Chapter 1
“

Service-Oriented
Architecture for

Mobile Services
“

Hong-Linh Truong and Schahram Dustdar

Contents
LT InCroduction. ... e es oo 4
1.2 Why SOC/SOA for Mobile Services? .vumumruremmrererersressmsssmesesmoseeseesssssos 6
1.3 Architectural Styles and Protocols for Mobile Web Services........ooin, 9
13.1 Architectural Styles........ommmmmmeuimosmssscesersesmsressesssiosssesssessessses . 12
1.3.1.1 SOAP-Based Web Services............ovmmrersroeomessossomsisssss 12
1.3.1.2 RESTful Web Servicesumemrmimmrmssssercersessososessses 12
1.3.1.3 Mixed Architectural Stylescoovvveereeeevereoroso, 13
1.3.2 Communication Patterns......u...vvvueeeeereereressessosseoseesosooooooo 14
1.3.3 Service Discovery and COMPOSILIONsvreerseeremssssssssessssssso. 14
1.3.4 Data Handlingoccoovivreeocisoreesseesesessssessoseseesees oo 16
1.3.5 Service Management........u....cuvuuceveeeeesrosseesoe oo 18
1.3.6 Security and Identity SUPPOLt...........ovvvereveeseereersssssrssesssisssssssossson, 19
1.4 Mobile Web Services Programming SUPPOIt.spasyssssssssssisssssswessissisissivsionss 21
1.4.1 Standards and Specifications..............eoeverereceemsesssessossoessesosessoson, 21
1.4.2 Mobile Web Service ToOIKILS c......ovvvrrrrreeerrres oo 22
1.4.2.1 General-Purpose Web Service Toolkitsovvvevmnrrvrnonn... 22

1.4.2.2 SPecific TOOLKILS vuuurmvummsiererisissiaiassosssesnsssossesssssssssesnssnn 24

4 ® Handbook of Mobile Systems Applications and Services

1.4.3 Software Development Process for Mobile Web Services ... 26
1.4.4 Writing Mobile Web Services and Consumers........evermersrersersen 26
1.5 Real-World SOA Mobile SeIVICes..c.mvomrmmmsseremrerersesersseesesssssnsssssssenen. 32
1.6 SOA/Web Services and Other Technologies/Styles for Mobile Services ... 34
1.6.1 OMA/Mobile Web Services.........coweweeevereeeeeveeeeeeseseoeoeooeoeoone 34
1.6.2 CDC/OSGI Model .ocuvneieiviriiiiiieiieiieeee v seeeeseeeesesssssssssseennns 34
1.6.3 Event-Driven Architecture and SOA....ceeeeeeeeeereee e seeessessissnns 35
1.6.4 Web Applications, WAP, and SIPc.ocererusmeemrcsnmssneesresssressonmeess 35
1.7 Challenges for FUture Research......coeeeeereioeeeioeeeeeesesssesesseseseeseseosns 36
1.7.1 Supporting Mobile Web Services on Mobile Devices....ovovrrrinnn.36
1.7.2° Supporting REST Mobile SErvicesccvmummmmuersmmrrersssrensisssessseses 37
1.7.3 Programming Supporting Tools.........ccoumieueresniesiressssensonsssneneens 37

1.7.4 Context Sharing in Mobile Services.........oommversmererresmnres .37

1.7.5 User-Defined Opportunistic Composition and Creation
Of Mobile SEIVICEueuiumrririiriirnires e 37
1.8 ConClUSION ..ocvoie ettt e e e 38
1.9 Further Reading.....cccciuimmrmmnsinsrsnrissessissesssssssssssssseessessesessssnssssssnnns 38
EXEICISES .ouvvuiinieiiiiicir st s et esesnssensensers 3O
AcKknOWIEGIMENTS cuvvcveivivsrrarreesecrssrssessenessessssesssessrssssesssssssenseseansessnesesnsensse 40
REfEIENCES c...vivei ittt sessesss s sasssssenssssssssssssessssessesensessessessesnsess 40

1.1 Introduction

Over the last few years, Service-Oriented Computing (SOC) and Service-Oriented
Architecture (SOA) have demonstrated their capabilities in tackling integration
and interoperability challenges raised by complex, heterogeneous data, services,
and applications spanning different organizations. SOC is a computing paradigm
in which services are considered as the fundamental elements for building distrib-
uted applications [1]. In SOC, SOA plays a major role to define how service-based
systems are designed [1]. Various standards and technologies have been developed
to support SOC/SOA concepts, such as SOAP (Simple Object Access Protocol
[heep:/fwww.w3.org/ TR /s0ap12-partl/]), WSDL (Web Services Description
Language [heep:/Iwwww3.org/ TR fwsdl]), and BPEL (Business Pracess Fxecution
Language [hetp://www.oasis-open.org/committees/wsbpel/]). Among enabling
technologies for SOA, Web services technologies, mostly based on XML, HT'TP,
WSDL, and SOAP, are the most widely implemented choice for SOA-based solu-
tions. Web services technologies have been widely applied in small- and large-scale
distributed systems built atop different platforms, such as high-end machines,
mid-range servers, and workstations, for real-world applications.

As SOC/SOA offers many advantages for integrating heterogencous data, ser-
vices, and applications, SOC/SOA is a powerful enabling model for the develop-
ment of mobile services. Originally, mobile services were considered as part of

Service-Oriented Architecture for Mobile Services ® 5

telecommunication service providers but today mobile services have evolved
dramatically in many aspects [2]. The term “mobile services” is typically used to
indicate services for mobile users. Although mobile services are usually considered
to provide Web content to mobile users from anywhere, at anytime, and with any
device, as indicated by Hiyrynen in Enabling Technologies for Mobile Services: The
MobiLife Book [3], the concept of mobility is not limited to the access of Web con-
tent and services from mobile devices. In our study, mobile services offer function-
ality for mobile applications to access and provide distributed data, content, and
services. Used by mobile users, mobile applications typically rely on mobile devices
and mobile networks, which can be dedicated (e.g., Internet and telecommunica-
tion network) or nondedicated (e.g., a mobile ad hoc network—MANET) estab-
lished in specific situations. Thus, it is clear that different levels of movements of
users, devices and services exist, and these movements must be taken into account
and supported by mobile services [4]. To date, mobile services for mobile applica-
tions hosted in dedicated infrastructures of telecommunication and Internet service
providers have been widely and well developed. However, with the recent develop-
ment and deployment of powerful mobile devices (e.g., personal digital assistants
(PDAs) and smart phones) and mobile network infrastructures and techniques
(e.g., (free) abundant WiFi hotspots and MANET), mobile services are increasingly
developed and deployed on mobile devices to offer on-demand or personal services
to users.

In this chapter, we study state-of-the art SOC/SOA for mobile services. We con-
sider software services, not business services, and concentrate on mobile services
based on Web services technologies” and on mobile devices owing to several reasons.
First, various mobile applications on mobile devices have been developed based on
Web services technologies because these technologies enable applications on mobile
devices to access data, information, and services via standard protocols (e.g., see
many Strikelron Web services at htep://www.strikeiron.com/StrikelronServices.
aspx). Although Web services technologies are largely used for developing mobile
applications at the client side, supporting Web services for mobile devices on the cli-
ent side is not as strong as that in other platforms. Furthermore, recently, the ways
of developing and using mobile applications have been changed dramatically to
meet the requirements of user participation’ and mass customization.' Therefore, it
makes sense to study existing solutions to distill specific versus generic, and inflexi-
ble versus reusable, protocols and models for mobile Web services.

Second, many research efforts have focused on providing programming tools and
software engineering methodologies for developing applications for mobile devices
(e.g.» PDAs, smart phones, subnotebooks, and laptops). In most cases, existing tools

* Hence, we use the term “mobile Web services” to refer to mobile services implemented with
Web services technologies.

t httpi//fen.wikipedia.org/wiki/Web_2.0

¥ htep://en.wikipedia.org/wiki/Mass_customization

6 ® Handbook of Mobile Systems Applications and Services

and methodologies aim at supporting the development of mobile applications acting
as a client to access data and services from dedicated, high-end systems. This is par-
tially due to constrained resources of mobile devices on which mobile applications
function, and the usage mode in which mobile devices tend to access services rather
than to provide them. However, many mobile applications and scenarios have
shown the need to have Web services on mobile devices [S—7). The lack of studies of
how we can reuse/integrate current mobile applications for/into existing, diverse Web
services available in today’s pervasive environments has also shaped our focus in this
study.

Finally, mobile services that are not based on Web services or SOA-based tech-
nologies on telecommunication or Internet service providers are well developed and
discussed in the literature. Some parts of mobile services systems are built on the
basis of typical, dedicated distributed systems (e.g., the service side of mobile ser-
vices) that are addressed well by utilizing existing SOA techniques. Therefore, we
will not concentrate on nonmobile Web services and on the setvice side of mobile
services developed in conventional distributed systems.

The rest of this chapter is organized as follows: Section 1.2 discusses why SOC/
SOA for mobile services is important. Section 1.3 discusses current SOA tech-
niques for mobile services, with a focus on fundamental architectural styles and
protocols. We present mobile Web services programming supports in Section 1.4.
Then, we discuss a real-world application in Section 1.5. Different SOA techniques
are discussed in Section 1.6. Section 1.7 outlines research challenges. We conclude
the chapter in Section 1.8. This chapter also suggests a further reading list in
Section 1.9 and finally, a list of possible exercises.

1.2 Why SOC/SOA for Mobile Services?

According to the GSMA (GSM Association [http://www.gsmworld.com/]), at the
time of writing the mobile world has reached 4 billion connections and by 2013 it
is forecasted to have 6 billion connections [8]. With such a large number of mobile
devices (and mobile users), obviously there is a strong need for accessing and sharing
data, information, content, and services by using mobile devices.

Before explaining the role of SOC/SOA for mobile services, it makes sense to
discuss typical mobile services. Various authors have presented different classifica-
tions of mobile services. For example, mobile services have been classified according
to type of consumptions, context, social setting, and relationship between consumer
and service providers in Reference [9]. As SOC/SOA is a computing model used to
address the integration and interoperability challenges, it would be better to classify
mobile services in a way that highlights the main benefit of SOC/SOA. Within this
view, we divide mobile services into two main classes: individual-oriented and group-
oriented mobile services. The first class, depicted in Figure 1.1, indicates mobile

Service-Oriented Architecture for Mobile Services m 7

Mobile service

5 ehiseics) Web service
< \ registry
Mobile service Mobile service
% Deg;, = (Web service)
consumer
Glted ne}Work o i3
O / ! Mobile service
f.?’ Iy - (Web service)
- —
L) z .
Individual Mobile service Mobile service
(Web service) (Web service)
v smr—=efle Invocation flow m sn =8 Data flow

Figure 1.1 Individual-oriented mobile services.

services designed and developed for individuals” who (occasionally) utilize the ser-
vices for different purposes and have few interactions with others in close time and/
or space dimensions. Here, individual-oriented mobile services are tailored for indi-
vidual use. In the second class, mobile services are designed for a group of people
working together in close time and/or space dimensions, shown in Figure 1.2, In this
case, there are a high number of interactions among people through mobile services
in a close/distributed space in a short/long period of time. This kind of mobile service
might be deployed on a nondedicated infrastructure. Although this simple classifica-
tion provides nonorthogonal classes, it helps us to identify some major issues that
SOC/SOA can help. Table 1.1 presents some typical properties of the two classes.
For the first class, we can utilize SOC/SOA to achieve the interoperability and
integration of different services to provide added-value services for individuals. Let
us consider diverse and rich sets of available services in the market for individual
use. SOC/SOA will be useful for developing and integrating mobile applications
utilizing these services due to various factors. First, there are new business models
for individual-oriented mobile services which are targeted to normal people. Such
models can rely on a vast source of data, contents, and services provided by different
vendors through mobile networks or the Internet, to create converged services. On
the one hand in today’s market, data, information, and service providers want to
maximize the number of their customers. Therefore, they provide their services
with well-defined interfaces based on SOC/SOA models to simplify the access of

" We do not mean that the service is not by a single person but rather that users’ usages are sepa-
rated, sometimes unrelated, from each other.

