
Principles and Applications
of Distributed Event-Based
Systems

Annika M. Hinze
University of Waikato, New Zealand

Alejandro Buchmann
Technische Universität Darmstadt, Germany

Hershey • New York
InformatIon scIence reference

Director of Editorial Content: Kristin Klinger
Director of Book Publications: Julia Mosemann
Acquisitions Editor: Lindsay Johnston
Development Editor: Julia Mosemann
Publishing Assistant: Keith Glazewski
Typesetter: Michael Brehm
Production Editor: Jamie Snavely
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2010 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

284

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 12

Event Processing in Web Service
Runtime Environments

Anton Michlmayr
Vienna University of Technology, Austria

Philipp Leitner
Vienna University of Technology, Austria

Florian Rosenberg
CSIRO ICT Centre, Canberra, Australia

Schahram Dustdar
Vienna University of Technology, Austria

inTRoduCTion

Following the Service-oriented Architecture
(SOA) paradigm shown in Figure 1, service pro-
viders register services and corresponding descrip-

tions in registries. Service consumers can then
find services in the registry, bind to the services
that best fit their needs, and finally execute them.
Web services (Weerawarana, Curbera, Leymann,
Storey, & Ferguson, 2005) are one widely adopted
realization of SOA that build upon the main stan-

aBsTRaCT

Service-oriented Architectures (SOA) and Web services have received a lot of attention from both indus-
try and academia. Services as the core entities of every SOA are changing regularly based on various
reasons. This poses a clear problem in distributed environments since service providers and consumers
are generally loosely coupled. Using the publish/subscribe style of communication service consumers
can be notified when such changes occur. In this chapter, we present an approach that leverages event
processing mechanisms for Web service runtime environments based on a rich event model and different
event visibilities. Our approach covers the full service lifecycle, including runtime information concerning
service discovery and service invocation, as well as Quality of Service attributes. Furthermore, besides
subscribing to events of interest, users can also search in historical event data. We show how this event
notification support was integrated into our service runtime environment VRESCo and give some usage
examples in an application context.

DOI: 10.4018/978-1-60566-697-6.ch012

285

Event Processing in Web Service Runtime Environments

dards SOAP (communication protocol), WSDL
(service description) and UDDI (service registry).
Over the years, a complete Web service stack has
emerged that provides rich support for multiple
higher level functionalities (e.g., business process
execution, transactions, metadata exchange etc.).

Practice, however, has revealed some problems
of the SOA paradigm in general and Web services
in particular. The idea of public registries did not
succeed which is highlighted by the fact that Mi-
crosoft, SAP and IBM have shut down their public
registries in the end of 2006. Moreover, there are
still a number of open issues in SOA research
and practice (Papazoglou, Traverso, Dustdar, &
Leymann, 2007), such as dynamic binding and
invocation, dynamic service composition, and
service metadata.

One reason for these issues stems from the fact
that service interfaces, service metadata and Qual-
ity of Service (QoS) attributes change regularly.
Furthermore, new services are published, existing
ones might be modified, and old services are fi-
nally deleted from the registry. This is problematic
since service providers and consumers are usually
loosely coupled in SOA. Thus, service consumers
are not aware of such changes and, as a result,
might not be able to access changed services any
more. In this regard, the lack of appropriate event
notification mechanisms limits flexibility because
service consumers cannot automatically react to
service and environment changes.

The current service registry standards UDDI
(OASIS International Standards Consortium,
2005a) and ebXML (OASIS International
Standards Consortium, 2005b) introduce basic
support for event notifications. Both standards
have in common that users are enabled to track
newly created, updated and deleted entries in the
registry. However, additional runtime information
concerning service binding and invocation as well
as QoS attributes are not taken into consideration
by these approaches.

We argue that receiving notifications about
such runtime information is equally important

and should, therefore, be provided by SOA run-
time environments. Furthermore, complex event
processing mechanisms supporting event patterns,
and search in historical event data are needed for
keeping track of vast numbers of events. In this
chapter, we focus on such runtime event noti-
fication support. Our contribution is threefold:
firstly, we present the background of this work
and describe the motivation based on a case study
from the telecommunications domain. Secondly,
we introduce the VRESCo runtime environment
(Michlmayr, Rosenberg, Platzer, Treiber, & Dust-
dar, 2007) and describe its notification support
in detail. This includes event types, participants,
ranking, correlation, subscription, and notification
mechanisms, as well as event persistence, event
search, and event visibility. Finally, we show some
usage examples and point to further application
scenarios enabled by our work.

BaCkGRound

This section consists of two main parts. In the first
part, we summarize several research approaches
that are related to our work. In the second part,
we briefly introduce the open source event pro-
cessing engine Esper which we use as technical
background for our prototype.

Figure 1. Service-oriented architecture (Michl-
mayr, Rosenberg, Platzer, Treiber, & Dustdar,
2007)

286

Event Processing in Web Service Runtime Environments

Related Work

Event-based systems in general, and the publish/
subscribe pattern in particular have been the focus
of research within the last years. This research has
led to different event-based architecture defini-
tion languages, for instance Rapide (Luckham &
Vera, 1995), and QoS-aware event dissemination
middleware prototypes (Mahambre, Kumar, &
Bellur, 2007). Moreover, data and event stream
processing has also been addressed in various
prototypes, such as STREAM (Arasu, et al., 2008)
or Esper (EsperTech, 2008).

Approaches to integrate publish/subscribe
and the SOA model resulted in the two speci-
fications WS-Notification (Oasis International
Standards Consortium, 2006) and WS-Eventing
(World Wide Web Consortium, 2006). While WS-
Eventing uses content-based publish/subscribe,
WS-Notification provides topics (WS-Topics) as
a means to classify events. In both specifications,
publishers, subscribers, and the event infrastruc-
ture are implemented as Web services. However,
event processing mechanisms besides topic- and
content-based filtering of events are not addressed
by these specifications. The combination of SOA
and event-driven architectures is further addressed
by Enterprise Service Bus (ESB) implementations
(e.g., Apache Servicemix1). In contrast to our work,
ESBs mainly focus on connecting various legacy
applications by using a common bus that performs
message routing, transformation and correlation.

Cugola and Di Nitto (Cugola & di Nitto, 2008)
give a detailed overview of other research ap-
proaches combining SOA and publish/subscribe.
Furthermore, they introduce a system that aims at
adopting content-based routing (CBR) in SOA.
Their approach is built on the CBR middleware
REDS (Cugola & Picco, 2006), and provides
notifications following WS-Notification. Service
discovery is implemented according to the query-
advertise style using UDDI inquiry messages. In
this work CBR is mainly used to perform service
discovery, while we focus on event processing

and notifications in service runtime environments.
Additionally, we also provide support for dynamic
binding and invocation, as well as QoS attributes
and service metadata.

Service registries (e.g., UDDI, ebXML) repre-
sent one part of the SOA triangle that is responsible
for maintaining a service repository including
publishing and querying functionality. Both UDDI
and ebXML provide subscription mechanisms
to get notified if certain events occur within the
service registry. However, these notifications are
limited to the service data stored in the registry
and do not include service runtime information.
Notifications are sent per email or by invoking
listener Web services. Other approaches such as
Active Web Service Registries (Treiber & Dust-
dar, 2007) use news feeds such as Atom (Sayre,
2005) for dissemination of changes in the service
repository content. News feeds enable to seam-
lessly federate multiple registries, yet, in contrast
to our approach do not provide fine-grained control
on the received notifications since they follow
the topic-based subscription style. Furthermore,
similar to UDDI and ebXML, these approaches
do not include service runtime information.

