
On Controlling Elasticity of Cloud

Applications in CELAR

Georgiana Copil, Daniel

Moldovan, Hung Duc Le,

Hong-Linh Truong,

Schahram Dustdar

Chrystalla Sofokleous, Nicholas

Loulloudes, Demetris Trihinas,

George Pallis, Marios D.

Dikaiakos

Ioannis Giannakopoulos,

Nikolaos Papailiou, Ioannis

Konstantinou, Dimitrios

Tsoumakos

Distributed Systems Group,

Vienna University of

Technology, Austria

{e.copil, d.moldovan, d.le,

truong, dustdar}

@dsg.tuwien.ac.at

Computer Science Department,

University of Cyprus

 {stalosof, loulloudes.n, trihinas,

gpalis, mdd} @cs.ucy.ac.cy

Computing Systems Laboratory,

National University of Athens

{ggian, npapa, ikons,dtsouma}

@cslab.ece.ntua.gr

Craig Sheridan
FLEXIANT

csheridan@flexiant.com

Christos KK Loverdos,

Evangelos Floros

Greek Research and Technology

Network, Greece

{efloros, loverdos}@grnet.gr

Kam Star
Playgen

kam@playgen.com

Wei Xing
CRUK Manchester Institute

wei.xing@cruk.manchester.ac.uk

ABSTRACT

Today’s complex cloud applications are composed of multiple components executed in multi-cloud

environments. For such applications, the possibility to manage and control their cost, quality and

resources elasticity is of paramount importance. However, given that the cost of different services offered

by cloud providers can vary a lot with their quality/performance, elasticity controllers must consider not

only complex, multi-dimensional preferences and provisioning capabilities from stakeholders, but also

various runtime information regarding cloud applications and their execution environments. In this

chapter, we present the elasticity control approach of the EU CELAR Project, which deals with multi-

dimensional elasticity requirements and ensures multi-level elasticity control for fulfilling user

requirements. We show the elasticity control mechanisms of the CELAR project, from application

description to multi-level elasticity control. We highlight the usefulness of CELAR’s mechanisms for

users, who can use an intuitive, user-friendly interface to describe and then to follow their application

elasticity behavior controlled by CELAR.

Key words: elasticity, multi-level control, cloud application, analysis, CELAR, c-Eclipse, rSYBL

1 INTRODUCTION

With the popularity and diversity of cloud-based solutions from cloud providers and application

providers/developers, there is a considerable need to customize these solutions and to provide cloud users

with fine-grained mechanisms of controlling their cloud applications.

Many existing frameworks allow the specification of various cloud application-related

information, like the cloud application complex structure (e.g., Di Nitto et al. (2013)) and functional

requirements (e.g., Di Cosmo et al. (2013)) when deploying the cloud application on the cloud. Moreover,

many tools are capable of describing and deploying cloud applications (e.g., Binz et al. (2013)) on

different cloud infrastructures. The requirements of the cloud application stakeholders differ and depend

on a number of variables, e.g., the cost of the cloud application reported to the number of clients, or the

various cloud application quality parameters (e.g., a banking cloud application differs greatly in

requirements from a scientific cloud application). However, current state-of-the-art on elasticity control

techniques require the specification of low-level, detailed information. For instance, Auto Scale

applications provided by Amazoni, Rackspaceii, Azureiii or RightScaleiv enable users to specify, for each

Virtual Machine they are using, scaling policies, depending on IaaS-level metrics. Proposed frameworks

take into consideration cloud application level metrics, e.g., response time, but do not allow users to

specify their requirements, the optimization factor being defined in an ad-hoc manner (e.g., equilibrium

between the cost and response time) (e.g., Serrano et al. (2013), Simjanoska et al. (2013)).

The concept of multi-dimensional elasticity, covering resources elasticity, cost elasticity and

quality elasticity (see Dustdar et al. (2011)) and the relations among them, shows how complex the

elasticity control of cloud applications actually is. Such a concept facilitates custom cloud application

elasticity depending on what a cloud application stakeholder (e.g., service provider) actually needs. A

visual representation of the elasticity dimensions is shown in Figure 1, each of the main dimensions, cost,

resource and quality being further decomposed into storage cost and network cost, CPU and memory, and

respectively quality of data and performance. Elasticity is defined as the relationship among these

dimensions, in time, which change for fulfilling user’s elasticity requirements. Considering that

distributed cloud applications have complex structures, each component having such complex elasticity

behavior in time, we can affirm that elasticity controllers face challenging tasks in managing such

applications.