8 ® Handbook of Mobile Systems Applications and Services

1
| ~ -Mo-bi]e ser;/ice "

’ N {(Web service) Web service
m N { registry
. . = 1 Mobile service

Dl?dl'm\h 7 \

Individual o ¥ (Web service)

‘ Mobile services

Maoabile service =l S e Mobile service

(T i s
consumer \? ‘;///(consumer

N
\

. A= Mobile service - Q
Individual L Individual
0

Individual

= =e 2 nvocation flow w== oo = Data flow

Figure 1.2 Group-oriented mobile services.

Table 1.1 Properties of Individual-Oriented and Group-Oriented
Mobile Services

Properties Individual-Oriented Group-Oriented
Infrastructure Dedicated Dedicated and nondedicated
infrastructure infrastructure

User involvement | Single user Multiple users

Interaction Very loosely Tightly, concurrent, near-real-time

among users interactions

Typical E-commerce, Multiplayer game, collaborative

applications booking, payment, work, mobile field assistant,
travel information, mobile asset management, CRM

(customer relationship
management) field applications

e-government

Service-Oriented Architecture for Mobile Services ® 9

their services and to foster the service composition and the integration among
services to provide value-added services. On the other hand, there is a strong need
to access these services by normal people during their movement, for example,
booking flights, searching information, making payments, and accessing govern-
ment documents. The end user also wants to participate in the Web, for example,
to perform mash-ups of data and contents from different (Web) services and to
provide their own mobile services. Therefore, SOC/SOA-based techniques could
help mobile applications utilize SOA-based services in a standard way in order to
fulfill the need of the user. Non-SOA solutions would limit mobile applications to
access diverse and powerful Web services.

In the group-oriented class, there are group-oriented tasks where mobile services
on mobile devices play a critical role. Examples of these tasks are collaborative work
performed by a team using mobile devices [5], distributed healthcare [10,11], and
disaster responses [12]. These tasks not only require access to diverse data and ser-
vices hosted in distributed organizations but also need to access and share informa-
tion in environments with nondedicated infrastructures. Thus, interoperable
solutions for mobile services must be supported. In particular, mobile devices have
been considered to be very useful in ad hoc team collaborations where dedicated
infrastructures are not available. Such collaborations normally require flexible and
interoperable applications to access as well as offer services. This raises the question
of how to provide pervasive and mobile devices with middleware and applications so
that the devices can provide collaboration services accessible through standard inter-
faces and protocols. SOC/SOA, which has introduced means to foster the interoper-
abilicy, flexibility, and reusability of software, can be used to develop mobile Web
services for these scenarios.

1.3 Architectural Styles and Protocols for Mobile
Web Services

As well documented in the literature, in SOC/SOA, there are three fundamental,
conceptual entities:

M Service: a service offers a concrete functionality that can be loosely coupled
through the network based on a well-defined interface [13]. A service is
expected to be autonomous, platform-independent and its functionality can
be published and discovered [1].

W Service consumer (also called service client/requester): a service consumer is to
consume a service. [t makes requests to services and receives responses from
the services.

W Service registry: a service registry provides facilities for services to publish
information about their functionality, interfaces, and locations so that service
consumers can search and select relevant services.

10 ®m Handbook of Mobile Systems Applications and Services

These roles are conceptual because an application might function as both a
service and a service consumer; a service might act as a service consumer of another
service; and a service registry might not be a separate element when its registry
function is embedded into an application. Often, we distinguish the client side and
service side when referring to service consumer components and service compo-
nents, respectively.

‘There are various ways to design and implement SOC/SOA solutions for mobile
services. As other techniques have been well discussed in different places (see a
further reading list in Section 1.9), we will focus on Web services technologies.
Generally, Web services and Web service consumers can be implemented using dif-
ferent (de facto) standards and protocols. These standards and protocols are used to
define, for example, exchange message, communication protocol, service descrip-
tion, and security [13]. Main standards and protocols are:

B XML: is used to describe data exchanged and information about services in
Web services.

B WSDL: is used to describe the interface of Web services. Through the inter-
face description of a Web service, Web service consumers can invoke corre-
sponding functions provided by the service.

B SOAP: defines the structure of messages exchanged between Web service
consumers and Web services. SOAP is based on XML.

B HTTP: is one of the most popular communication protocols for sending and
receiving messages between Web service consumers and Web services.

Although interactions between mobile Web services and their consumers are imple-
mentation specific, we can conceptually simplify these interactions into two main
types, shown in Figure 1.3. In the first type, a mobile Web service consumer
(depicted by the block in Figure 1.3a), through a mobile/ad hoc network, will access
a mobile application gateway (also known as mobile Web service/application proxy
in the literature) which, in turn, will process the consumer’s requests and pass the
requests to corresponding mobile Web services. We call this model indirect interac-
tion. In the second type, a mobile Web service consumer (depicted by the block in
Figure 1.3b) will utilize mobile Web services by invoking them directly. We call
this case direct interaction. Note that direct interaction means that the requests and
responses between services and their consumers may be relayed through intermedi-
ate services that perform the request/response routing but do not change the
request/response content. In both cases, the mobile Web service consumer will be
executed on mobile devices, whereas mobile services might or might not be deployed
in mobile devices. The mobile devices hosting mobile Web services and mobile Web
service consumers can be mobile phones, smart phones, PDAs, and laptops.
Networks among mobile Web service consumers and mobile Web services can
include the Internet, WiFi ad hoc networks, UMTS, EDGE, and GPRS/GMS,

as well as a mix of them. Network and device capacities strongly impact on the

Service-Oriented Architecture for Mobile Services m 11

Maobile service

| (Web service)
Mobile Web |

service consumer | .. Mobile application .« <., Mobile service

St gateway/Web ¢ (\‘(’ebﬁervice)

0 | \
@ service proxy | Intermediate ?r
S N networkf, /,;’
(2) A

Web service R !

S

A : P v
registr 4
Mobile/ad hoc network 2 bezs e
- Mobile service . *" =, Web service
Mobile Web “ _,,_.-G:) /_,/;" (Web service) 155 4 registry

seryjce consumer | p
é}@ | SLZ060)

~=—s=—s=-ex Direct invocation == == == Direct/indirect invocation

Figure 1.3 Generic interaction models between mobile Web service consumer
and mobile services: (a) indirect interaction and (b) direct interaction.

selection of the architectural style for the design and implementation of mobile
Web services.

The first type is very popular when mobile Web service consumers are executed
in mobile devices that do not have enough capabilities to handle complex data
types and to present results in rich, interactive graphical user interfaces. This type
is also well suited for bandwidth-constrained networks. However, it does not sup-
port complex interactions among mobile users. Therefore, it is suitable for individ-
ual-oriented mobile services. In many cases, the mobile application gateway is not
a Web service but is based on Web application technologies (referred to as mobile
Web applications, discussed in Section 1.6.4). In the second type, the mobile Web
service consumer can invoke mobile services directly as these services might pro-
vide data in a simple way or the mobile device hosting consumers have the capabil-
ity to handle complex data. Furthermore, in this type, more complex interactions
can be implemented, and thus it is suitable for both individual- and group-oriented
mobile services.

In both types, mobile Web service consumers can invoke the service registry to
find relevant services or mobile services might find relevant services on behalf of the
consumer. Furthermore, services can be found from querying a dedicated registry or
from an overlay network in which a dedicated registry does not exist, such as in
Vimoware [5]. While mobile Web services are normally not executed on resource-
constrained devices, many real-wotld applications have demonstrated why and how
mobile services should be run in mobile devices. For example, in Vimoware [5],
device sensors and context management services for disaster responses are developed

12 ®m Handbook of Mobile Systems Applications and Services

as mobile Web services. Sliver [14] is another example that demonstrates how a
BPEL engine can be implemented as a mobile Web service. In some cases, when a
service is hosted in a mobile device, there is an intermediate to act as a proxy for
other clients to access the service. For example, in the mobile service platform [15],
the service consumer executes a surrogate host that acts a proxy for the service run-
ning on mobile devices. These examples indicate an increasing use of mobile Web
services on mobile devices to provide service features.

1.3.1 Architectural Styles

From architectural styles, SOC/SOA Web service solutions for mobile services can
be built on the basis of (i) SOAP-based Web services, (ii) REST-based Web services,
and (iii) mixed SOAP/REST-based Web services with other technologies. As a
specific solution can use different techniques, we will discuss only fundamental
architectural styles.

1.3.1.1 SOAP-Based Web Services
In SOAP-based Web services, the interface of a Web service is described by WSDL.

The messages exchanged between a Web service and its consumers are based on
SOAP. SOAP-based messages are designed to be transferred by using different pro-
tocols, such as RPC, HTTP, and SMTP. However, HTTP is the most popular
protocol used in SOAP-based Web services. These services achieve the integration
and interoperability through agreed interfaces and, additionally, agreed service
contracts. They support complex interaction models based on different styles of mes-
sage-oriented and RPC communications, including point-to-point, broker, and P2P.
Another advantage of this style is that interfaces can be published and searched,
thus simplifying the service discovery process. Therefore, two different services pro-
vided by different organizations can easily be integrated with each other. From an
architecture point of view, SOAP-based Web services are suitable for integrating
mobile Web services on the service side and for group-oriented mobile services.

To date, SOAP-based Web services are strongly supported in mobile application
development. Standard protocols and various programming toolkits have been devel-
oped for writing SOAP-based mobile services in mobile devices, such as PDAs and
smart phones, using different programming languages, for example, C/C++, C#, and
Java. However, most toolkits focus on the development of client-side components. The
development and deployment of service-side components on mobile devices are not
well supported, only in a few specific toolkits that offer limited features.

1.3.1.2 RESTful Web Services

REST-based Web services are built on the basis of the concept of REST
(REpresentation State Transfer) [16]. REST is a design principle for Web services

Service-Oriented Architecture for Mobile Services m 13

that supports stateless services. Services offer their capabilities through resources,
cach identified by a unique URI and accessed and manipulated by using HTTP
methods such as GET, POST, PUT, and DELETE. By using these four basic meth-
ods, any Web service consumer can read, update, create, and delete resources
offered by a REST-based Web services. REST techniques offer more simple mecha-
nisms for developing Web services by not relying on a large set of standards and by
aiming at supporting request—reply interactions. Therefore, the REST architectural
style fits very well to many mobile applications, in particular to individual-oriented
ones that are typically request—reply-based client/service and stateless. Furthermore,
as REST-based Web services mainly utilize HTTD, they are quite suitable for
mobile devices because they use less processing power. This is proved through a
wide range of real mobile applications based on REST such as commerce [17], data
mash-up [18], and GIS for enterprise field workers [19]. However, in many cases, if
we need to support more complex interaction models, such as P2P interactions,
then REST is not suitable. Further discussion on the choice of REST solutions over
SOAP solutions can be found in Reference [20).

1.3.1.3 Mixed Architectural Styles

In many cases, mobile services solutions are not completely based on either SOAP or
REST Web services but a mix of them, and they also use other technologies. Figure 1.4
shows some possible mixed architectural styles used for mobile Web services.

Mobile — N
application g - :
' ~ . Mobile service
! A i i
| Mobile wigdget e Krgnanglieatin o (Web service)
~,
(@) N7 st .. Mobile service |

\ 7 (Web service) |
WAP application === gy ispoaa . W, ey, and . —%
; Pp Mobile network.x ;‘;[:\T)ﬂ\:“\ﬂli:s“ itermediate”

(b) . network | Mobile service
| s — T 7! (Web service)

SIP application """ 7 L Sngatawa) and o it —=g. v

SIP services N o ¥, .
' " Web service

N & X “‘:\ registry
E @ Mobile service o
Q (\X’eb -‘.urwu_e) i ' . .