There are several approaches that address
search in historical events. Rozsnyai et al. (Ro-
zsnyai, Vecera, Schiefer, & Schatten, 2007) in-
troduce the Event Cloud system aiming at search
capabilities for business events. Their approach
uses indexing and correlation of events by using
different ranking algorithms. In contrast to our
approach, the focus of this work is on building an
efficient index for searching in vast numbers of
events whereas subscribing to events and getting
notified about their occurrence is not addressed.

Li et al. (Li, et al., 2007) present a data access
method which is integrated into the distributed
content-based publish/subscribe system PADRES.
The system enables to subscribe to events pub-
lished in both the future and the past. In contrast
to our work, the focus is on building a large-scale
distributed publish/subscribe system that provides
routing of subscriptions and queries.

287

Event Processing in Web Service Runtime Environments

Jobst and Preissler (Jobst & Preissler, 2006)
present an approach for business process man-
agement and business activity monitoring us-
ing event processing. The authors distinguish
between SOA events regarding violation of QoS
parameters and service lifecycle, and business/
process events building upon the Business Pro-
cess Execution Language (BPEL). These events
are fired by receive and invoke activities within
BPEL processes. Unlike our approach, the focus
is on search and visualization of business events
whereas subscribing to events is not addressed.
Furthermore, the different SOA events are not
described in detail.

esper

The open source engine Esper (EsperTech, 2008)
provides event processing functionality and is
available for both Java and C#. Esper supports
several ways for representing events. Firstly, any
Java/C# object may be used as an event as long
as it provides getter methods to access the event
properties. Event objects should be immutable
since events represent state changes that occurred
in the past and should therefore not be changed.
Secondly, events can be represented by objects
that implement the interface java.util.Map. The
event properties are those values that can be ob-
tained using the map getter. Finally, events may
be instances of org.w3c.dom.Node that are XML
events. In that case, XPath expressions are used
as event properties.

Additionally, Esper provides different types
of properties that can be obtained from events:

• Simple properties represent simple values
(e.g., name, time).

• Indexed properties are ordered collections
of values (e.g., user[4])

• Mapped properties represent keyed collec-
tions of values (e.g., user[‘firstname’])

• Nested properties live within another prop-
erty of an event (e.g., Service.QoS)

In Esper, subscriptions are done by attaching
listeners to the Esper engine, where each listener
contains a query defining the actual subscriptions.
These listeners implement a specific interface
that is invoked when the subscription matches
incoming events. The queries use the Esper Event
Processing Language (EPL) which is similar to
the Structured Query Language (SQL). The main
difference is that EPL is formulated on event
streams whereas SQL uses database tables: select
clauses specify the event properties to retrieve,
from clauses define the event streams to use, and
where clauses specify constraints. Furthermore,
similar to SQL there are aggregate functions (e.g.,
sum, avg, etc.), grouping functions (group by),
and ordering structures (order by). Multiple event
streams can be merged using the insert clause, or
combined using joins. In addition to that, event
streams can be joined with relational data using
SQL statements on database connections. To give a
simple example, the following EPL query triggers
when a new service is published by ‘TELCO1’.

select * from ServicePublishedEvent where
Service.Owner.Company = ‘TELCO1’

EPL provides a powerful mechanism to inte-
grate temporal relations of events using sliding
event windows. These operators define queries for
a given period of time. For instance, if QoS events
regularly publish the QoS values of services,
then subscriptions can be defined on the average
response time during the last 6 hours as shown
in the following simplified example.

select * from QoSEvent win:time(6 hours).
stat:uni(‘ResponseTime’)

where average > 300
Finally, EPL supports subqueries, output fre-

quency, and event patterns. The latter are used
to define relations between subsequent events
(e.g., representing ‘followed by’ relations). For

288

Event Processing in Web Service Runtime Environments

more information on Esper and EPL we refer to
(EsperTech, 2008).

vienna RunTime
enviRonmenT FoR seRviCe-
oRienTed ComPuTinG

This section describes the VRESCo project2 (Vi-
enna Runtime Environment for Service-Oriented
Computing) and its event notification support.
Before we go into the details of this event noti-
fication support we give a motivating example
for our work, followed by a brief introduction of
the overall runtime architecture and the service
metadata model of VRESCo.

motivating example

The case study shown in Figure 2 is adapted
from (Michlmayr, Rosenberg, Platzer, Treiber, &
Dustdar, 2007) and will be used for illustration
purposes. In this case study, a telecommunication

company (TELCO) consists of multiple depart-
ments that provide different services to different
service consumers. Inhouse services are shared
among the different departments (e.g., CRM
services). Customer services are only used by the
TELCO customers (e.g., view billing informa-
tion) whereas public services can be accessed by
everyone (e.g., get phone/roaming charges). Ad-
ditionally, the TELCO consumes partner services
(e.g., credit card service) as well as competitor
services from other TELCOs (e.g., number porting
service). Furthermore, service providers maintain
multiple revisions of their services.

This case study shows several scenarios where
notifications are useful. Consider for example
that TELCO1 wants to get notified if new ship-
ping services get available or if new revisions of
TELCO2’s number porting service are published.
Furthermore, it is also important to know if services
get unavailable or are removed from the registry
(e.g., in order to automatically switch to another
service). Besides these basic event notifications
another concern for TELCO1 is to observe QoS

Figure 2. TELCO case study (Michlmayr, Rosenberg, Leitner, & Dustdar, 2008)

289

Event Processing in Web Service Runtime Environments

attributes. For instance, TELCO1 wants to react
if the response time of a service falls beyond a
given threshold. This implies that the environment
considers runtime information of its services. To
go one step further, TELCO1 also wants to get
notified if the average response time of TELCO2’s
number porting service (measured within a time
frame of 6 hours) falls beyond a given threshold
since this might violate their Service Level Agree-
ment (SLA).

In addition to subscribing to certain events of
interest, TELCOs also want to search in the vast
amount of historical events. In that way, stakehold-
ers are enabled to observe the history of a given
service or service provider within a given period
of time, when deciding about the integration of
external services into their own business processes.

In these scenarios notifications have clear ad-
vantages over traditional approaches using runtime
exceptions, since service consumers can instantly
react to failures or QoS changes. The power of
events additionally opens up new perspectives
and applications scenarios that can be built in a
flexible manner. For instance, this includes SLAs
and service pricing models as well as provenance-
aware applications, which are discussed later.

vResCo overview

The event notification approach presented in this
chapter was implemented as part of the VRESCo
runtime introduced in (Michlmayr, Rosenberg,
Platzer, Treiber, & Dustdar, 2007). Before going
into the details of our eventing approach, we give
a short overview of this project.

The VRESCo runtime environment aims at
addressing some of the current challenges in
Service-oriented Computing research (Papazo-
glou, Traverso, Dustdar, & Leymann, 2007) and
practice. Among others, this includes topics related
to service discovery and metadata, dynamic bind-
ing and invocation, service versioning and QoS-
aware service composition. Besides this, another
goal is to facilitate engineering of service-oriented
applications by reconciling some of these topics
and abstracting from protocol-related issues.

