performance, 
we performed a numerical evaluation, which was 
originally presented in a separate paper, currently 
available as a technical report (Leitner, Zabolotnyi, 
Hummer, Inzinger, & Dustdar, 2013).

The main goal of our numerical evaluation is 
to compare the performance of the same applica-
tion built on top of CloudScale and on an IaaS 
platform (e.g., OpenStack) directly. To investigate 
this, we developed the core functionality of the 
JSTaaS application introduced in Example Case 
section above. As the main goal was to evaluate 
overhead introduced by CloudScale, we designed 
both applications to have same behavior and reuse 
as much business logic code as possible. Addition-
ally, we focused on scenarios where the number 
of Cloud hosts (CH) is fixed.

Each solution was tested in the same environ-
ment with the equivalent test setup consisting of 
20 parallelizable long-running test suites, sched-

Table 4. Feature comparison of CloudScale and alternative solutions 

Feature Amazon EC2 CloudScale Google AppEngine

Complexity of API Small Small Significant

Amount of Platform Interaction Code Significant Very small Small

Application Debugging Simplicity Complicated Simple Reasonable

Architecture Limitations None Small Significant

Scaling Configuration Convenience Manual/None Good Basic

Code Distribution and Update Manual/None Semi-Automatic Automatic

Monitoring Features Manual/None Advanced Basic

Backend Server Access Full Restricted None

Hybrid Cloud Support Manual Built-in None

Programming Language Support Any Java Java, Python, PHP

Provider Lock-in Small Very small Significant
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uled evenly over the available set of Cloud hosts. 
Figure 8 illustrates mean results of running test 
setup described above with the different numbers 
of Cloud hosts available to the application. From 
this figure, one notices that CloudScale (blue dot-
ted line) indeed introduces a significant overhead 
in comparison to pure OpenStack implementation 
(red line). However, after some investigation, we 
discovered that this overhead is mainly caused by 
remote classloading feature in CloudScale.

However, in OpenStack implementation, 
classloading is unnecessary, as all code is already 
available in Cloud hosts. Hence, to make our 
comparison fairer, we decided to run CloudScale 
version of the JSTaaS with all code pre-cached on 

the Cloud hosts. This evaluation run (green dotted 
line) appeared to be as fast as the OpenStack-based 
implementation of the application.

This evaluation allowed us to conclude that 
CloudScale does introduce some overhead, which 
is mainly due to remote classloading feature. To 
further improve user experience, we decided to 
explore the ways to optimize this in our future work.

FUTURE RESEARCH DIRECTIONS

While the current version of CloudScale is already 
stable and has a significant number of features, 
we are still actively working on further improve-

Figure 8. Total test runtime dependency with number of Cloud hosts used
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ments. From a technical point of view, we still need 
to improve the code base, fix known issues and 
improve the documentation. To extend function-
ality of CloudScale, we are trying to add support 
of additional IaaS Cloud providers and improve 
general performance and stability of CloudScale.

From the research point of view, we continue 
to investigate the ways to automate the steps that 
currently have to be done manually and find new 
possible applications for the CloudScale frame-
work. For example, we are working on the smart 
profiling system that may allow us to profile a 
Java application to detect classes that can be used 
as Cloud Objects. Another direction is to improve 
monitoring behavior to simplify creation of scaling 
policies and allow automatic application scaling 
according to historical load and predicted behavior. 
In addition, we are working on ways to further 
integrate shared data passing model and make 
it as seamless as the other two. Finally, we are 
developing a useful and convenient Cloud Object 
migration mechanism that will provide developers 
a way to balance current load on the Cloud hosts 
and migrate Cloud Objects between hosts.

To receive more usage feedback, we are cur-
rently popularizing CloudScale among research-
ers, students, and developers. This will allow us 
to verify our claims, collect feedback and improve 
the overall CloudScale usage experience. In the 
future, we also plan to release a hosted demo 
version of CloudScale, which will allow potential 
users to verify if CloudScale fits their needs. Ad-
ditionally, to distinguish CloudScale from other 
tools and platforms with the same name, we plan 
to rebrand CloudScale to JCloudScale and move 
our public repository to GitHub.

Finally, we are applying CloudScale as a Cloud 
migration tool for a number of existing popular 

applications and frameworks, including service 
composition engine JOpera (Pautasso & Alonso, 
2005) and Apache JMeter (Halili, 2008).

CONCLUSION

CloudScale facilitates the simplification of Cloud 
IaaS-based application development by handling 
most of the infrastructure and distribution-related 
issues under the hood, allowing developers to focus 
on the application’s business logic implementa-
tion. CloudScale is injected into application code 
after compilation based on the Java annotations, 
that enables isolating application’s business logic 
from the boilerplate of Cloud interaction and 
communication code. Therefore, CloudScale 
code injection can be simply enabled or disabled 
depending on the situation.

While CloudScale tries to be as seamless for 
developers as possible, it can be flexibly con-
figured to fit developer needs. Following this 
ideology, CloudScale is configured by Java an-
notations or system properties, which eliminates 
any influence on the application execution logic 
and behavior. In this chapter, we introduced the 
main ideas and concepts behind CloudScale, illus-
trated how important Cloud distribution problems 
are solved seamlessly for target applications, and 
demonstrated the main steps of distributing ap-
plications with CloudScale. While CloudScale is 
reasonably stable and easy to use, it is still under 
development and we are continuing to work on 
further improvements to be able to take user 
applications into the Cloud as seamlessly and 
flexibly as possible.
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KEY TERMS AND DEFINITIONS

Cloud Bursting: The application behavior that 
provides scalability according to demand, not just 
within the available single Cloud resources, but 
over multiple Clouds as well.



685

Building Elastic Java Application Services Seamlessly in the Cloud
 

Cloud Computing: The elastic computing 
over virtualized resources, provided via pay-as-
you-go model.

Cloud Host: The virtual machine in the Cloud 
operated by CloudScale.

Cloud Object: An instance of a resource-
demanding class that is distributed by CloudScale 
over the Cloud hosts.

Data Object: The object that is used to transfer 
data between classes or application components.

IaaS: Infrastructure as a service level of Cloud 
computing.

PaaS: Platform as a service level of Cloud 
computing.

Target Application: The application distrib-
uted by CloudScale.

ENDNOTES

1 http://code.google.com/p/cloudscale/
2 https://www.heroku.com/
3 http://aws.amazon.com/
4 http://rsync.samba.org/
5 http://ant.apache.org/
6 http://www.gnu.org/software/make/
7 http://maven.apache.org/
8 http://code.google.com/p/cloudscale/wiki/
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