+ Direct/indirect invocation

= Direct invocation

Figure 1.4 Mixed architectural styles for mobile service-oriented architecture
services.

14 ® Handbook of Mobile Systems Applications and Services

B Using a2 REST-based model for connecting a client to a gateway and using
SOAP-based services for service integration at the service side: First, this
architecture aims at addressing the simplicity and performance in the interac-
tion between mobile service consumers and mobile services. Second, by using
SOAP-based styles at the back end of the service side, the service provider can
integrate different types of services from different providers to offer many
benefits to consumers.

W Using SIP (Session Initiation Protocol), Web applications, and WAP (Wireless
Application Protocol) between consumers and appropriate gateways, and SOAP-
based solutions for integrating gateways with other services: This approach is
able to deal with limited capability and infrastructure available at the client site
to provide converged mobile services [7], such as voice communication inte-
grated with Web content and IP multimedia subsystem application servers [21].

1.3.2 Communication Patterns

Communication models for mobile services naturally follow existing models such
as request—reply, broadcast/multicast, and P2P. The design of SOAP allows differ-
ent one-way or two-way, asynchronous/synchronous, one-to-one, one-to-many,
broadcast, P2P communication patterns [22]. The most common communication
patterns implemented in SOAP-based mobile Web services are synchronous
request-reply, multicast, and P2P using RPC, message-oriented communication,
and intermediate services. However, similar patterns have not been observed in
REST-based Web services that mostly support only request—reply patterns.

Figure 1.5 illustrates some patterns on service invocation. In the request—reply pat-
tern, a mobile service consumer sends a request to a mobile Web service and obtains
the response. This communication can be synchronous or asynchronous, but a syn-
chronous request—reply pattern is the most popular one implemented in contemporary
mobile Web services applications, both in SOAP and REST styles, such as in References
[23-26). 'This pattern is suitable for individual-oriented mobile services; however, it
does not work well in group-oriented mobile services of which mobile applications
need to be informed with new information instantly, such as in a situational change in
disaster responses. Asynchronous request—reply, broadcast/multicast, and P2P patterns
are typically supported through specific SOAP/REST-based call-back and polling
techniques, asynchronous HIT'TP, or WS-Notification implementations, such as in
References [5,27]. They can be implemented well with SOAP-based mobile services.
However, most programming toolkits require the developer to do this without any
support. The one-way invocation pattern is also supported by SOAP standards.

1.3.3 Service Discovery and Composition

Service discovery and composition are fundamental processes of SOA. To support
these processes, services have to be well defined and described. In general, with

Service-Oriented Architecture for Mobile Services ® 15

(@) (b)

|Mnhl1c Wels nervice consumior | [Mobile Web service consumer | Mobile Web service
) I
| }

!
[| | I addnewvictim(...) I¥
WeatherForecasts |

- P , i 1u}

Mobile Web servicel

I
L getweatherforecast(...) :
i
| I | !

| I | }
1 | I 1

() d

|Mn|.ll||: With setvico consumer l

JM::!;[I.Lb Wb service J IMnbiIe Web sel‘vicel

Maobile Web serviee muuunwl

1] | !

searchweatherforecasts(...) Il

) 1

petweatherforecasts)..calibackhandler) .
I:‘_ 0K ! I [pollingly i
. d getweatherforecast(pollingID) ll-

1

E caftbackhandler{weatherforecasts) "'

I

I

|

| §

[

18

1
3

Iz
I g
| &
g
|

|

I

i

E

Figure 1.5 Examples of invocation patterns. (a) Synchronous request-replay
invocation. (b) One-way invocation. (c) Asynchronous invocation using callbacks.
(d) Asynchronous invocation using polling.

SOAP-based services, the use of WSDL and other metadata has facilitated the dis-
covery process. Semantic representations of mobile Web services are also used
increasingly. In principle, mobile Web service consumers find SOAP-based Web
services from service registries, such as Universal Description, Discovery, and
Integration (UDDI). In practice, this model does not work well [28]. However, the
REST-based Web services discovery process is largely negligible at the moment. In
fact, there is a lack of mechanisms to describe REST-based Web services that can
facilitate the discovery process. One of few efforts is the proposal of Web Application
Description Language (WADL) [29] for describing REST resources. However, it
has not been widely adopted.

Figure 1.6 shows basic models of Web services discovery that work with
mobile Web services. For multicast discovery, these models can be supported by
SLP (Service Location Protocol [http://tools.ietf.org/html/rfc2608]), UPnP
(htep://www.upnp.org), WS-Discovery (http://specs.xmlsoap.org/ws/2005/04/
discovery/ws-discovery.pdf), and tool-specific implementation, and can be
implemented using UDP/HTTP multicast, SOAP, and WS-Notification. As
mobile devices have some limitations, in many cases, mobile Web service con-
sumers have not actually implemented the discovery process, especially in indi-
vidual-oriented mobile services. The user just provides his/her known services
(based on other sources, e.g., search engines) to mabile applications, for exam-
ple, as in Reference [30]. For group-oriented mobile services, various attempts

16 ®m Handbook of Mobile Systems Applications and Services

@ N (b) Mabile Web service/
= =r "
LA VI Registry]~ NVioblle Web | ~ SAnSuEy
setvice ~ -7 service A service |

1 o Mabile Weh " | Mobile Web service/

Service information \ service/consumen \ :
—_———— \ \

\
4" Mobile Web
service/consumer

CONSUmer
Storage

b
Mobile Web service/
consumer

Figure 1.6 Examples of discovery models. (a) Centralized and multicast discovery
with dedicated registry. (b) Multicast discovery without dedicated registry.

have been made to support broadcast/multicast and P2P service discovery. A
JXTA-based P2P discovery for mobile Web services is presented in References
(31,32]. In another effort, SLP-based/specific discovery techniques have been
developed in RESCUE [33,34]. The WSAMI middleware [24] also supports an
SLP-based discovery. Broadcast/multicast and SLP-based discovery methods are
useful for mobile services in a network; however, they do not scale well in a
large-scale system of mobile services. Therefore, they are more suitable for a
small group of services.

The composition of mobile Web services occurs mostly on the service side in
nonmobile platforms by using well-known techniques. However, service aggrega-
tion techniques on mobile devices are very limited. Some efforts have been devoted
to service aggregation by utilizing workflows (35], in particular using BPEL, in the
mobile devices, for example, Sliver [14]. ‘This type of service aggregation is an
attempt to support the user to coordinate tasks and to perform business processes
using mobile devices. To support the user to compose his/her own services, some
research efforts have been investigated [36]. However, currently research issues in
this direction are very open,

1.3.4 Data Handling

Data handling in mobile applications is strongly dependent on specific services and
device capabilities. Typical data handled by mobile applications are Web contents
and multimedia. Various standards have been proposed for handling these types of
data, such as Mobile Media application programming interface (API) (JSR 135),
Maobile 3D Graphics API (JSR 184), and 2D Scalable Vector Graphics API (JSR
226). Many types of mobile Web services do not transfer rich data or la rge amounts
of data. However, recent advanced mabile Web services, such as location-based ser-
vices and GIS-based collaborative tools, require the transfer of rich data. In particular,
many mobile Web services support user participation and mass customization
by offering a mash-up of contents from different sources; these mash-ups possibly
include text, graphics, audio, and videos.

Service-Oriented Architecture for Mobile Services m 17

As handling complex, voluminous data transferred through Web services require
strong processing capabilities, mobile Web services have to utilize different tech-
niques to improve the data handling. One technique is not to use XML but a differ-
ent data format exchanged between mobile Web service consumers and mobile Web
services. A popular technique that works well with REST services is to utilize JSON
(JavaScript Object Notation [http://www.json.org/]) which requires less processing
capability and has smaller data size. Listing 1.1 presents an example of JSON-based
dara returned by the REST-based ImageSearch Service from Yahoo! (http://search.
yahooapis.com/ImageSearchService/V1/imageSearch) and Listing 1.2 presents a
sample of code to process the JSON-based data on mobile devices using the
JSONObject library (http://www.json.org/java/index.html). Another technique is
to compress the SOAP body transferred using compression techniques [37]. ‘This
technique, however, requires the control of both mobile Web service consumers and
mobile Web services. Therefore, it is not interoperable. Another way is to utilize

{"Resultget”: {
“Result”: [
{
“ClickUrl”: “http://www.residenzjoop.com/files/
image/lage/hundertwasser.jpg”,
“FileFormat”: “jpeg”,
“FileSize"”: 104448,
“Height”: “429",
“RefererUrl”: “http://www.residenzjoop.com/
location”,
“Summary”: “Hundertwasserhaus”,
"Thumbnail”: {
“Height”: “97",
“Url”: “http://thm-a0l.yimg.com/
image/0acfb0befb605e0e”,
“Width”: “145”
¥
“Title”: “hundertwasser jpg”,
“Url”: “http://www.residenzjoop.com/files/
image/lage/hundertwasser.jpg”,
“Width": “640"
};
/[s
if,
“firstResultPosition”: 1,
“totalResultsAvailable”: “556",
“totalResultsReturned”: 10

1

Listing 1.1 Simplified example of JSON-based data.

18 ® Handbook of Mobile Systems Applications and Services

/...

ImageSearch imagesearch = new ImageSearch (“YahooDemo”,
“Hunderwasserhaus”, “json”);
String result = imagesearch.submit () ;

JSONObject resultJSON = new JSONObiject (result) ;
JSONObject resultSetObject = resultJSON.
getJSONObject (*ResultSet”) ;
int totalResultsReturned = resultSetObject.
getInt (“totalResultsReturned”) ;
if (totalResultsReturned < 1) {

return ;
1

JSONArray resultObject = resultSetObject.
getJSONArray (“Result”) ;
for (int i = 0; i < resultObject.length(); i++) {
JSONObject objectItem = resultObject.getJSONObject (i) ;
Iterator iterator = objectItem.keys();
while (iterator.hasNext()) {
String key = (String) iterator.next();
String data = objectItem.getString(key);
if (lkey.equals(“Thumbnail”)) ({
System.out .println(key + “:\t” + data);

}
}
/1 s

Listing 1.2 Example of processing JSON-based data.

binary formats of XML (http://en.wikipedia.org/wiki/Binary_XML) to reduce the

size of transferred data.

1.3.5 Service Management

The management of mobile Web services is naturally similar to that of general Web
services such as accessing service information, monitoring service status, and
supporting runtime deployment. Various specifications have been developed for
managing Web services, in particular SOAP-based Web services, such as
WS-Management (http://'www.dmtf.org/standards/wbem/wsman) and Web
Services Distributed Management (WSDM) (http:/www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wsdm#overview). These specifications focus on the
access and exchange of management information of services. However, to date
these standards have not been well supported in existing mobile Web services.

Service-Oriented Architecture for Mobile Services ®m 19

Reference [23] is one of the few works that provide service information using rules
and notifications.

Different from other platforms, service management for mobile Web services
has to deal with two major issues: service continuity and service runtime deploy-
ment and execution. Service continuity is of paramount importance in mobile ser-
vices because the high level of mobility increases the high level of service disruption
and mobility. Service runtime deployment and execution are other important issues
because mobile devices are typically not assumed to support preinstalled services or
always-on, preprovisioning services. This is particularly true when services are exe-
cuted on a nondedicated infrastructure and mobile devices.