The architecture of VRESCo is shown in Figure
3. To be interoperable and platform-independent,
the VRESCo services which are implemented in
C#/.NET are provided as Web services. These
services can be accessed either directly using
the SOAP protocol, or via the client library that
provides a simple API. Services and associated

Figure 3. VRESCo overview

290

Event Processing in Web Service Runtime Environments

metadata are stored in the registry database that
is accessed using the object-relational mapping
(ORM) layer. The services are published and found
in the registry using the publishing and querying
engine, respectively. The VRESCo runtime uses
a QoS monitor (Rosenberg, Platzer, & Dustdar,
2006) which continuously monitors the QoS,
and keeps the QoS information in the registry
up to date. Furthermore, the composition engine
provides support for QoS-aware service composi-
tion (Rosenberg, Celikovic, Michlmayr, Leitner,
& Dustdar, 2009). Finally, the event notification
engine is responsible for notifying subscribers
when events of interest occur.

versioning, dynamic
Binding and invocation

Web services evolve over time, which raises the
need to maintain multiple service revisions concur-
rently. VRESCo supports service versioning by

introducing the notion of service revision graphs
(Figure 4), which define successor-predecessor
relationships between different revisions of a
service and support multiple parallel branches of
the same service (Leitner, Michlmayr, Rosenberg,
& Dustdar, 2008). Revision tags (e.g., INITIAL,
STABLE, LATEST) are used to distinguish the
different service revisions. Service consumers
make use of versioning strategies to specify
which revision of a service should be invoked
(e.g., always invoke the newest revision, always
invoke a specific revision, etc.).

To carry out the actual Web service invoca-
tions the Daios dynamic Web service invocation
framework (Leitner, Rosenberg, & Dustdar,
2009) has been integrated into the VRESCo
client library. Daios decouples clients from the
services to be invoked by abstracting from service
implementation issues such as encoding styles,
operations or endpoints. Therefore, clients only
need to know the address of the WSDL interface

Figure 4. Service revision graph (Leitner, Michlmayr, Rosenberg, & Dustdar, 2008)

291

Event Processing in Web Service Runtime Environments

describing the target service, and the correspond-
ing input message; all other details of the target
service implementation are handled transparently.
Besides dynamic invocation, VRESCo also sup-
ports dynamic binding of Web services. The aim
is to dynamically bind to services offering the
same functionality. The rebinding can either be
QoS-based (using queries on QoS attributes) or
content-based (using unique identifiers within
different service categories). Rebinding strate-
gies are used to define when the current binding
of the service proxy should be evaluated (e.g.,
periodic, on demand, on invocation, etc.). We give
an example for service invocations in VRESCo in
Listing 1 below (see Section Usage Examples).

vResCo service metadata model

The VRESCo runtime provides a rich service
metadata model capable of storing additional ser-

vice information in the registry. This is needed to
capture the purpose of services to enable querying
and mediating between similar services that per-
form the same task. The VRESCo metadata model
presented in (Rosenberg, Leitner, Michlmayr, &
Dustdar, 2008) is depicted in Figure 5. The main
building blocks of this model are concepts that
represent the definition of an entity in the domain
model. We distinguish between three different
types of concepts:

• Features represent concrete actions in the
domain (e.g. PortNumber).

• Data concepts represent concrete entities in
the domain (e.g., customers) which are de-
fined using other data concepts and atomic
elements such as strings or numbers.

• Predicates represent domain-specific state-
ments that either return true or false. Each
predicate can have a number of arguments.

Figure 5. Metadata model (Rosenberg, Leitner, Michlmayr, & Dustdar, 2008)

292

Event Processing in Web Service Runtime Environments

For example, a predicate for a feature
PortNumber could be Portability_Status_
Ok(PhoneNumber), expressing the porta-
bility status of a given phone number.

Concepts have a well-defined meaning specific
to a certain domain. For example, the data Concept
Customer in one domain is clearly different to
the concept Customer in another. Furthermore,
concepts may be derived from other concepts
(e.g., PremiumCustomer is a special variant of
the more general concept Customer).

Each feature in the metadata model is associ-
ated with one category expressing the purpose
of a service (e.g., PhoneNumberPorting). Each
category can have additional subcategories fol-
lowing the semantics of multiple inheritance to
allow a more fine-grained differentiation. Features
have preconditions and postconditions expressing
logical statements that have to hold before and
after the execution of a feature. Both types of
conditions are composed of multiple predicates,
each having a number of optional arguments that
refer to a concept in the domain model. There are
two different types of predicates: Flow predicates
describe the data flow (i.e., the data required or
produced by a feature) while state predicates
express some global behavior that is valid either
before or after invoking a feature.

Services in VRESCo can be mapped to this
metadata model (e.g., services map to categories,
service operations map to features, operation pa-
rameters map to data concepts, etc.). As a result,
services that perform the same task but have dif-
ferent interfaces can be dynamically replaced at
runtime. More information can be found in (Rosen-
berg, Leitner, Michlmayr, & Dustdar, 2008).

vResCo eventing engine

This section presents the VRESCo notification
support that was introduced in (Michlmayr,
Rosenberg, Leitner, & Dustdar, 2008). The basic
idea can be summarized as follows: notifications

are published within the runtime if certain events
occur (e.g., service is added, user is deleted, etc.).
In contrast to current Web service registries, this
also includes events concerning service binding
and invocation, changing QoS attributes, and
runtime information. Service consumers are then
enabled to subscribe to these events.

Figure 6 depicts the architecture of the noti-
fication engine which represents one component
of the VRESCo runtime shown in Figure 3. The
event processing functionality is based on NE-
sper, which is a.NET port of Esper. Within the
notification engine, events are published using
the eventing service. Most events are directly
produced by the corresponding VRESCo ser-
vices (e.g., service management events are fired
by the publishing service while querying events
are fired by the querying service). In contrast to
this, events related to binding and invocation are
produced by the service proxies located in the
client library. Event adapters are thereby used to
transform incoming events into the internal event
format which can be processed efficiently. The
eventing service then forwards these events to the
event persistence component that is responsible
for storing events in the event database. Finally,
the eventing service feeds incoming events into
the Esper engine.

The subscription interface is used for subscrib-
ing to events of interest according to the methods
proposed in the WS-Eventing specification. The
subscription manager is responsible for managing
subscriptions which are put into the subscription
storage. In addition, subscriptions are translated
for further processing. This is done by converting
the WS-Eventing subscriptions into Esper listeners
which are attached to the Esper engine.

The Esper engine performs the actual event
processing and is, therefore, responsible for match-
ing incoming events received from the eventing
service to listeners attached by the subscription
manager. On a successful match, the registered
listener informs the notification manager that is
responsible for notifying interested subscribers.

293

Event Processing in Web Service Runtime Environments

Depending on the listener type, the notification
manager knows which notification type to use
(e.g., email, listener Web service).

Finally, the search interface is used to search
for historical events. The event database is imple-
mented using a relational database and accessed
via the ORM layer. The querying service returns
a list of events that match the given query.

Event Types

The first step in developing such notification
mechanism is to define all events supported by
the engine. In the context of our work there are
several events that can be captured at runtime. We
have identified the events shown in Table 1 where
events are grouped according to their event type.
The event condition in the right column describes
the situations when the event occurs. These event
types form an event type hierarchy following the
concept of class hierarchies (i.e., events inherit
the properties of their parent event type) which
is illustrated using colons.

The biggest group in this hierarchy is repre-
sented by the service management events that are
triggered when services or service revisions and
their associated metadata or QoS values change.
Other event types include runtime information
concerning binding and invocation, querying in-
formation and user information. All events inherit
from the base type VRESCoEvent which provides
a unique event sequence number and a timestamp
measured during event publication.

Event Participants

Event-based systems usually consist of two types
of participants that pose different requirements
to the system, namely event producers and event
consumers.