Figure 1: Cloud Service Elasticity Dimensions

For controlling elasticity of cloud services, several challenges need to be addressed:

i. Enabling the application stakeholders to specify elasticity requirements, encapsulating

what is a proper application elasticity behavior is, as various users would evaluate

subjectively whether their cloud applications are behaving properly (e.g., depending on

the business perspective, the allocated cost, or intended QoS for clients)

ii. Managing elasticity control at multiple application levels (e.g., components, groups of

components or even application level) for fulfilling user’s elasticity requirements

iii. Enforcing the elasticity control in a generic manner, on different types of cloud

infrastructures, enabling stakeholders to obtain elastic applications on their preferred

clouds

In this chapter, we present elasticity control techniques developed in the EU CELAR Projectv for

addressing above challenges. Our techniques enable cloud application stakeholders to specify the

requirements at different levels of granularities, for controlling cloud applications at multiple levels,

applying different types of elasticity control mechanisms suited for data-intensive or compute-intensive

parts of the cloud application. CELAR control techniques take real-time decisions for cloud application

adaptation to meet user (any application stakeholder, e.g., application developer, or service provider)

elasticity requirements, facilitating an automatic adaptation process of the cloud application to “outside”

stimuli (e.g., workload, increasing cost, or decreasing quality) without the need of user intervention.

Moreover, not only real-time adaptation decisions are enforced but also smart deployment of the cloud

application, considering cloud providers applications and estimated cost with respect to quality and

performance.

The rest of this chapter is organized as follows: Section 2 presents related work. In Section 3 we

present CELAR users and their possible requirements with regard to the elasticity control, in Section 4 we

present our elasticity specification language and show how CELAR’s user interface component facilitates

the description of multi-level elasticity requirements. The next section, Section 5, presents the conceptual

architecture of the CELAR elasticity control module, and its techniques. We present experiments in

Section 6, a discussion on control frameworks in Section 7 and conclude the chapter in Section 8.

2 RELATED WORK

In this section, we take a look at current cloud application elasticity status quo regarding cloud

application control. We present the elasticity capabilities of cloud providers which are part of the CELAR

project, both on data and on computing resources. Next, we focus on computing resource and data

resource elasticity control, and compare the state of the art with what we do for controlling elasticity in

CELAR. Finally, we take a look at higher, and multiple level application control existent in literature, and

compare our approach with them.

2.1 Computing and Data Resources Low-level Controls

We firstly consider the possibilities of runtime reconfiguration offered by the CELAR cloud

providers, Flexiantvi and ~okeanosvii. Table 1 presents the fundamental control mechanisms available for

computing and network resources, while Table 2 presents data elasticity control mechanisms. Although

they have different names for the applications being offered (e.g., VM and Server refer to Virtual

Machine), they have similar offerings. For instance, common elasticity control mechanisms are

create/start/reboot VM, with minor differences e.g., Flexiant FCO offers Bento Boxes which are complex

clusters which can be deployed as a group, while ~okeanos offers the opportunity of constructing

arbitrary network topologies. Other big cloud providers (e.g., Googleviii, Azureix, or Amazonx) typically

offer similar capabilities, in the sense of VM and disk level horizontal or vertical scaling, with variations

on hot-pluggable capabilities. Although they currently offer low-level capabilities, there is a considerable

effort towards offering services between IaaS and PaaS, e.g., Google managed VMsxi, part of their PaaS

services, facilitate automated management similar with the management offered for manually created

VMs.

Table 1: Computing Resources Control Mechanisms

Provider Elasticity

Capability

Description

~okeanos Create New VM Creates a new Virtual Machine from an existing image

Start VM Starts an already created virtual machine, booting the OS

Shutdown VM Shuts down the operating system and stops the VM

Reboot VM Performs an OS restart

Destroy VM Deletes the VM

Initialize VM

Configuration

Number of CPUs, Size of RAM, System disk, OS, Network

connectivity (dual IPV4/IPV6),

Create private

virtual L2 network

Creating a subnet (e.g., for constructing arbitrary network

topologies)

Flexiant

FCO

Create Bento Box Template entire complex clusters and deploy at the click of

a button

Add/ Remove

compute nodes to

cluster

Flexiant offers the possibility of grouping compute nodes

into clusters which are controlled/monitored as a group

Initialize Server

Configuration

Number of CPUs, Size of RAM, System disk, OS, Network

connectivity (dual IPV4/IPV6), user, password,

contextualization information

Create Server Creates a new server from an existing image

Start Server Starts an already creating server, booting the OS

Duplicate Server When Server A is duplicated, a new server (Server B) is

created, and the initial configuration of Server A is applied

to Server B

Shutdown Server Shuts down the operating system and stops the Server

Reboot Server Performs an OS restart

Destroy Server Deletes the Server

Manage Firewalls Add/remove/configure firewalls for the server

Manage Chef

Settings for Server

Edit chef account settings

Create/Manage

Virtual Data

Center

Virtual Data Center is a logical grouping of servers

Application

Specific

Configure software

x with

configuration y

Configure software which is part of the application or on

which the application depends, in order to have different

quality/performance/cost parameters for the application.