The importance of service continuity for mobile services has been identified and
a modeling technique has been proposed in Reference [38]: a service continuity
layer is proposed to handle tasks to ensure the continuity of services such as moni-
toring and handover management. In the Suspend—Relocate—Resume for Web
Services (SRR-WS) framework [39], service continuity is ensured by suspending
services and relocating client’s data and resuming services with the client data.
SRR-WS achieved this mechanism by utilizing the proxy model. To work with
SRR-WS, mobile Web service consumers need to include a specific SRR-WS client
library that handles caching and session relocation. The SRR-WS frameworlk
includes a proxy with suspend/resume and session relocation modules. By using a
proxy mechanism, SRR-WS does not require a change in mobile services. However,
consumers have to be reprogrammed to work with SRR-WS. SRR-WS has been
implemented with SOAP over HTTP for mobile devices. Another technique is to
migrate mobile Web services when the hosting environment is unable to host the
services, for example, due to low battery or the mobility of the service provider [26].
In this way, migration requests are explicitly made by the service provider (which is
also hosted on a mobile device). In principle, service code and description can be
migrated. However, this solution cannot work alone without ensuring correct
information about services.

Service runtime deployment and execution for mobile applications have been
researched intensively. As mobile Web service consumers are part of mobile applica-
tions, it is expected that existing runtime deployment and execution techniques
could be applied to mobile Web services.

1.3.6 Security and Identity Support

Security and identity support are of paramount importance for mobile users and are
strongly dependent on the architectural styles used for mobile Web services. With
SOAP-based solutions, various security standards have been proposed, such as the
OASIS WS-Security and the Liberty ID-WSF/ID-SIS. The REST-based solutions typi-
cally rely on HTTP and SSL security techniques. Furthermore, depending on the inte-
gration of mobile Web services, different identity management techniques can be used.

20 ® Handbook of Mobile Systems Applications and Services

For SOAP-based Web services, the OASIS WS-Security (http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wss) specifies protocols for secur-
ing message exchanges in Web services. WS-Security utilizes XML Digital
Signature, XML Encryption, and X.509 certificates. Its key feature is to protect
SOAP messages exchanged. The support of WS-Security standards on mobile Web
service development toolkits is strong. Most toolkits support XML signatures and
encryption. For REST-based Web services, HT'TP Basic/Digest and SSL are popu-
lar techniques for implementing authentication, authorization, and encryption in
mobile Web services because the communication of REST-based Web services is
based on HTTP. Because these techniques are well supported in mobile device
operating systems and programming libraries, they can be easily used by REST-
based mobile Web services and clients. Furthermore, one practical method applied
to the authentication of the access to REST-based Web services is to use tokens
embedded in service interfaces (e.g., user ID, email, and development key), such as
in Strikelron and Amazon Web services.

The OAuth (heep://oauth.ner) is also increasingly used for authorizing resource
access in mobile Web services. The OAuth is an authorization delegation protocol
that defines how a user can grant service consumers access to a user’s private
resources hosted in another service. The OAuth is built atop HTTP and works on
the basis of the exchange of two types of tokens asking for authorization access and
for accessing resources on behalf of users. The protocol includes three main steps
(see details in hetp://oauth.net/core/1.0/) to allow the consumer to obtain an unau-
thorized request token that is authorized by the user, to use the request token to
obtain an access token, and finally to access resources. All requests are signed and
parameters of requests can be described in the HT'TP Authorization header, HTTP
POST body, or URLs of HTTP GET. At the time of writing, the OAuth has been
implemented in many programming languages, such as C#, Java, JavaScript,
Python, and Ruby. As OAuth is designed for HTTP and Web resource access, it is
very suitable for REST-based Web services.

Identity management techniques are critical when a mobile Web service con-
sumer utilizes different mobile Web services, potentially provided by different pro-
viders. Being able to associate user identity with his/her selected mobile service, these
services can improve the authentication and authorization, reduce user intervention,
such as support single sign-on, and improve service provisioning. Two popular iden-
tity management frameworks are the ID-WSF/ID-SIS and the OpenlID. 'The
IdentifyWeb Services Framework (ID-WSF) and the Identity Service Interface
Specifications (ID-SIS) (heep://www.projectliberty.org/liberty/resource_center/
specifications) define mechanisms enabling identity-based services. By associating
the identity of individual users with Web services, ID-WSF/ID-SIS-enabled systems
can establish a federated identity. By doing so, the user does not need to provide his/
her identity many times when using different services and the service provider can
optimize the composition of services. The ID-WSFE version 2.0 supports SAML,

Service-Oriented Architecture for Mobile Services m 21

authentication, single sign-on, and identity mapping by utilizing XML-Signature,
XML-Encryption, and WS-Security.

The OpenID (http://openid.net) is another protocol to support single sign-
on. OpenID is strongly supported by the industry (see the list of providers at
http:/fopeniddirectory.com/openid-providers-c-1.heml). The idea of OpenID is
to provide a single identity management protocol for accessing resources from
different service providers. In the OpenID version 2.0 (http://openid.net/specs/
openid-authentication-2_0.html) a user is identified by an OpenID identifier
described in an URL or XRI. An OpenlID identifier is managed by an identity
provider or OpenID provider that carries out the user authentication. When a
user accesses a service that offers OpenlD authentication, the service will request
the user to provide the user OpenID. The service will communicate with the
identity provider of the user to verify the user. In case an authentication is
required, the service will redirect the user to the identity provider for authentica-
tion (e.g., entering user name and password). OpenID utilizes HTTP, SSL/TSL,
and URL; thus it is quite suitable for REST-based services. As OpenlD focuses
on authentication and single sign-on, it is suitable for service integration on the
service side,

Although ID-WSF/ID-SIS and OpenlD are widely supported on the service
side of mobile Web services in many platforms, their availability on mobile devices
where applications act on behalf of the user is limited. OpenID has been supported
in many libraries but it has not been well integrated with SOAP/REST. For
example, it is relatively easy to send an OpenlD request to a Web service; however,
authentication requiring user intervention is not quite clear (see a discussion on
OpenID binding to SOAP/REST at http://wiki2008.0penid.net/REST/SOAP/
HTTP_Bindings).

1.4 Mobile Web Services Programming Support
1.4.1 Standards and Specifications

Various standards and specifications have been developed for Web services.
However, not all of them are fully supported in mobile Web services. Fundamental
standards and specifications such as SOAP, XML, and HTTP are well supported
in most mobile platforms. Other standards such as OASIS WS-Security and Liberty
ID-WSF are supported in some platforms.

Apart from the above-mentioned generic standards and specifications for Web
services, some have been specifically designed for mobile Web services. The J2ME
Web services specification (JSR-172) (htep:/ljep.orglen/jst/detail?id=172) defines
optional packages for the development of Web service applications on mobile
devices. In particular, it focuses on XML processing capabilities and on APIs for
J2MS Web service clients based on RPC communication. JSR-172 also defines the

22 m Handbook of Mobile Systems Applications and Services

mapping from a subset of the WSDL to Java code, suitable for J2ME. This specifi-
cation has been supported in many programming toolkits such as Nokia Web
services platform, Sun J2ME Wireless Toolkit (http://java.sun.com/products/
sjwtoolkit/), and Netbeans (http://www.netbeans.org).

The mobile service architecture (MSA) specification (JSR 248) has been intro-
duced recently to create an environment for Java-enabled mobile devices. MSA
includes several existing standards for handling security and commerce, graphics,
communications, personal information, and application connectivity.

1.4.2 Mobile Web Service Toolkits
1.4.2.1 General-Purpose Web Service Toolkits

These toolkits aim at addressing broad mobile Web services applications. The main
toolkits that have been developed are discussed in this section.

1.4.2.1.1 kSOAP2

LkSOAP2 [40] is one of the very first and popular SOAP Web service libraries for
developing Web services on constrained devices. kSOAP provides various facilities
that have been utilized by other SOC/SOA work on mobile devices, such as Sliver
(14], a BPEL engine, and RESCUE [33,34]. It can be used to develop both Web
service clients and services. However, kSOAP does not provide advanced features
for handling security, service discovery, and service management. In principle, all
of these features have to be implemented by the developer.

1.4.21.2 gSOAP

gSOAP is an open-source C/C++ Web service development toolkit [41]. gSOAP
supports XML data-binding solutions through autocoding techniques. It also pro-
vides tools for generating C/C++ code from WSDL/XSD files and supports differ-
ent platforms including mobile devices. gSOAP is well studied in Reference [42].
Although gSOAP provides security support, similar to kSOAP it focuses mainly on
the development of Web services and their consumers. Therefore, it does not sup-
port service discovery and aggregation.

1.4.2.1.3 Google Android

Android (http://code.google.com/android) is not a particular mobile Web ser-
vice toolkit but a software platform including an operating system, middleware,
and applications for mobile devices. Android provides various facilities for devel-
oping mobile applications but it does not provide a toolkit for writing SOAP-
based Web services and clients. However, it provides various classes for writing

Service-Oriented Architecture for Mobile Services m 23

mobile Web clients by providing HTTP, XML, JSON, and OAuth classes for
implementing mobile Web service clients. The clients can use H'T'TP actions to
invoke REST-based Web services. Both synchronous and asynchronous HTTP
invocations are supported. The returning results can be in XML, JSON, RSS,
Atom, and so on.

1.4.21.4 NET

‘The Microsoft NET Compact Framework (CF) (http://msdn.microsoft.com/en-us/
netframework/aa497273.aspx) supports the development of applications on smart/
mobile devices. The .NET CF provides various facilities for developing mobile
applications, including mobile Web service applications on the client side based on
HTTP, SOAP, and XML. It supports both asynchronous and synchronous invoca-
tions of Web services, HTTP Basic/Digest authentication, SSL, and SOAP exten-
sion. However, the development of Web services on mobile devices is not supported.
The .NET CF also provides useful tools to support the developer to write mobile
Web service clients. For example, the NET CF Service Model Metadata Tool
(netcfsveutil.exe) can be used to generate client proxy codes to simplify the develop-
ment of clients consuming Web services on the device.

1.4.2.1.5 Java FX Mobile

The Sun Java FX (hetp://www.javafx.com) is a platform for developing rich Internet
applications and Java FX Mobile is the version of Java FX for mobile devices. The
key technologies provided by Java FX are in a rich set of libraries for handling
graphics, media data, and Web services. By utilizing Web service libraries, we can
develop mobile service applications on mobile devices. Java FX Mobile provides
only HT'TP-based libraries for the development of Web service applications on the
client side. Therefore, only REST-based Web service clients can be built. This
library includes APIs for handling HTTP requests and XML/JSON. Java FX
Mobile does not include facilities for writing REST-based Web services. Java FX is
well integrated into different programming development environments such as
NetBeans and Eclipse IDE.

1.4.2.1.6 Nokia Web Service Platform

The Nokia Web Services Platform [43] includes various development facilities for
mobile service applications on Nokia's S60 or Series 80 platform. It supports both
Java technology and Symbian OS C++. Apart from other facilities, for Java-based
applications, the Nokia WSP supports the J2MEWeb Services Specification (JSR-
172). At the moment, only client-side functionality is supported. The C+ version
provides APIs for handling requests to and responses from Web services. These
APIs are built on the basis of 2 Web Services Framework (WSF) API or the Liberty

24 m Handbook of Mobile Systems Applications and Services Service-Oriented Architecture for Mobile Services ® 25

Identity-Based Web Services Framework (ID-WSF). OASIS WS-Security and
Liberty ID-WSF are supported.

1.4.2.1.7 Apache Muse

Management
X

The Apache Muse Project (http://ws.apache.org/muse/) implements the Web
Services Resource Framework (WSRF), Web Services BaseNotification (WSN),
and Web Services Distributed Management (WSDM) specifications. Therefore, it
supports SOAP-based Web services based on WSRE. By using WSN, Web services
based on Muse can also implement eventing based on Web services. The WSDM
allows the developer to include management features in Web services, for example,
service capabilities and status. Muse can be deployed in different platforms includ-
ing Java SE/Java EE and Open Services Gateway initiative (OSGi). When deployed
in OSGi, Muse can be used to develop mobile Web services.

Table 1.2 summarizes some properties of the above-mentioned general-purpose
mobile Web service toolkits.