In general, events are produced by VRESCo
components. However, different components are
responsible for firing different kinds of events.
These components, which mainly differ in their
location, are described in this section. In this
regard, we distinguish between internal events
that are produced within the SOA runtime and

Figure 6. Eventing architecture (Michlmayr, Rosenberg, Leitner, & Dustdar, 2008)

294

Event Processing in Web Service Runtime Environments

external events that are published by components
outside the runtime. Most events are directly pro-
duced by the corresponding VRESCo services.
For instance, service management events (e.g.,
ServicePublishedEvent) are fired by the publish-
ing service. The same is true for versioning and
metadata events. According to this, user manage-
ment events are published by the user manage-
ment service while querying events are produced
by the querying service. All these event types
have in common that they are produced as part
of the VRESCo services and therefore represent
internal events.

The application logic inherent to binding and
invocation of services is located in the service

proxies provided by the client library. As a result,
the events concerning binding and invocation (e.g.,
ServiceInvokedEvent) are fired by this component.
Therefore, VRESCo provides a notification inter-
face in order to allow clients to publish binding
and invocation events into the runtime. These cli-
ent events represent external events that are then
transformed into the internal event format by the
runtime. Finally, the QoS monitor that regularly
measures the QoS values of services is responsible
for firing QoS events. Similar to the client library,
the QoS monitor uses the notification interface to
publish external events into the runtime.

Similar to event producers, we distinguish
between internal and external consumers. Internal

Table 1. VRESCo events

Event Type Event Name Event Condition

UserManagementEvent
: VRESCoEvent

UserAddedEvent
UserModifiedEvent
UserDeletedEvent
UserLoginEvent
UserLogoutEvent

User is added to the runtime
User is modified in the runtime
User is deleted from the runtime
User logs in using the GUI
User logs out using the GUI

ServiceManagementEvent
: VRESCoEvent

ServicePublishedEvent
ServiceModifiedEvent
ServiceDeletedEvent
ServiceActivatedEvent
ServiceDeactivatedEvent

New service is published into the runtime
Service is updated (no new revision)
Service is deleted from the runtime
Service is activated in the runtime
Service is deactivated in the runtime

VersioningEvent
: ServiceManagementEvent

RevisionPublishedEvent
RevisionActivatedEvent
RevisionDeactivatedEvent
RevisionTagAddedEvent
RevisionTagRemovedEvent

New revision is published into the runtime
Service revision is activated in the runtime
Service revision is deactivated in the runtime
Service revision tag is added by the owner
Service revision tag is removed by the owner

MetadataEvent
: ServiceManagementEvent

ServiceCategoryAddedEvent
ServiceCategoryModifiedEvent
ServiceCategoryDeletedEvent
FeatureAddedEvent
FeatureModifiedEvent
FeatureDeletedEvent
MappingEvent

Service category is added to the runtime
Service category is modified in the runtime
Service category is deleted from the runtime
Feature is added to a service category
Feature is modified in a service category
Feature is deleted from a service category
Service is mapped to a feature

QoSEvent
: ServiceManagementEvent

QoSRevisionEvent
QoSOperationEvent
RevisionGetsUnavailableEvent
RevisionGetsAvailableEvent

QoS value of service revision is published
QoS value of service operation is published
Service revision gets unavailable
Service revision gets available again

BindingInvocationEvent
: VRESCoEvent

ServiceInvokedEvent
ServiceInvocationFailedEvent
ProxyRebindingEvent

Specific service is invoked
Service invocation failed
Service proxy is (re-)bound to a specific service

QueryingEvent
: VRESCoEvent

RegistryQueriedEvent
ServiceFoundEvent
NoServiceFoundEvent

Registry is queried using a specific query string
Specific service is found by a query
No services are found by a query

295

Event Processing in Web Service Runtime Environments

consumers reside within the runtime and register
listeners at the Esper engine that are invoked when
subscriptions match incoming events. External
consumers outside the runtime are notified depend-
ing on the notification delivery mode defined in
the subscription request.

In general, there are two main groups of ex-
ternal consumers: humans and services. Clearly,
notification delivery mechanisms and the notifica-
tion payload differ for these two groups. Humans
are mainly interested in notifications sent per
email, SMS or news feeds. In some scenarios,
it might also be suitable to log the occurrence
of events in log files that are regularly checked
by the system administrator. In any case, notifi-
cations for humans might be less explicit since
humans can interpret incomplete information. In
contrast to this, service notifications can be sent
using the Web service notifications standards WS-
Eventing and WS-Notification. For our current
prototype implementation, we have made use of
the WS-Eventing specification since it represents
a light-weight approach supporting content-based
subscriptions.

Moreover, another distinction can be made
between service providers and consumers that
may be interested in different types of events. For
instance, service consumers might not be interested
in user management events or might not even be
allowed to receive them. We introduce different
event visibilities later.

Event Ranking

The importance and relevance of different events
can be estimated by ranking them according to
some fitness function. This is of particular interest
when dealing with vast numbers of events. The
following list describes several ways we have
identified for ranking events:

• Priority-based: Event priority properties
(e.g., 1 to 10 or ‘high’ to ‘low’) can be pre-
defined according to the event model, or

defined by the event producer when pub-
lishing the event. In the latter case, one
problem might be that event producers
do not know the importance of particular
events related to others.

• Hierarchically: Events are ordered in a
tree structure where the root represents the
most important event while the leaves are
less important.

• Type-based: All events are ranked based
on the event type. That means each event
has a specific type (possibly supporting
type inheritance) that is used to define the
ranking. However, the importance of some
event might not always depend only on its
type – sometimes the event properties will
make the difference.

• Content-based: Events can be ranked based
on keywords in the notification payload
(e.g., the keyword ‘exception’ might be
more important than the keyword ‘warn-
ing’ or ‘info’).

• Probability-based: In general, the event fre-
quency depends on environmental factors.
In this regard, one can assume that frequent
events (e.g., RegistryQueriedEvent) might
be less important than infrequent ones
(e.g., RevisionGetsUnavailableEvent).

• Event Patterns: Finally, some events often
occur as part of event patterns (e.g., proxy
is bound to a specific service, followed by
service is invoked using this proxy). The
ranking mechanism could consider such
event patterns.

VRESCo supports hierarchically, priority-,
typed-, and content-based ranking. Probability-
based ranking could be integrated by using the
univariate statistic function provided by Esper.
This mechanism calculates statistics over the
occurrence of different events. In general, how-
ever, it should be noted that event ranking has
one inherent problem: while some events can be
critical for one subscriber, they might be only

296

Event Processing in Web Service Runtime Environments

minor for others. Yet, introducing event ranking
mechanisms provides different ways to express
the importance of events.

Event Correlation

Event-based systems usually deal with vast num-
bers of events that have to be managed accordingly.
Event correlation techniques are used to avoid
losing track of all events and their relationship. For
instance, the work in (Rozsnyai, Vecera, Schiefer,
& Schatten, 2007) describes the Event Cloud
that provides different correlation mechanisms.
Basically, the idea is to use event properties that
have the same value as correlation identifier. For
instance, two events (e.g., ServicePublishedEvent
and ServiceDeletedEvent) having the same event
attribute ServiceId are correlated since they both
refer to the same service.

In the context of our work, we have identified
a number of correlation sets summarized in Table
2, which shows the name of the correlation set, the
events that are subsumed in this correlation, and
the correlation identifier. The correlation sets cover
three different aspects: user management using
the UserId as correlation identifier, service (and
service revision) lifecycle and QoS using ServiceId
and ServiceRevisionId, and metadata information
using ServiceCategoryId and FeatureId.

Besides correlating events using identifiers
(e.g., the same ServiceId), we also consider
temporal correlation of events. This is important
since events that occur at the same time might be

related. Furthermore, users are often interested in
all events that occurred within a given timeframe.
To accomplish temporal correlation of events,
every event has a timestamp that is set during
event publication. This timestamp can then be
used to group events that happened within a given
period of time (e.g., within the same hour, day,
week, etc.).

The difference between event correlation sets
and event types can be summarized as follows:
while event types represent groups of events that
occur in the same situations or indicate the same
state change (e.g., some service is published),
event correlation sets correlate all events that are
related due to some event attribute (e.g., service
revision X is published, deactivated, invoked, or
the QoS value changes, etc.).

Subscription and Notification
Mechanism

In general, event consumers can be enabled to
subscribe to their events of interest in several ways
(Eugster, Felber, Guerraoui, & Kermarrec, 2003).
The most basic way is following the topic-based
style that uses topics to classify events. Event
consumers subscribe to receive notifications about
that topic. Similar to topic-based subscriptions,
the type-based style uses event types for classifi-
cation. Even though these two styles are simple,
they do not provide fine-grained control over the
events of interest. Therefore, the content-based

Table 2. Event correlation sets

Event Correlation Set Events Correlation Identifier

User Management Create, update & delete users UserId

Service Lifecycle Create, update, delete, bind, invoke & query services ServiceId

Service Revision Lifecycle Create, update, delete, bind, invoke, query & tag revisions ServiceRevisionId

QoS Correlate QoS measurements of one service revision ServiceRevisionId

Service Category Correlate events of services within one service category ServiceCategoryId

Feature Correlate events of services that provide one feature FeatureId

297

Event Processing in Web Service Runtime Environments

style can be used to express subscriptions based
on the actual notification payload.

Since the VRESCo runtime is provided using
Web service interfaces, the subscription interface
should also be using Web services. WS-Eventing
represents a light-weight specification that defines
such an interface by providing five operations:
Subscribe and Unsubscribe are used for subscrib-
ing and unsubscribing. The GetStatus operation
returns the current status of a subscription, while
Renew is used to renew existing subscriptions.
Each subscription has a given duration specified
by the Expires attribute. Finally, Subscription End
is used if an event source terminates a subscrip-
tion unexpectedly.

For implementing the event processing
mechanism of the VRESCo runtime, we build
upon an existing WS-Eventing implementation3
that was extended for our purpose. WS-Eventing
normally uses XPath message filters as subscrip-
tion language that are used for matching incom-
ing XML messages to stored subscriptions. The
specification defines an extension point to use
other filter dialects which we used to introduce the
EPLDialect for using EPL queries as subscription
language. The actual EPL query is then attached
to the subscription message by introducing a new
message attribute subscriptionQuery.

WS-Eventing distinguishes between subscrib-
er (the entity that defines a subscription) and event
sink (the entity that receives the notifications)
that are both implemented using Web services.
VRESCo additionally supports notifications sent
per email and written to log files. Therefore, in
addition to the default delivery mode PushDe-
liveryMode using Web services, we introduced
EmailDeliveryMode and LogDeliveryMode which
are attached to the subscription messages.

The subscription process is illustrated in Fig-
ure 7. When the subscription manager receives
requests from subscribers, it first extracts the sub-
scription and puts it into the subscription storage to
be able to retrieve it at a later time. Then it extracts
the EPL subscription query and the delivery mode

from the request and creates a corresponding
Esper listener. This listener is finally attached to
the Esper engine to be matched against incoming
events. Furthermore, the subscription manager
is responsible for keeping the subscriptions in
the storage and the listeners attached to Esper
synchronized. That means, when subscriptions
are renewed or expire, the subscription manager
re-attaches the corresponding listener or removes
them, respectively.

Sending notifications can be done in several
ways.

In the best-effort model, notifications are lost
in case of communication errors. To prevent such
loss, subscribers can send acknowledgements
when receiving notifications. Besides pushing
notifications towards subscribers, pull-style no-
tifications enable subscribers to retrieve pending
notifications from the event engine.

VRESCo notifications are sent push-style us-
ing emails or listener Web services. As shown in
Figure 7, the notification manager knows which
notification type to use depending on the listener
attached to the Esper engine. On a successful
match the notification manager first extracts
this information from the listener. If the event
sink prefers email notifications, the notification
manager connects to an SMTP server. In case of
Web service listeners, the notification manager
invokes the corresponding listener Web service
provided by the event sink. If the event sink can-
not be notified, these pending notifications are
stored in the event database and can be retrieved
by the subscribers in pull-style.

Event Persistence and Event Search

Event notifications are often used when subscrib-
ers want to quickly react on state changes. Ad-
ditionally, in many situations it is also important
to search in historical event data. For instance,
users might want to get notified if a new service
revision is published into the registry while they

298

Event Processing in Web Service Runtime Environments

also want to search for the five previous service
revisions.

To support such functionality, the VRESCo
notification engine stores all events and provides
an appropriate search interface for it. As illustrated
in Figure 7, when events are published by an
event source (e.g., QoS monitor), the eventing
service first transform the events into the internal
event format and then persists them into the event
database. These events can be queried using the
event search interface that is part of the querying
interface which is used to search for services in the
registry database. Data access in VRESCo is done
via an ORM layer using NHibernate4. Therefore,
the event search builds on the Hibernate Query
Language (HQL).

Since event-based systems often deal with vast
numbers of events, in some situations using rela-
tional databases might not be efficient enough. In
such cases, building highly targeted and efficient

index structures might be preferred. In this regard,
we envision using the Vector space model in ad-
dition to a traditional relational event database.
Following this model, documents (events) are
represented by n-dimensional vectors where each
dimension represents one keyword. The similar-
ity of two vectors then indicates the similarity of
the two corresponding documents (events) using
these keywords. The advantage of the Vector space
model compared to traditional database search
is that the search returns a list of fuzzy matches
together with a similarity rating. Furthermore, the
search queries can be easily executed on multiple
distributed vector spaces.

Event Visibility

In our first prototype, events were visible to all
users within the runtime. However, this can be
problematic in business scenarios. For instance,

Figure 7. Subscription and event publication sequence

299

Event Processing in Web Service Runtime Environments

considering our TELCO case study shown in Fig-
ure 2, TELCO1 might agree that PARTNER1 can
see events concerning service management and
versioning, but might restrict that events related
to binding and invocation are only visible for its
own employees.

Mühl et. al. (Mühl, Fiege, & Pietzuch, 2006)
discuss security issues in event-based systems by
introducing different access control techniques
such as access control lists (ACL), capabilities,
and role-based access control (RBAC). ACLs, on
the one hand, define the permissions of different
users (principals) for specific security objects. Ca-
pabilities, on the other hand, define the permissions
of a specific user for different security objects.
The difference is that ACLs are stored for every
security object while capabilities are stored for
every user. Finally, RBAC extends capabilities by
allowing users to have several roles that represent
abstractions between users and permissions. Users
can have one or more roles while permissions are
directly granted to the different roles.

In the VRESCo notification engine, we have
integrated an access control mechanism following
RBAC (Michlmayr, Rosenberg, Leitner, & Dust-
dar, 2009). Therefore, VRESCo users are divided
into different user groups. Event visibility can
then be defined according to the event visibilities
shown in Table 3.