Identity

Security/ldentity
HTTP-

C# | WS-Based | Based

1.4.2.2 Specific Toolkits
1.4.2.2.1 Vimoware/RESCUE

Language
Java
X
X
X
X
X

Vimoware [5] is a Web service-based toolkit that can be used to develop Web ser-
vices on mobile devices and to conduct ad hoc team collaborations by executing
predefined or situational flows of tasks. One of the main components is a lighs-
weight Web services middleware that supports the SOAP-based Web services. This
middleware was later developed into a separate middleware named RESCUE
[33,34]. In Vimoware/RESCUE, Web services are developed by applying the
POJO (Plain Old Java Object) principle. The developer creates a Web service by
extending an abstract Java class. This class requires the specification of a service
description and provides basic methods for extracting metadata about the service.
Service operations are implemented as normal Java methods. On the basis of the
description provided by the service developer and on the metadata, WSDL files can
also be created.

The main specific characteristic of Vimoware/RESCUE is that it is specifically
designed for Web services in the ad hoc network of mobile devices. Thus, it also
provides runtime and reconfigurable service provisioning and service discovery
facilities. Vimoware/RESCUE uses kSOAP2 and reuses parts of Sliver [14] to
deploy Web services. The transport communication can be configured either by
HTTR, which is realized by a light-weight version of the Jetty (http://jetty.mortbay.
org) engine, or by direct TCP socket communication. In Vimoware/RESCUE,
three interaction patterns exist: (a) one-way interactions, (b) synchronous request—
response interactions, and (c) real asynchronous request—response. Services can

be deployed into Vimoware/RESCUE at runtime. In Vimoware/RESCUE, a

C/C++

Service

Client/Service

Client

REST
X
X
X

Architectural Style

SOAP
X
X
X
X
X

kSOAP/
kXML
gSOAP
Android
NET
Java FX
mobile
Nokia
Muse

WSP

Toolkit

Table 1.2 Summary of General-Purpose Mobile Web Service Toolkits

26 m Handbook of Mobile Systems Applications and Services

P2P-based subscription/notification mechanism is supported for service adver-
tisement and discovery. This mechanism is implemented on the basis of UDP
multicasts.

1.4.3 Software Development Process for Mobile
Web Services

Unlike Web services on other platforms, the design and development of mobile
Web services lack supporting tools. Model-driven development (MDD) techniques
that seem very suitable for modeling diverse mobile platforms have been investi-
gated for mobile applications [44,45]. However, unlike the support of MDD for
other types of applications, MDD for SOA-based mobile Web services has not been
well studied. SPATEL [46], developed in the SPICE project, is a UML-based lan-
guage for modeling composite telecommunication services. This language has been
demonstrated with different GUI frameworks like $60 Nokia smart phones. In
Reference [45), from a meta-model, DSL (domain-specific language) is generated
and can be used for domain-specific modeling (DSM). In DSM, mobile services
are modeled and XForm code can be generated for use in mobile applications.
However, this MDA approach is implemented for a specific platform that is not
Web services.

In Reference [38], a composition model for mobile services (not necessary
mobile Web services) has been proposed to include four main components, namely,
service logic (describing service functions), service data (describing data used in
services), service content (describing data product of services), and service profile
(describing user/device properties). From the composition model, components of a
mobile service can be mapped into different distribution models, representing the
concrete deployment of components of mobile services, such as monolithic, client—
servet, peer-to-peer, or multiple distributed components [38]. This conceptual
model can be applied for modeling mobile Web services. However, we are not aware
of any existing tool to support this model.

1.4.4 Writing Mobile Web Services and Consumers

‘The writing code for mobile Web service consumers to invoke mobile Web services
is straightforward and similar to that for Web services in other environments. Most
programming toolkits support very primitive code generation for SOAP-based
service consumers. A typical way of writing a SOAP-based service consumer code
is to import the WSDL file of the service and generate a stub code from that WSDL.
Figure 1.7 shows a simple example of how Netbeans supports the writing of a
mobile Web service consumer code for the WeatherForecast service (heep://
www.webservicex.net/ WeatherForecast.asmx?wsdl). By indicating the URL of the
conversion service, a code can be generated, for example, as shown in Figure 1.8.

Service-Oriented Architecture for Mobile Services m 27

i Y W P B @
b i ooy Sian Page % 1d: Pl
'3;:;::“» Dhet | os B Exported Sencees ! v = *
i ; Expon e farvies

wackent # soe sE b

T Ve e WP SR TN =T | matorshwsol

Gemwata f2ubs
& Chionl Iitorimation
paitigr [westhaduptapt
bt s [bt prad et

fropttl [mesmpliss

A Sanvhptorssaty o
& [Perwrens
¥ i Bt Conbenr wtism
b My overs yorgteness biadsh

4 Client Oplisas

“2 Convent ficating part to Sliing
| 7 Generste DataBndng structures

™
= <@ Sourca Packages
v [} s0ames
o TexMDlet java Output - Peyerse Engnesnng Log ¥ o Taaks
b £§ Resources
b [Proect Contiguratiens

Jiva Ca Hherarchy

Integrating 2 elesents
Ruilding the query cache

Tasl Successful (total tims: | seccnds)

AR T ERETON (O ey, O DRGSR Commiten (NGt |

W et

Figure 1.7 Example of generating code for a mobile Web service consumer in
Netbeans.

i l LT walheat pediaale
= s

Frrate Aot lativrde
rivate float longitude
penale flcat allozationFacior
tring fipsCode

Suing piazel Ame
A i stateCese
ot ma g4 el CintePrs e .+ frm G piate Sinng suatus
T Al S e s —
e e s et AneL ot enet et e 1

L L. Ll
T
L S T T

Moy Wity

A

public weatherForecasts GriWeatherBy2ipCodel String 2iF Code)
public WestherForecasts GatheatherkPlacellame(Suing MaceHamme)

Wy theiDara meatherDona(0, 7 |
bl

: puivate Stamg day
3 F1vale String wrsthalmage
! pustre Sting masTemperalurel
Fveats Stirg mnTemperataref
Fiwvate String maxTempetasureC
: e SUing minTemperativel
= Al sy —
— srast Publr «cid se1Da(Sinng day 1
Fublic Sty geiDay)
PUBC oid 1ateatberlmaadd S1ng aeatherimege |
public Sting gertkatherlmaned)
pubic oed 185t v TemperatureRt Stnna mavTemperaturef >
public Scoing gethlTemperaturafi 1

- axfet (rreny Pt
FARTE Hhaet i pa bt gl b e (10 iy g

ng minTemperaturel

pubirc Soing gechenTemperature)

P ol sethta-Temperatur:
fbi Sting etk sTempera
fibls g et bnTempe

R

20 Webng mnsTomparanioid |
o

Stng miaTempermure)

Figure 1.8 Example of the class diagram for generated code produced by Netbeans.

28 W Handbook of Mobile Systems Applications and Services

/...
String inputZIp;
e .
try {
WeatherForecast serviceConnection = new WeatherForecast
Stub () ;
WeatherForecasts forecasts = serviceConnection.
GetWeatherByZipCode (inputzIP) ;
System.out.println(forecasts.getFipsCode ())
System.out.println(forecasts.getlLatitude()) ;
System.out.println(forecasts.getLongitude ()
0
)

;

) ;
)i
)

;

System.out.println(forecasts.getPlaceName (
System.out .println(forecasts.getStateCode (
System.out.println(forecasts.getStatus());
WeatherDatal[] data = forecasts.getWeatherDatal() ;
for (int i = 0; i < data.length; i++) {
System.out.println(datal[i] .getDay ()} + “: max =" +
data[il .getMaxTemperatureC() + “min=" + datal[i].
getMinTemperatureC() + “,” + datali].getWeatherImage());
1
} catch (RemoteException ex) {
ex.printStackTrace () ;
1

Service-Oriented Architecture for Mobile Services a1 29

EVHLYY i 5 & Gl i |
B Lh e ey e e
B c o BB I T e Mo spesdenabeueapezbesse bl Gl yha g b s

. REST Describe & Comade B O 1o K5 Web Serces - Grocodn.

Hrgt | Mo Potar BNy

WADL B fuvigae Hoin

Ruquest Sample

GET v \mpfpo:
GET ~|
OMEU@BWE&&-M&&\: | \oit v ey Spwch Do

Byt Tl \SADL File
Sabane o P <ayplication
i b
el paniiha

[R

(1]
L]
T i Q9
] (¥
a

{ e

{4 2#00:5c0 = Namaspoces ao Grommrs |
IV spatinien > i N
[~ <eecources “4chng tocalyahoosps ¢l o

" % iy w
e - <resaurce qirs
| il | T |

b Sl - ccesaucee |

- <resource

<amethod weciatT
- cregueat> (3 Serg
<marem

Listing 1.3 Code excerpt for invoking the WeatherForecast service.

A similar process can be found in other toolkits like Microsoft Visual Studio (for
NET/C#) or Eclipse.

Given the generated code, it is straightforward to write a service invocation
code based on synchronous request—reply patterns; for example, Listing 1.3 shows
how to invoke the WeatherForecast service.

A similar software development process for REST-based mobile Web service
consumer code generation is not well supported in current tools. In most cases, the
developer just writes the code to invoke the service. However, recently some tools
also support writing WADL-based information for REST services and code gen-
eration from WADL files. These tools should be incorporated into/combined with
existing IDE for code development. For example, Figure 1.9 shows the REST
Describe tool (http://tomayac.de/rest-describe/latest/RestDescribe.html) thac is
used to generate WADL for the Yahoo! Geocoding Service. On the basis
of the generated WADL, this tool can generate codes for invoking the service, as
shown in Figure 1.10. Figures 1.11 and 1.12 illustrate the resulting service invoca-
tions for the above-mentioned examples in different platforms.

To develop a Web service on mobile devices is much more challenging because
of the lack of tools. Recently, the Apache Muse supports the developer to develop
Web services in mobile devices in a way similar to normal environments. With the

Figure 1.9 Example of using the REST Describe tool to create Web Application
Description Language.

1 e B e e .;,—-—x—m..aum*“lm?ﬂ——”v-hfwﬂuu
P# Baias Buinme B Plig b =i ,‘*‘*‘ET#W'W-"_FWWME’IJ&?

coareonig> v

Profexls @« pder Srvkes Buelview
= Q) SeFodayes <] t2
@ far chtad puie> |

PN o= ceam

=4 {51 com yshonepm kx 1 public ssetic String deGetTall (9tring urlStcing) |
i Gacxote \m Mabng ceppeney ¢
; £ Redbanem jrus & Ty €

- - =5

VAL uc) = rrv URL(uriStrang);

ALtpURLCannection consction <
(KELpUPLConRact ton) url, apenconnect ton() ;

i T T s bty v W4
Tuing sirsParsveis = . . i
I Te——
ey 3un.mlsc.BAIESErcoter () »encods (usecPasssord, pRtEFEes)
B T T e T] . = ki
'
Y B e € Ty P B 1

Wi e
Tiewaan semovmipuliowioor =
R P TR
FEIIE Cred MRS eI oL |
T pwle sac void ainEreing sees(l) 0
| Geocods geozods = new Grozods (

BTIAY PRI * g
| R fana i

Figure 1.10 Example of code generated from Web Application Description
Language using the REST Describe (visualized in Netbeans).

30 = Handbook of Mobile Systems Applications and Services

Ay e

MDlet View Help

® O Sun

Place name = |
[CanprIDCH _I_
Srate code

A |
Monday, November 23, 2008 |
X =11 mines, 1
hitp f florecastwesther gov/images fwl)
ovepg

Tuesday, November 24, 2009

lmax =11 minms, |
e f florecart weal hier w.‘lmauumi}r{ [
70 jpg {
Wednesday, November 25, 2009 {
|max =12 minwd, 11ES
(htpef florecastweather.gov fimages fwtf g,
{etjpo J

Ol "N
'Qf..
el
-)...

h ! 2 wac Joi

aon || 5m || Guwe
[7 vors &y Qwire
.; % 0 -+ |

P 2
Mt sPACE

Figure 1.11 A mobile Web service consumer for the WeatherForecast service
in an emulator.