It is interesting to note that in our work the
event publisher is enabled to define the visibility
of her events. While one publisher might not want
that other users can see events (“PUBLISHER”),
another might not define any restrictions (“ALL”).
Additionally, user access to events can be granted
only to specific users (e.g., “anton“). Finally,
RBAC is introduced by either defining visibility
for all users of a specific group (e.g., “:admins”),
or all users within the same group as the publisher
(“GROUP”).

Besides defining event visibilities for differ-
ent users and groups, more fine-grained access
control is provided by allowing users to specify
event visibilities for specific event types. Clearly,

these definitions take the event type hierarchy into
consideration: If no event visibility is defined for a
specific event type, the engine takes the visibility
of the parent type. If there is no visibility for any
type the default visibility is chosen (i.e., ALL for
type VRESCoEvent).

The access control mechanism is enforced by
the eventing service and the notification manager
shown in Figure 6. On the one side, the eventing
service attaches both event visibility and name of
the publisher to the event before feeding it into
the Esper engine. While the name of the publisher
can be directly extracted from the request message
of the invoked VRESCo service (e.g., Querying-
Service), the event visibility of the publisher is
queried from the registry database.

On the other side, when events match subscrip-
tions the notification manager gets name and user
group of the subscriber from the subscription
storage and extracts publisher name and event vis-
ibility from the notification payload. Based on this
information, the notification manager can verify
if the current event is visible to the subscriber.
If the event is visible the subscriber is notified,
otherwise no notification is sent. Furthermore,
the event search also follows the same principle:
if events are not visible to the requester, they are
removed from the search result.

In our approach, publishers are able to specify
which subscribers can see which events by using
event visibilities. Therefore, event access is mainly
controlled by the publishers. Apart from that,
however, subscribers are able to specify which

Table 3. Event visibilities

Event Visibility Description

ALL Events are visible to all users

GROUP Events are visible to all users within the
same group of the publisher

PUBLISHER Events are visible to the publisher only

<:GroupName> Events are visible to all users within a
specific group

<Username> Events are visible to a specific user only

300

Event Processing in Web Service Runtime Environments

event producers they are interested in. This is
done by specifying the event attribute publisher
in the EPL subscription queries.

vResCo Runtime manager

Figure 8 shows a screenshot of the VRESCo Run-
time Manager GUI (displaying the implementation
of the TELCO case study). The service categories
and their services are listed in the left part of the
GUI that also provides a search interface for que-
rying services within the registry database. The
service revision graph of the selected service is
illustrated in the middle, showing identifier and
tags of the different service revisions. The initial
revision is always placed on the top of the graph
and the edges define the predecessor-successor
relationship. The details of the selected service
revision are shown in the right part including
revision tags, URL of the WSDL document and
current QoS parameters (e.g., response time, la-
tency, etc.). The table in the bottom right corner
depicts the service revision lifecycle represented

by all events related to this service revision (i.e.,
correlated using the same revision identifier) that
are visible to the current user. The table shows se-
quence number, timestamp and type of the events.

usage examples

In this section, we use our motivating example to
show how the VRESCo runtime is used to invoke
services, as well as how the event notification
support works in practice. The performance of
the event engine and further examples illustrating
the expressiveness of the subscription language
can be found in (Michlmayr, 2010).

Listing 1 illustrates how service proxies are
generated in VRESCo and how the Daios frame-
work is used to invoke services. In lines 2-3, the
VRESCo client factory is used to create a proxy
for the querying service running on port number
8001 on localhost. Service proxies in VRESCo are
defined using a search query that is constructed
in lines 6-8. In this example, we want to access
the latest service revision of category PhoneNum-

Figure 8. VRESCo runtime manager

301

Event Processing in Web Service Runtime Environments

berPorting from TELCO2 having a response time
of less than 500 milliseconds. In lines 12-13, the
service proxy is created using this selection while
the rebinding strategy PeriodicRebinding(10000)
means that the binding should be evaluated every
10 seconds. For instance, if a new revision is pub-
lished that better matches the selection, the service
proxy should automatically rebind to this revision.
In lines 16-22, the input message is built while
the service is actually invoked using the request/
response pattern in line 25. It should be noted that
Daios also supports one-way and asynchronous
invocation patterns. Finally, the number porting
confirmation is extracted from the output message
that is returned by the service (line 28).

Listing 1. Dynamic Binding and Invocation
01 // create proxy for the querying service
02 IVRESCoQuerier querier =
03 VRESCoClientFactory.

CreateQuerier(“localhost”, 8001);
04
05 // select service and new provider
06 string selection = “Service.Category.Name

like ‘PhoneNumberPorting’ and”
07 + ” Service.Owner.Name like

‘TELCO2’ and”
08 + ” Tag.Name like ‘LATEST’ and QoS.

ResponseTime < 500”;
09 Provider prov = new Provider(“TELCO1”,

“Main Street 1, A-1234 Vienna”);
10
11 // create service proxy with periodic

rebinding
12 D a i o s P r o x y p r o x y = q u e r i e r .

CreateRebindingProxy(
13 selection, new PeriodicRebinding

(10000));
14
15 // create input message
16 DaiosMessage inMsg = new DaiosMessage();
17 inMsg.SetString(“NumberToPort”, nr);
18 D a i o s M e s s a g e p r o v i d e r = n e w

DaiosMessage();

19 provider.SetString(“address”, prov.
Address);

20 provider.SetString(“name”, prov.name);
21 provider.SetLong(“id”, prov.Id);
22 inMsg.SetComplex(“NewProvider”,

provider);
23
24 // invoke service using request/response

pattern
25 DaiosMessage outMsg = proxy.

RequestResponse(inMsg);
26
27 // get response from output message
28 D a i o s M e s s a g e c o n f = o u t M s g .

getComplex(“Confirmation”);

The subscription procedure is shown in List-
ing 2. Again, it starts by creating a proxy for the
corresponding VRESCo service; this time it is the
subscription service running on localhost using
port number 11111.

The code listing shows three subscription
examples. The first one in lines 5-9 uses email
notifications to root@localhost when the EPL
query in line 6 is matched (i.e., every time a new
revision for service 17 is published). The last argu-
ment represents the duration of the subscription
in seconds (i.e., in this case, the subscription is
valid for 30 minutes).

The second example in lines 12-18 declares
interest if the availability of revision 23 is greater
than 99 percent which is valid until 31.12.2009.
In that case, a Web service notification should
be sent to net.tcp://localhost:8006/OnVRESCo-
Events. The second parameter in line 15 defines
where subscriptionEnd messages should be sent.

The third subscription in lines 21-27 demon-
strates statistical functions over event streams and
the sliding window operator which are supported
by Esper. In this example, the property Response-
Time of QoSOperationEvents regarding service
operation 33 of service revision 47 is inspected
within a time frame of 12 hours. If the average
response time is greater than 500 milliseconds

302

Event Processing in Web Service Runtime Environments

any time before 20.09.2009 at 20:09, notifications
should be sent per email.

In all three examples, the subscription identifier
sid is returned by the subscription service. This
identifier can be used to get the status, renew, or
unsubscribe from this subscription. Furthermore,
the notification payload also contains this identifier
so that event consumers can correlate notifications
to subscriptions.

Listing 2. Subscription Examples
01 IVRESCoSubscriber subscriber =
02 VRESCoClientFactory.

CreateSubscriber(“localhost”, 11111);
03
04 // subscribe using email notifications
05 I d e n t i f i e r s i d = s u b s c r i b e r .

SubscribePerEmail(
06 “select * from RevisionPublishedEvent

where Service.Id = 17”,
07 “root@localhost”,
08 60 * 30
09);
10
11 // subscribe using Web service notifications
12 sid = subscriber.SubscribePerWS(
13 “select * from QoSRevisionEvent “+
14 “where Revision.Id = 23 and

Property=’Availability’ and Value >
0.99”,

15 “net.tcp://localhost:8005/
SubscriptionEndTo”,

16 “net.tcp://localhost:8006/
OnVRESCoEvents”,

17 new DateTime(2009, 12, 31)
18);
19
20 // use sliding window and statistics
21 sid = subscriber.SubscribePerEmail(
22 “select * from QoSOperationEvent”+
23 “(Revision.Id=47 and Operation.Id=33

and Property=’ResponseTime’) “+

24 “.win:time(12 hours).stat:uni(‘Value’)
where average > 500”,

25 “root@localhost”,
26 new DateTime(2009, 9, 20, 20, 9, 0)
27);

Finally, Listing 3 illustrates a concrete use
case for the notification support demonstrating
notification-based rebinding as opposed to the
periodic rebinding exemplified in Listing 1. Using
notifications the rebinding of service proxies can
now be forced as soon as the given subscription
matches (line 5). In VRESCo, event consumers
have to implement the interface IEventNotifica-
tion (line 1) that defines the event handler method
Notify (lines 3-6). This handler method provides
access to the subscription identifier and to the
actual events.

Listing 3. Notification-based Rebinding
01 public class EventSink: IEventNotification

{
02
03 public void Notify(VRESCoEvent[]

newEven t s , VRESCoEven t []
oldEvents,

04 string subscriptionId) {
05 proxy.ForceRebinding();
06 }
07
08 }

FuTuRe TRends

In this chapter, we have presented the founda-
tional work on event notification support in the
VRESCo runtime environment. There are several
application scenarios and research directions that
are enabled by this work:

• Provenance-aware Applications: Provenance
is an important issue that enables (especially

303

Event Processing in Web Service Runtime Environments

in service-oriented systems) assertions on
who did what in applications or business
processes. Based on the availability of event
data, provenance information can be gath-
ered and used to proof compliance with cer-
tain regulations (e.g., laws, standardized pro-
cesses, etc.) which is addressed by (Curbera,
Doganata, Martens, Mukhi, & Slominski,
2008). Complementary to this work, we have
introduced the notion of service provenance
which defines provenance information of
services (Michlmayr, Rosenberg, Leitner, &
Dustdar, 2009).

• SLAs and Service Pricing: Service pric-
ing models receive increasing attention as
more and more services become available.
In this regard, service usage can be auto-
matically billed to the user account accord-
ing to the agreed pricing model. The pric-
ing is also influenced by the SLA defined
between the interacting partners, possibly
resulting in penalties if providers cannot
meet the SLAs. Using event information
stored in the event database, the billing
information can be easily aggregated for
given time periods by issuing queries over
the event database. This allows flexible
derivation of pricing models based on dy-
namically negotiated SLAs.

• Event-based Composition: The aim of
SOA often is to achieve higher level busi-
ness goals by composing multiple services
possibly considering QoS attributes (Zeng,
Benatallah, Ngu, Dumas, Kalagnanam, &
Chang, 2004). Ideally, this composition
should be dynamic in order to allow replac-
ing services if there are alternative services
performing the same task. The metadata
model described earlier allows defining
the differences between similar services
that can then be used to mediate between
services at runtime. In this regard, events
may trigger the composition process. For
instance, if the response time of some ser-

vice operation goes beyond a given thresh-
old (which is highlighted by QoS events)
the composition engine should restructure
the composition using an alternative ser-
vice providing the same operation. A com-
plementary service composition approach
using content-based publish/subscribe to
automatically detect the compatibility of
services is presented in (Hu, Muthusamy,
Li, & Jacobsen, 2008).

ConClusion

In typical SOA environments, functional and
non-functional properties of services change
regularly. Since service providers and consum-
ers are usually loosely coupled, the latter are not
informed about such changes and may not be
able to access changed services any more. Cur-
rent registry standards provide basic support for
event notifications when registry data changes.
However, this does not include QoS attributes
and runtime information concerning binding and
invocation of services.

In this chapter, we have presented an event
notification mechanism for service runtime
environments that supports such information.
Furthermore, temporal relation between events
can be considered using sliding window operators
and event patterns. Subscribers can be notified
about events using emails or Web service noti-
fications following WS-Eventing. Our approach
was integrated into the VRESCo runtime which
supports dynamic binding and invocation of
services, service versioning, service metadata,
and a registry database including publishing
and querying services. Additionally, we have
shown how the core VRESCo features and the
notification support are used in practice. Finally,
we have sketched different application scenarios
and future research directions that are enabled
by our approach.

304

Event Processing in Web Service Runtime Environments

ReFeRenCes

Arasu, A., Babcock, B., Babu, S., Cieslewicz,
J., Datar, M., & Ito, K. (2008). STREAM: The
Stanford Data Stream Management System. In
Garofalakis, M., Gehrke, J., & Rastogi, R. (Eds.),
Data Stream Management: Processing High-
Speed Data Streams. Berlin, Germany: Springer.

Cugola, G., & di Nitto, E. (2008). On adopting
Content-Based Routing in service-oriented archi-
tectures. Information and Software Technology,
50(1-2), 22–35. doi:10.1016/j.infsof.2007.10.004

Cugola, G., & Picco, G. P. (2006). REDS: a re-
configurable dispatching system. In Proceedings
of the 6th International Workshop on Software
Engineering and Middleware (SEM’06) (S. 9-16).
Portland, OR: ACM Press.

Curbera, F., Doganata, Y. N., Martens, A., Mukhi,
N., & Slominski, A. (2008). Business Prov-
enance - A Technology to Increase Traceability
of End-to-End Operations. In Proceedings of the
16th International Conference on Cooperative
Information Systems (CoopIS’08) (S. 100-119).
Monterrey, Mexico: Springer.

EsperTech. (2008). Esper Reference Documenta-
tion. Retrieved August 25, 2008, from http://esper.
codehaus.org/

Eugster, P. T., Felber, P. A., Guerraoui, R., &
Kermarrec, A.-M. (2003). The Many Faces of
Publish/Subscribe. ACM Computing Surveys,
35(2), 114–131. doi:10.1145/857076.857078

Hu, S., Muthusamy, V., Li, G., & Jacobsen, H.-A.
(2008). Distributed Automatic Service Composi-
tion in Large-Scale Systems. Proceedings of the
2nd International Conference on Distributed
Event-Based Systems (DEBS’08) (S. 233-244).
Rome: ACM Press.

Jobst, D., & Preissler, G. (2006). Mapping clouds
of SOA- and business-related events for an en-
terprise cockpit in a Java-based environment. In
Proceedings of the 4th International Symposium on
Principles and Practice of Programming in Java
(PPPJ’06) (S. 230-236). Mannheim, Germany:
ACM Press.

Leitner, P., Michlmayr, A., Rosenberg, F., & Dust-
dar, S. (2008). End-to-End Versioning Support for
Web Services. In Proceedings of the International
Conference on Services Computing (SCC’08).
Honolulu, HI: IEEE Computer Society.

Leitner, P., Rosenberg, F., & Dustdar, S. (2009).
Daios - Efficient Dynamic Web Service Invoca-
tion. IEEE Internet Computing, 13(3), 72–80.
doi:10.1109/MIC.2009.57

Li, G., Cheung, A., Hou, S., Hu, S., Muthusamy,
V., Sherafat, R., et al. (2007). Historic Data Ac-
cess in Publish/Subscribe. In Proceedings of the
Inaugural International Conference on Distrib-
uted Event-Based Systems (DEBS’07) (pp. 80-84).
Toronto, Canada: ACM Press.