Apache Muse, the developer can generate service skeletons from WSDL files and
write his/her code based on OSGi containers. Specific tools like RESCUE allow
Web services to be written like a plain Java object. However, with RESCUE, the
service code has to be executed within a particular hosting environment. Listing 1.4
shows a simplified example of a Web service based on RESCUE for a medical staff
that accepts reports about victims (operation addNewVictim) and that returns
the profile of the staff (operation getProfile).

Most of the tasks involved to service discovery, call-back, security, and identity
management have to be implemented by the developer. Currently, there is a lack of
supporting code generation for these complex tasks. Thus, high-level libraries and
tool assistance are needed to help the developer simplify these tasks. Listings 1.5
and 1.6 give an example of using the jSLP tool (http://jslp.sourceforge.net), a library

Service-Oriented Architecture for Mobile Services | 31

T Vo 4x 11014 X

Fg 19 Console (fir

Latituds; 37.416336
Longrtude: -122.024696
[Address: 701 First Ave
City: Sunnyvale

State: CA

Zign 94089

Country: US

Figure 1.12 A mobile Web service consumer for the Yahoo! Geocoding service in
an HTC Tytn II.

/...
import at.ac.tuwien.vitalab.middleware.AWebService;
public class MedicalStaffService extends AWebService {
public MedicalStaffService() {
super (“*MedicalStaffService”, *http://www.infosys.tuwien.ac.
at/medicalstaffservice”) ;

}
public void onDeploy() {
/7. ..
}
public void onUndeploy () {
/..
!

public int addNewVictim(String location, String
victimStatus) {

/7.

return myCurrentLoad ;

}

public String getProfile(String typeOfStaff) {
i e

return myProfile ;

}
/7.

}

Listing 1.4 Simplified example of a Web service in RESCUE.

32 ® Handbook of Mobile Systems Applications and Services

/7.
Advertiser advertiser = ServicelocationManager.
getAdvertiser (new Locale(“en”)) ;

ServiceURL myService = new

ServiceURL (“service:disastersupport:
http://192.168.218.101:8080/services”, 3600);
Hashtable attributes = new Hashtable();
attributes.put (“ServiceID”, “MedicalStaffService”)
attributes.put (*Team”, “MedicalTeam”) ;
attributes.put (“TypeOfStaff”, “Nurse”) ;

//. ..

advertiser.register (myService, attributes);

Listing 1.5 Simplified example of publishing mobile services with jSLP.

Locator locator = ServiceLocationManager.getLocator (new
Locale(“en”)) ;

// find all disaster support services belonging to medical
staff

ServiceLocationEnumeration sle = locator.findServices (new

ServiceType (“service:disastersupport”), null,

Y (Team=MedicalTeam)”) ;

while (sle.hasMoreElements()) {
ServiceURL serviceURL = (ServiceURL)sle.nextElement () ;
/] ..

}

// ..

Listing 1.6 Simplified example of discovering mobile services using jSLP.

implementing SLP, to publish and discover the MedicalStaffService above.
In this example, we assume that there are several medical staff available in a large-
scale disaster scenario and each staff has the MedicalStaffService in his/her
PDA. The service publishes its hosting environment information and other meta-
data while the consumer would like to search only services on PDAs of nurses. Of
course, the assumption is that the consumer knows how to invoke the service.

1.5 Real-World SOA Mobile Services

To demonstrate the benefit of SOC/SOA, this section presents a real-world example
of mobile Web services. This example is built on our experiences from our research
projects in collaborative working environments (CWEs). Modern CWEs introduce
the need of various real-world SOA-based mobile Web services because today’s team-
work is performed by dynamic teams thar are established on demand, use various

Service-Oriented Architecture for Mobile Services m 33

mobile devices, and need to access a vast source of data and services in order to fulfill
their tasks.

Our example discusses SOAP-based mobile services and consumers for disaster
responses performed in the EU WORKPAD project (http://www.workpad-project.
eu). The WORKPAD system [12] supports disaster management on the basis of two
main ideas: (i) multiple supporting teams working on the field using mobile devices
to collect information about the disaster, and (ii) teams accessing vast sources of
information from different organizations to optimize their tasks and store the col-
lected disaster information to organizational information systems. In doing so, each
member uses a mobile device, and members need to interact with each other.

SOAP-based mobile Web services and consumers have been widely used in
WORKPAD tools, as shown in Figure 1.13. Mobile devices are used in ad hoc and
team collaborations where dedicated infrastructures are not available. Such
collaborations normally require flexible and interoperable services while running
on mobile devices and being integrated with various other services. Therefore,
WORKPAD supports mobile Web services for managing context information and

Task Handler as a

Context Edltor asa [
Se1 vice Consumer | ¥ l

Servtce Consumer

GIS Chent asa
‘mrvtu: Consumer

/' Mobile ad hoc network
for ateam ~

- POl SHRGAE

.:..i I mele- f
Btgnm[m qﬁiﬁg | Back-end disaster

ice | W management network \

5 Orgunimnn Specific

~ Knowledge Service

{

Figure 1.13 (Simplified and abstract) Simple Object Access Protocol mobile
services in the WORKPAD project.

34 m Handbook of Mobile Systems Applications and Services

for coordinating collaborative tasks. The context management system of
WORKPAD [5,27] provides various types of context information to different cli-
ents such as GIS-based mobile applications and task management. Context sensors
and context management services are mobile Web services and context information
is described in XML, thus facilitating the integration between the context manage-
ment system and other applications. Task management provides a SOAP-based
BPEL engine for coordinating tasks [47]. Furthermore, GIS-based mobile applica-
tions utilize Web service technologies to access GIS and other information from the
back-end services that are also Web services.

Without using Web services, WORKPAD would face a great challenge in the
integration of different sources of data. For example, GIS data are now provided
through Web services (e.g., see Reference [48]). Thus, by developing SOAP-based GIS
clients, WORKPAD can ensure that its GIS software is interoperable and reusable.
Various information sources from different government agencies are hard to access
through mobile applications, if these sources are not wrapped into Web services. If
the context management system was not based on Web services solution, it would be
hard to not only integrate the context information to different clients but also to share
the context information among different teams. Furthermore, without using Web
services, WORKPAD components would be a very specific implementation that
would not be highly reused in other works. For example, the Web service-based con-
text management system can be used in SOA-based smart-home environments [49].

1.6 SOA/Web Services and Other Technologies/Styles
for Mobile Services

1.6.1 OMA/Mobile Web Services

The Open Mobile Alliance (OMA) (http://www.openmobilealliance.org) has
defined the OMA mobile Web service (MWS) to provide guidelines and specifica-
tions for the integration and interoperability of Web services with the OMA archi-
tecture. With respect to architectural styles, MWS supports SOAP-based models.
MWS considers cases when Web service consumers support and do not support full
Web service stacks. Thus, both cases in Figure 1.3 are included: the interaction
between mobile Web service consumers and mobile Web services can be direct or
through proxy or intermediaries. With respect to service discovery, MWS supports
centralized discovery based on UDDI and provides security guidelines for both
transport and message security based on SSL/TSL and WS-Security.

1.6.2 CDC/OSGi Model

Another trend to support SOA-based mobile services is to use the OSGi technology
defined by the OSGi Alliance (hetp://www.osgi.org). The OSGi technology specifies

Service-Oriented Architecture for Mobile Services m 35

a dynamic component system for Java. In this system, components interact with
each other within a single system. OSGi components can be published, discovered,
and composed dynamically ar runtime. They can also be deployed and undeployed
on demand and be exposed as Web services. Various OSGi implementations have
been provided for different platforms, including mobile devices.

CDC/OSGi is a capable platform for developing mobile services based on SOA.
Various platforms are supported by CDC/OSGi. Examples are Sprint Titan (heep://
dcvclnper.sprinr.com!sircfgloI)ulf’dcvelop.":ecl1nnlugiesfsprint__timnip_sprim_rium.
jsp) and Apache MUSE (http://ws.apache.org/muse/) that provides development of
Web services atop OSGi. R-OSGi [50] is a middleware built atop OSGi that trans-
parently connects, deploys, and executes OSGi services spanning multiple OSGi
containers; thus, it can be used for developing P2P and collaborative mobile Web
services.

1.6.3 Event-Driven Architecture and SOA

The event-driven architecture (EDA) [S1) is a computing paradigm in which
changes are sensed and captured in events and corresponding actions are performed
according to events. The basic tenet of EDA is that an evenr reflects a significant
change of something by gathering meaningful information about the change. The
fundamental conceptual entities of an EDA system are event sources (event emit-
ters) to generate events and event sinks (event consumers) to perform actions based
on events {(e.g., filtering, relay, or processing events). Events are sensed, transferred,
and processed through a system of event channels loosely coupling distributed
event sources and sinks.

EDA systems do not necessarily include SOA-based services. However, the need
to integrare events from disparate sources has fostered the integration berween
EDA and SOA [52,53]. This integration has been proposed through standard bod-
ies as well as architecture solutions, WSEventing (heep:/wwwaw3.org/Submission/
WS-Eventing/) and WS-ECA [54] have been proposed for supporting event sub-
scription, propagation, and event—condition—action rules.

1.6.4 Web Applications, WAP, and SIP

Web applications, WAP, and SIP models are other tech nologiesfarchitecture styles
that are related to SOA and mobile services (see also Section 1.3.1.3 and Figure 1.4).
Although they are different technologics/styles, all of them require proxy in order
for the mobile applications on mobile devices to interact with other services at the
back end.

The Web application model for mobile services is widely used in practice.
Conceptually, the Web application model follows a three-tier architecture: the
mobile service consumer is responsible for the presentation layer; the Web applica-
tion, the application tier, acts as a gateway to provide dynamic Web content to the

36 ® Handbook of Mobile Systems Applications and Services

mobile service consumer; and the mobile services provide data and content to the
gateway. The mobile service consumer is normally developed based on Web forms,
XForm, JavaScript, and HTML/XHTML, whereas the Web application gateway
uses dynamic Web content technologies such as ASP and JSP. Typically, the Web
application model widely supports synchronous interactions in which the requester
pushes the requests and receives the content. Recently, advanced AJAX techniques
for mobile devices also support the requester to asynchronously poll results. Some
toolkits are available for mobile AJAX, such as MobileWeb (http://mymobileweb.
morfeo-project.org/). A single-purpose mobile Web application can also be pack-
aged for download and instalfation on mobile devices; this is called a mobile widget
[55]. This model is quite suitable for applications that require Web contents.
Examples of Web application model toolkits are the Yahoo! Blueprint Placform,
Microsoft ASP.NET mobile, and Microsoft Mobile Internet Toolkit.

Other architectural styles for mobile services are based on WAP (hetp://www.
wapforum.org/what/technical_1_2_1.htm) and SIP (http://www.ietf.org/html.
charters/sip-charter.html). WAP defines how an application on mobile phones or
PDAs can access the Internet through HTTP. WAP defines a protocol stack atop
different wireless data networks, such as SMS, GPRS, and UMTS. This protocol
stack includes protocols dealing with datagram, transport, transaction, session con-
trol, and environments. A WAP application accesses the Internet through a WAP
gateway that acts as a proxy. WAP has been widely used in services, such as mobile
mails for Mobile CRM [56], transportation information systems (htep://www.tfl.
gov.uk/tfl/livetravelnews/mobileservices/wap/default.asp), and mobile banking.
SIP is a signaling protocol widely used in multimedia mobile services, such as
streaming multimedia delivery, instant messaging, and presence service. As it
focuses on multimedia aspect, using SIP alone will support only a few types of
mobile services. However, SIP can be combined with SOA-based services to pro-
vide integrated communication services and enterprising business services. This
type of application is particularly important for the mobile user in networked
enterprises and collaborative environments. Examples of SIP together SOA are IMS
[21] and Akogrimo [11,57]. A SIP for mobile devices is also developed in Java ME
(JSR 180—Session Initiation Protocol for [2ME 1.0.1).