Luckham, D. C., & Vera, J. (1995). An Event-
Based Architecture Definition Language. IEEE
Transactions on Software Engineering, 21(9),
717–734. doi:10.1109/32.464548

Mahambre, S. P., Kumar, M. S., & Bellur, U.
(2007). A Taxonomy of QoS-Aware, Adaptive
Event-Dissemination Middleware. IEEE In-
ternet Computing, 11(4), 35–44. doi:10.1109/
MIC.2007.77

Michlmayr, A. (2010). Event Processing in QoS-
Aware Service Runtime Environments, PhD
Thesis, Vienna University of Technology.

Michlmayr, A., Rosenberg, F., Leitner, P., & Dust-
dar, S. (2008). Advanced Event Processing and
Notifications in Service Runtime Environments. In
Proceedings of the 2nd International Conference
on Distributed Event-Based Systems (DEBS’08)
(pp. 115-125). Rome: ACM Press.

305

Event Processing in Web Service Runtime Environments

Michlmayr, A., Rosenberg, F., Leitner, P., &
Dustdar, S. (2009). Service Provenance in QoS-
Aware Web Service Runtimes. In Proceedings of
the 7th International Conference on Web Services
(ICWS’09), (S. 115-122). Los Angeles: IEEE
Computer Society.

Michlmayr, A., Rosenberg, F., Platzer, C., Treiber,
M., & Dustdar, S. (2007). Towards Recovering
the Broken SOA Triangle - A Software Engineer-
ing Perspective. In Proceedings of the Second
International Workshop on Service Oriented
Software Engineering (IW-SOSWE’07) (pp. 22-
28). Dubrovnik, Croatia: ACM Press.

Mühl, G., Fiege, L., & Pietzuch, P. (2006). Dis-
tributed Event-Based Systems. Berlin, Germany:
Springer-Verlag.

OASIS International Standards Consortium.
(2005a). ebXML Registry Services and Protocols.
Retrieved August 22, 2008, from http://oasis-open.
org/committees/regrep

OASIS International Standards Consortium.
(2005b). Universal Description, Discovery and
Integration (UDDI). Retrieved August 22, 2008,
from http://oasis-open.org/committees/uddi-spec/

OASIS International Standards Consortium.
(2006). Web Services Notification (WS-Notifi-
cation). Retrieved August 22, 2008, from http://
www.oasis-open.org/committees/wsn

Papazoglou, M. P., Traverso, P., Dustdar, S., &
Leymann, F. (2007). Service-Oriented Computing:
State of the Art and Research Challenges. IEEE
Computer, 40(11), 38–45.

Rosenberg, F., Celikovic, P., Michlmayr, A.,
Leitner, P., & Dustdar, S. (2009). An End-to-End
Approach for QoS-Aware Service Composition.
In Proceedings of the 13th IEEE International
Enterprise Computing Conference (EDOC’09).
Auckland, New Zealand: IEEE Computer Society.

Rosenberg, F., Leitner, P., Michlmayr, A., &
Dustdar, S. (2008). Integrated Metadata Sup-
port for Web Service Runtimes. In Proceedings
of the Middleware for Web Services Workshop
(MWS’08) (S. 24-31). Munich, Germany: IEEE
Computer Society.

Rosenberg, F., Platzer, C., & Dustdar, S. (2006).
Bootstrapping Performance and Dependability
Attributes of Web Services. In Proceedings of
the IEEE International Conference on Web Ser-
vices (ICWS’06), (pp. 205-212). Chicago: IEEE
Computer Society.

Rozsnyai, S., Vecera, R., Schiefer, J., & Schatten,
A. (2007). Event Cloud - Searching for Correlated
Business Events. In Proceedings of the 9th IEEE
International Conference on E-Commerce Tech-
nology and The 4th IEEE International Confer-
ence on Enterprise Computing, E-Commerce and
E-Services (CEC-EEE’07) (S. 409-420). Tokyo,
Japan: IEEE Computer Society.

Sayre, R. (2005). Atom: The Standard in Syndi-
cation. IEEE Internet Computing, 9(4), 71–78.
doi:10.1109/MIC.2005.74

Treiber, M., & Dustdar, S. (2007). Active Web
Service Registries. IEEE Internet Computing,
11(5), 66–71. doi:10.1109/MIC.2007.99

Weerawarana, S., Curbera, F., Leymann, F., Storey,
T., & Ferguson, D. F. (2005). Web Services Plat-
form Architecture: SOAP, WSDL, WS-Policy, WS-
Addressing WS-BPEL, WS-Reliable Messaging,
and More. Upper Saddle River, NJ: Prentice Hall.

World Wide Web Consortium. (2006). Web Ser-
vices Eventing (WS-Eventing). Retrieved August
22, 2008, from http://www.w3.org/Submission/
WS-Eventing/

Zeng, L., Benatallah, B., Ngu, A. H., Dumas, M.,
Kalagnanam, J., & Chang, H. (2004). QoS-Aware
Middleware for Web Services Composition. IEEE
Transactions on Software Engineering, 30(5),
311–327. doi:10.1109/TSE.2004.11

306

Event Processing in Web Service Runtime Environments

key TeRms and deFiniTions

Service: Services are autonomous, platform-
independent entities that can be described, pub-
lished, discovered, and loosely coupled in novel
ways. They perform functions that range from
answering simple requests to executing sophisti-
cated business processes requiring peer-to-peer
relationships among multiple layers of service
consumers and providers. Any piece of code and
any application component deployed on a system
can be reused and transformed into a network-
available service.

Service Registry: Service registries provide
repositories of services which contain service
descriptions and additional service metadata.
Services are published into registries by service
providers, while service consumers query these
repositories to find services of interest.

Service Provider: Services are provided and
maintained by service providers which represent
the owner of the service that define who is able
to consume these services. Service providers may
guarantee functional and non-functional Quality
of Service (QoS) attributes which can be defined
in Service Level Agreements (SLA).

Service Consumer: Services are invoked by
service consumers in various ways. This can range
from single invocations to invocations as part
of a complex business processes. The technical
service descriptions which are necessary to invoke
services are found in service registries.

Event: Events represent situations, detectable
conditions or state changes which trigger notifica-
tions (e.g., a service has changed in the registry).

Notification: Notifications are messages
which are triggered by the occurrence of events.

These notifications are sent to all event consumers
that have previously subscribed to the correspond-
ing events.

Subscription: Subscriptions are used to de-
clare interest in different events. This can range
from simple topic-based subscriptions where
events are grouped into different topics, over
type-based subscriptions where events are part
of event type hierarchies, to content-based sub-
scriptions which enable fine-grained control over
event attributes.

Event Producer: Event producers (also called
event sources or publishers) are those entities that
detect and finally publish events.

Event Consumer: Event consumers (also
called event sinks) are those entities that receive
notifications when certain events of interest occur.
It should be noted that subscribers (i.e., the entity
that creates subscriptions) and event consumers
can represent different entities.

Event Engine: The event engine (also called
event-based infrastructure) is responsible for
managing subscriptions and matching of incom-
ing events to stored subscriptions. If subscriptions
match incoming events, the corresponding event
consumers are notified.

endnoTes

1 http://servicemix.apache.org
2 http://vresco.sourceforge.net
3 http://www.codeproject.com/KB/WCF/

WSEventing.aspx
4 http://www.nhibernate.org