1.7 Challenges for Future Research

As partially discussed in previous sections, we need to develop further techniques
to bring the full advantage of SOA-based solutions to mobile services.

1.7.1 Supporting Mobile Web Services on Mobile Devices

Supporting tools should not only focus on the client side but also on mobile Web
services in mobile devices. This will require great research effort for the development

Service-Oriented Architecture for Mobile Services m 37

of service management systems that have to take into account service mobility, run-
time deployment, and service continuity on mobile devices. Here, ensuring correct
information about services and service continuity is a great challenge. The issue
related to service registration and discovery when Web services are hosted in mobile
devices, as discussed in Reference [6], is still valid. We need to combine service migra-
tion and adapration with service monitoring and management techniques. This issue
is also related to service disruption due to failure of devices and networks.

1.7.2 Supporting REST Mobile Services

Important supports of REST-based mobile services, such as service discovery and
resource management, should be provided. In particular, for publishing and dis-
covering REST-based Web services a new set of protocols has to be developed.

1.7.3 Programming Supporting Tools

Although various programming environments are provided, the developer lacks
useful tools to debug, profile, and analyze their mobile services. In particular, given
the strong connection between performance and energy consumption in mobile
devices, tools for analyzing energy consumption and performance are particularly
interesting. Currently, only a few works have been devoted for this research issue.

1.7.4 Context Sharing in Mobile Services

When mobile services are integrated from different providers, sharing context
information among these services is challenging, Context sharing is a key to
reduce user intervention and improve service provisioning and adaptation.
Existing standards have proposed sharing user identity but it is not enough as the
context associated with a usage is much more than identity. Thus, standard pro-
tocols for specifying, propagating, and managing context in a federation of ser-
vices are desired. This research is also involved with context-aware computing
domains.

1.7.5 User-Defined Opportunistic Composition and
Creation of Mobile Service

When a lot of mobile services are available, the user will have many opportunities
to compose mobile services on their own. SOA solutions have helped to simplify
service discovery processes and many service composition techniques have been
proposed, yet they are complex and assume advanced knowledge. How can we sup-
port a novice user to compose mobile services in a place where, by chance, his/her
mobile device detects many interesting mobile services provided by other users and

38 m Handbook of Mobile Systems Applications and Services

onsite service providers? In addition, how can we support the user to define his/her
own mobile services? Although some initial ideas have been proposed [36,58], these
are premature.

1.8 Conclusion

Over the last few years, the increasing mobility of the user and the advanced, pow-
erful mobile networks and devices have fostered emerging mobile services for dif-
ferent scenarios. Mobile services are no longer just for accessing Web contents and
for personal use but also for enterprise use and collaborative work. Furthermore,
there is no longer a clear boundary between mobile services hosted in mobile net-
works and on the Internet. This requires mobile applications to access vast informa-
tion and services from anywhere with any device. As a result, SOC/SOA
technologies, in particular, Web service technologies, have been utilized in mobile
services, solving many integration problems.

In this chapter, we analyze state-of-the-art SOC/SOA for mobile services with
a focus on mobile Web services. Both SOAP-based and REST-based architectural
styles have been discussed. On the one hand, many Web setvice solutions, based on
SOAP and REST technologies, have been introduced for mobile services, enhanc-
ing substantially how mobile services should provide and interact with the mobile
user. On the other hand, Web service solutions for collaborative works, distributed
health care, and enterprises have been developed, extending the use of mobile ser-
vices for individual need to team work and enterprise business. Both REST and
SOAP mobile Web services have different capabilities and this difference needs to
be analyzed to select the right architectural style. Other chapters in this book pro-
vide further state-of-the-art research on particular topics that are sketched in this
chapter, such as security, service discovery, monitoring, and performance analysis.

1.9 Further Reading

Several books have presented many fundamental concepts of SOC/SOA, such as
Web Services: Concepts, Architecture and Applications [59) and SOA Principles of
Service Design [60]. With respect to the development of mobile services, there are
valuable References for further reading. Mobile Web Services: Architecture and
Implementation [G1] presents main concepts in designing Web services for mobile
systems. Generic concepts such as addressing, service discovery, identity manage-
ment, and security in SOA-based environments are covered. This book also pres-
ents implementation techniques and examples of mobile Web services. However, it
focuses on SOA based on Nokia service development APIs for S60 platform.
Mobile Web Services [62] presents main technologies for implementing wireless
mobile services with a focus on mobile Web services providing Web contents.

Service-Oriented Architecture for Mobile Services m 39

Among others, it covers very well WAP, wireless content representations, location
management, privacy, and mobile user context. However, it does not focus on SOA
solutions for mobile Web services.

Enabling Technologies for Mobile Services: The MobiLife Book [3] presents a com-
pelling landscape about mobile services based on the user-centered design process.
It analyzes requirements of the mobile world and discusses the mobile services
architecture accordingly. Key enabling technologies such as context management
framework, multimodal and personalization technologies, and trust and privacy
are well presented. This book also presents Reference applications, best practices,
and marker analysis of mobile services. It is an excellent reading source for under-
standing mobile applications and services.

Mobile service-oriented architectures in general are discussed in Reference [63].
This discussion does not indicate any specific Web services platform. Some mobile
programming toolkits were evaluated in Reference [64]. This evaluation discussed the
performance of gSOAP and kSOAP Web service consumers in embedded devices.

This chapter gives an overview of the main techniques for mobile Web services
with a focus on programming support for service development, service invocation,
message handling, and discovery. Therefore, it does not present these techniques in
detail in terms of qualitative and behavioral analysis, such as performance, scal-
ability, energy consumption, and detailed protocol structures. Such details can be
found in external References, other chapters of this book, and the above-mentioned
further readings.

EXERCISES

1. Survey existing mobile services, such as Google and Strikelron services, and
map them into a table of direct/indirect interaction, SOAP, REST, and other
architectural styles; and compare their strengths and weaknesses.

2. Not all published WSDL files of Web services are compatible with Java ME.
Analyze existing WSDL files, find common incompatible properties, and
present your suggestion.

3. Assume that some services are hosted in a mobile device and services are
described by WSDL and UDDI. Analyze possible issues that arise when the
service provider migrates the services to another hosting environment. What
should be done to ensure that the service discovery process is not
corrupted?

4. Analyze possible service discovery protocols for REST-based Web services.
Implement a P2P-based service discovery for REST Web services.

5. Compare data transfer using JSON and XML format. Which format is suit-
able for which application types? Perform a performance comparison for
similar Web services that offer both JSON and XML (e.g., Google and Yahoo!

mobile services).

40 m Handbook of Mobile Systems Applications and Services

6. Currently, many REST-based Web services return XML and/or JSON, but
programming toolkits assume the developer will utilize specific libraries (e.g.
kXML or JSONObject) to parse the returned data. Develop a small project
to integrate tools for generating code from WADL and tools for parsing
XML/JSON data for REST clients.

7. Study service information associated with mobile Web services on mobile
devices. Compare the importance of the service information of mobile Web
services with that of Web services in other platforms in terms of service dis-
covery and service management.

8. Analyze the dependency between mobile Web services and the contemporary
operating systems for mobile devices (PDAs and smart phones) in terms of
concurrency processing and service disruption. Analyze the impact of issues
on the selection of architectural styles, service invocation models, and fault
management.

Acknowledgments

The effort spent in writing this chapter is partially supported by the European
Union through the FP6 projects inContext and WORKPAD, and the FP7 project
SM4AIL The research in this chapter is partially a result of our experiences gained
from the development of SOA-based solutions for teamwork, disaster management,
and smart environments in the inContext (http://www.in-context.eu), the
WORKPAD (http://www.workpad-project.ew), and the SM4All (hetp://www.
sm4all-project.cu) projects. We are grateful to all our colleagues in inContext,
WORKPAD, and SM4All for fruitful discussion and sharing ideas on the develop-
ment of mobile Web services. Our discussions on Vimoware/RESCUE and the
WORKPAD example are based on research results conducted within the
WORKPAD project.

References

1. Mike P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann. Service-
oriented computing: State of the art and research challenges. [EEE Computer,
40(11):38-45, 2007.

2. Ivar Jorstad, Schahram Dustdar, and Do Van Thanh. An analysis of current mobile
services and enabling technologies. [JAHUC, 1(1/2):92-102, 2005.

3. Mika Klementtinen, editor. Enabling Technologies for Mobile Services: The Mobil.ife
Book. West Sussex, England: John Wiley & Sons, October 2007.

4, Ivar Jorstad, Schahram Dustdar, and Do Van Thanh. Service-oriented architectures
and mobile services. In Jaclson Castro and Ernest Teniente, editors, CAiSF Workshops
(2), pp. 617-631. Porto: FEUP Edicoes, 2005.

10.

11.
12.

13.

14.

15.

16.

17.

18.

Service-Oriented Architecture for Mobile Services m 41

. Hong Linh Truong, Lukasz Juszczyk, Shariq Bashir, Adf Manzoor, and Schahram

Dustdar. Vimoware—a toolkit for mobile web services and collaborative computing.
In SEAA ‘08: Proceedings of the 34th Euromicro Conference on Software Engineering and
Advanced Applications, pp. 366-373, Parma, ltaly, September 3-5, 2008.

. Stefan Berger, Scott McFaddin, Chandra Narayanaswami, and Mandayam Raghunath.

Web services on mobile devices—implementation and experience. wmcsa, 0:100,
2003.

. Ari Shapiro and Andreas Frank. Mobile SOA: End-to-end Java™ technology-based

framework for network services. In Procecdings of JavaOne 2008 Conference, San
Francisco, May 5-9, 2008.

. Mobile world celebrates four billion connections, http://www.gsmworld.com/

newsroom/press-releases/2009/2521 htm. Last accessed: February 26, 2009.

. Gerd Andersson, Adrian Bullock, Jarmo Laaksolahti, Stina Nylander, Fredrik Olsson,

LinderMarie Sj, Annika Waern, and Magnus Boman. Classifying mobile services.
SICS Technical Report T2004:04. Swedish Institute of Compurer Science ISSN 1100-
3154, 2004. hetp://eprints.sics.se/2349/01/SICS-T-2004-04-SE.pdf

Marco Savini, Andreea Tonas, Andreas Meier, Ciprian Pop, and Henrik Stormer. The
eSana framework: Mobile services in eHealth using SOA. In Proceedings of the Second
European Conference on Mobile Government, Brighton, August 30-31 and September 1,
2006, ISBN: 0-9763341-1-9.

The Akigrimo project. heep://www.mobilegrids.org/

Tiziana Catarci, Massimilano de Leoni, Andrea Marrella, Massimo Mecella, Berardino
Salvatore, Guido Vetere, Schahram Dustdar, Lukasz Juszczyk, Atif Manzoor, and
Hong-Linh Truong. Pervasive software environments for supporting disaster responses.
IEEE Internet Computing, 12(1):26-37, 2008.

David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion,
Chris Ferris, and David Orchard. Web services architecture (W3C Working Group
note, February 11, 2004), 2004. hetp:/fwww.w3.org/TR/ws-arch/. Last accessed:
February 10, 2009.

Gregory Hackmann, Mart Haitjema, Christopher D. Gill, and Gruia-Catalin Roman.
Sliver: A BPEL workfow process execution engine for mobile devices. In Asit Dan and
Winfried Lamersdorf, editors, ICSOC, volume 4294 of Lecture Notes in Computer
Science, pp. 503-508. The Netherlands: Springer, 2006.

A. van Halteren and P. Pawar. Mobile service platform: A middleware for nomadic
mobile service provisioning. In /EEE International Conference on Wireless and Mobile
Computing, Networking and Communications, 2006, (Wilob2006), pp. 292-299,
Montreal, Quebec, June 19-21, 2006.

Roy Thomas Fielding. Architectural styles and the design of network-based software
architectures. Ph.D. thesis, University of California, Irvine, 2000.

S. McFaddin, D. Coffman,].H. Han, H.K. Jang,].H. Kim, J.K. Lee, M.C. Lee et al.,
Modeling and managing mobile commerce spaces using restful data services. In 9¢h
International Conference on Mobile Data Management, 2008, MDM 08, pp.81-89,
Berlin, April 27-30, 2008.

Sami Mikeldinen and Timo Alakoski. Fixed-mobile hybrid mashups: Applying the rest
principles to mobile-specific resources. In WISE 08: Proceedings of the 2008
International Workshops on Web Information Systems Engineering, pp. 172-182. Berlin/
Heidelberg: Springer-Verlag, 2008.

42

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

B Handbook of Mobile Systems Applications and Services

ArcGIS mobile blog. http://blogs.esri.com/Dev/blogs/mobilecentral/archive/2008/10/
20/ The-Mobile-Web.aspx. Last accessed: March 13, 2009.

Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services vs. “big™
web services: Making the right architeceural decision. In Jinpeng Huai, Robin Chen,
Hsiao-Wuen Hon, Yunhao Liy, Wei-Ying Ma, Andrew Tomkins, and Xiaodong Zhang,
editors, 17th International World Wide Web Conference (WWW2008), pp. 805-814.
Beijing, China: ACM, April 21-25, 2008.

Hechmi Khlifi and Jean-Charles Grégoire. IMS application servers: Roles, require-
ments, and implementation technologies. /EEE Internet Computing, 12(3):40-51,
2008.

XMLP scenarios. http://www.w3.0rg/TR/xmlp-scenarios/. Last accessed: March 12,
2009.

Guido Gehlen and Georgios Mavromatis. Mobile web service based middleware for
context-aware applications. In Proceedings of the 11th European Wireless Conference
2005, Vol. 2, pp. 784-790. Nicosia, Cyprus: VDE Vetlag, April 2005.

Valerie Issarny, Daniele Sacchetti, Ferda Tartanoglu, Francoise Sailhan, Rafik
Chibout, Nicole Levy, and Angel Talamona. Developing ambient intelligence
systems: A solution based on web services. Automated Software Engineering, 12(1):
101-137, 2005.

Fahad Aijaz, Bilal Hameed, and Bernhard Walke. Asynchronous mobile web services:
Concept and architecture. In Proceedings of 2008 IEEE 8th International Conference on
Computer and Information Technology, p. 6, Sydney, Australia, July 2008.

Yeon-Seok Kim and Kyong-Ho Lee. A light-weight framework for hosting web services
on mobile devices. In ECOWS 07: Proceedings of the Fifih European Conference on Web
Services, pp. 255-263. Washington, DC, USA: [EEE Computer Society, 2007.

Hong Linh Truong, Lukasz Juszczyk, Atif Manzoor, and Schahram Dustdar. Escape—
An adaptive framework for managing and providing context information in emergency
sitvations. In Gerd Kortiem, Joe Finney, Rodger Lea, and Vasughi Sundramoorthy,
editors, EuraSSC, volume 4793 of Lecture Notes in Computer Science, pp. 207-222. The
Netherlands: Springer, 2007,

Martin Treiber and Schahram Dustdar. Active web service registries. IEEE Internet
Computing, 11(5):66-71, 2007.

Marc Hadley. Web application description language (WADL). Technical Report
TR-2006-153, Sun Microsystems, April 2006.

Robert Stecle, Khaled Khankan, and Tharam Dillon. Mobile web services discovery
and invocation through auto-generation of abstract multimodal interface. In I7CC
05: Proceedings of the International Conference on Information Technology: Coding and
Computing (ITCC'05)—Volume II, pp. 35-41. Whashington, DC, USA: IEEE
Computer Society, 2005.

Satish Narayana Srirama, Matthias Jarke, and Wolfgang Prinz. Mobile web services
mediation framework. In MWASOC ‘07: Proceedings of the 2nd Workshop on Middleware
Jfor Service Oriented Computing, pp. 6-11. New York, NY, USA: ACM, 2007.

Satish Narayana Srirama, Matthias Jarke, Hongyan Zhu, and Wolfgang Prinz. Scalable
mobile web service discovery in peer to peer networks. In Third International Confevence
on Internet and Web Applications and Services, 2008, ICIW 08, pp. 668-674. Athens,
Greece: IEEE Computer Society, June 8—13, 2008.

33.

34.

35.

30.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

Service-Oriented Architecture for Mobile Services ® 43

Lukasz Juszczyk and Schahram Dustdar. A middleware for service-oriented communi-
cation in mobile disaster response environments. In Sotirios Terzis, editor, MPAC,
pp. 37-42. New York, NY, USA: ACM, 2008.

RESCUE—Service oriented middleware for mobile devices, http://www.infosys.
tuwien.ac.at/prototyp/Rescue/Rescue_index.html. Last accessed: February 26, 2009,
Lasse Pajunen and Suresh Chande. Developing workflow engine for mobile devices. In
EDOC 07: Proceedings of the 11th IEEE International Enterprise Distributed Object
Computing Conference, p. 279. Washington, DC, USA: IEEE Computer Society, 2007.
Marco Pistore, Paolo Traverso, Massimo Paolucci, and Matthias Wagner. From soft-
ware services to a future Internet of services. Future Internet Assembly 183192, 2009.
Mia Tian, Thiemo Voigt, Tomasz Naumowicz, Haremut Ritter, and Jochen Schiller.
Performance considerations for mobile web services. Computer Communications
Journal, 27(11):1097-1105, 2004,

Ivan Jorstad, Do van Thanh, and Schahram Dustdar. A service continuity layer for
mobile services. 2005 [EEE Wireless Communications and Networking Conference,
4:2300-2305, 2005.

Christoph Dorn and Schahram Dustdar. Achieving web service continuity in ubiqui-
tous mobile networks: The SRR-WS framework. In Moira C. Norrie, Schahram
Dustdar, and Harald Gall, editors, UMICS, volume 242 of CEUR Workshap Proceedings,
CEUR-WS.org, 2006.

kSOAP2, http://ksoap2.sourceforge.net/. Last accessed: February 26, 2009.

Robert van Engelen and Kyle Gallivan. The gSOAP toolkit for web services and peer-
to-peer computing networks. In CCGRID, pp. 128-135. Washington, DC, USA:
IEEE Computer Society, 2002.

Vittorio Miori, Luca Tarrini, and Rolando Bianchi Bandinelli. Deliverable d2.2:
Requirements analysis for footprint and power constrained devices; light—xml-inno-
vative generation for home networking technologies. Technical Report, CNR, Pisa,
Italy, May 2005. htep://dienst.isti.cnr.it/Dienst/Repository/2.0/Body/ercim.cnr.
isti/2005-PR-02/pdftiposearch=ercim&langver=

Nokia web services platform. http://www.forum.nokia.com/Resources_and_
Information/Explore/ Other/Web_Services/. Last accessed: March 13, 2009.

Peter Braun and Ronny Eckhaus. Experiences on model-driven software development
for mobile applications. In ECBS ‘08: Proceedings of the 15th Annual IEEE International
Conference and Workshop on the Engineering of Computer Based Systems, pp. 490-493.
Washington, DC, USA: IEEE Computer Society, 2008.

Juergen Dunkel and Ralf Bruns. Model-driven architecture for mobile applications. In
Witold Abramowicz, editor, Business Information Systems, 10th International Conference,
BIS 2007, Poznan, Poland, April, pp. 470-483. Berlin/Heidelberg: Springer-Verlag,
2007.

Mariano Belaunde and Paolo Falcarin. Realizing an MDA and SOA marriage for the
development of mobile services. In ECMDA-FA ‘08: Proceedings of the 4th European
Conference on Model Driven Architecture, pp. 393-405. Berlin/Heidelberg: Springer-
Verlag, 2008.

Daniele Battista, Massimiliano de Leoni, Alessio De Gaetanis, Massimo Mecella,
Alessandro Pezzullo, Alessandro Russo, and Costantino Saponaro. Romedeu: A web
service-based process-aware system for smart devices. In Athman Bouguettaya, Ingolf

44

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.
62.

63.

64.

B Handbook of Mobile Systems Applications and Services

Krtiger, and Tiziana Margaria, editors, JCSOC, volume 5364 of Lecture Notes in
Computer Science, pp. 726-727. The Netherlands: Springer, 2008.

Shengru Tu and Mahdi Abdelguerfi. Web services for geographic information systems.
{EEE Interner Computing, 10(5):13-15, 2006.

Marco Aiello and Schahram Dustdar. Are our homes ready for services? A domotic
infrastructure based on the web service stack. Pervasive and Mobile Computing,
4(4):506-525, 2008.

Jan 8. Rellermeyer, Gustavo Alonso, and Timothy Roscoe. R-OSGi: Distributed appli-
cations through software modularization. In Renato Cerqueira and Roy H. Campbell,
editors, Middleware, volume 4834 of Lecture Notes in Computer Science, pp. 1-20. The
Netherlands: Springer, 2007.

Brenda M. Michelson. Event-driven architecture overview. Patricia Seybold Group,
February 2006. http://soa.omg.org/Uploaded%20Docs/EDA/bda2-2-06cc.pdf

Jacle van Hoof. How EDA extends SOA and why it is important, September 2006.
htip://soa-eda.blogspot.com/2006/11/how-eda-extends-soa-and-why-it-is.html

Jeff Hanson. Event-driven services in SOA, January 2005. http://www.javaworld.com/
javaworld/jw-01-2005/jw-0131-soa.html

Jae-Yoon Jung, Jonghun Park, Seung-Kyun Han, and Kangchan Lee. An ECA-based
framework for decentralized coordination of ubiquitous web services. Information &
Software Technology, 49(11-12):1141-1161, 2007.

Marcos Caceres. Widgets 1.0: Packaging and configuration—W3C working draft,
December 22, 2008. hetp://www.w3.0rg/ TR/2008/WD-widgets-20081222/

Kevin H.W. Shen and Daniel C.H. Lee. WAP mail service and short message service
for mobile CRM. In MSE ‘00: Proceedings of the 2000 International Conference on
Microelecrronic Systems Education, p. 201. Washington, DC, USA: IEEE Computer
Society, 2000.

Juergen M. Jaehnert, Stefan Wesner, and Victor A. Villagra. ‘The Akogrimo mobile
grid Ref. architecture—Overview. hetp:/ fwww.mobilegrids.org/modules.php?name=
UpDownload&req=gerit&lid=108, November 2006, whitepage.

Daniel Schall, Hong Linh Truong, and Schahram Dustdar. Unifying human and soft-
ware services in web-scale collaborations. /EEE Interner Computing, 12(3):62-68,
2008,

Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machitaju. Web Services:
Concepts, Architecture and Applications. Berlin/Heidelberg; Springer-Verlag, 2004.
Thomas Erl. SOA Principles of Service Design (The Prentice Hall Service-Oriented
Computing Series from Thomas Erl). Upper Saddle River, NJ, USA: Prentice Hall PTR,
2007.

Frederick Hirsch, John Kemp, and Jani llkaka. Mobile Web Services: Aschitecture and
Implementation. New York: John Wiley & Sons, 2006.

Ariel Pashtan, Mobile Web Services. New York, NY, USA: Cambridge University Press,
2005.

Jilles van Gurp, Anssi Karhinen, and Jan Bosch. Mobile service oriented architectures
(MOSOA). In Frank Eliassen and Alberto Montresor, editors, DAIS, volume 4025 of
Lecture Notes in Computer Science, pp. 1-15. The Netherlands: Springer, 2006,

Daniel Schall, Marco Aiello, and Schahram Dustdar. Web services on embedded
devices. I[JWIS, 2(1):45-50, 2006.