Table 2: Data Elasticity Control Mechanisms

Provider Elasticity Capability Description

~okeanos Storage

Configurations

Local, distributed and centralized, out of which both

SAN, NAS

Volume creation Create volume with specified size

Volume deletion Delete specified volume

On-the-air attachment

of volume

Attach volume to existing computing node (VM),

without the need of rebooting the node

On-the-air de-

attachment of volume

De-attach volume from existing computing node (VM)

without the need of rebooting the node

Snapshotting existing

volume

Create a snapshot of the specified volume (available

copy-on-write of snapshotable volumes)

Hashing snapshots Facilitates deduplication, thus reducing the storage

cost of each hashed object

Resizing existing

volume

Resize volume to specified size

Flexiant

FCO

Storage

Configurations

Three types of storage: local, distributed and

centralized, out of which both SAN, NAS

Create disk Create disk with specified size

Remove disk Remove specified disk

Snapshot disk Take a snapshot of the disk

Add the disk to a new

or existing deployment

instance

Add existing disk to a deployment instance (group of

servers)

Data

Specific

Clean Data Remove data which is not valid for improving the data

completeness and data access performance

Move Data Move data from one disk to another, from one block to

another, etc.

Other Data Specific

Control Mechanisms

Reconfigure data in different other ways

Application

Specific

Configure software x

with configuration y

Configure software which is part of the application or

on which the application depends, in order to have

different quality/performance/cost parameters for the

application.

2.2 Computing Resource Elasticity Control

To leverage the low-level elasticity capabilities of cloud infrastructures, several controllers have

been developed. Current computing elasticity controllers such as Amazon AutoScalingi, Paraleap

AzureWatchxii and RightScalexiii can scale – automatically and seamlessly – large Cloud applications.

However, their controlling actions are limited to only scaling horizontally the tiers of an application based

on a small number of low-level metrics (e.g., CPU usage and memory usage). For a simple web

application, such elasticity controllers are capable of only scaling the application server tier and the

distributed database backend by adding/removing virtual instances, when predefined thresholds are

violated. Moreover, for large-scale applications, in order to reduce costs and match the current demand,

one requires from elasticity controllers to apply various complex adaptation mechanisms, which we refer

to as elasticity control plans. These mechanisms are required to carefully assess the actual application

logic with respect to its internal dependencies and (implicit) requirements towards the cloud provider

APIs, including communication, consistency management and scheduling. Overall, managing elasticity of

cloud applications by using the most popular mechanisms of computing resources control is not a trivial

task. For small-scale application deployments, organizations can (de-) allocate resources manually, but

for large-scale distributed applications which require a deployment comprised of multiple virtual

instances, which often have complex inter-dependencies, this task must be done, inevitably,

automatically.

To facilitate complex adaptation mechanisms, an elastic compute resource provisioning system

must not limit its decisions based on low-level monitoring information. Instead, it is required to assess

heterogeneous types of monitoring information of different granularity, from low-level system metrics

(e.g., CPU, memory, network utilization) to high-level application specific metrics (e.g., latency,

throughput, availability), which are collected across multiple levels (physical, virtualization, application

level) in a Cloud environment at different time intervals, as Trihinas et al. (2014) do. To accommodate

these limitations, our work incorporates JCatascopia (presented in detail in Trihinas et al. (2014)), a fully-

automated, multi-layer, interoperable cloud monitoring system which provides access to monitoring

information through its REST API.

To enforce complex adaptation mechanisms, decisions originating from an elasticity controller

must also be aware of what are the offerings and limitations of the underlying IaaS provider. Specifically,

the controller must consider: (i) what are the resizing actions permitted per resource and (ii) the quotas for

each user/tenant. Knowing the elasticity capabilities of each IaaS resource is of extreme importance when

determining which elasticity mechanism should be enforced. For example, let us consider two IaaS

providers (Provider A and Provider B) where only the first provider offers users the capability of

vertically scaling virtual instances by allocating more memory, while both offer horizontally scaling

capabilities. If we consider a three-tier web application deployed on Provider B, the control mechanism

can only scale horizontally the Application Server Tier when memory utilization increases. For Provider

A though, the decision-making mechanism can take advantage of Provider A’s extra capabilities and

decide upon either scaling horizontally the Application Server Tier or, enlarging the allocated memory of

existing instances. This approach takes cost into consideration since resizing existing VM(s) may be

cheaper than constantly initializing small virtual instances. Additionally, it is important for elasticity

controllers to also consider the per tenant quotas such as: (i) the total capacity of resources that a tenant

can allocate; and (ii) the multiplicity of resources that can be concurrently allocated at any given time. In

continuation of the previous example, if the permitted number of allocated VMs per tenant is low, our

application deployed on Provider B will face quota problems when scaling to satisfy very high demands,

whereas for Provider A, an intelligent elasticity controller can scale the application both vertically and

horizontally to satisfy an even higher demand. To accommodate these limitations, our work constructs an

information management tool (described in detail in Trihinas et al. (2013)) which provides access to IaaS

specific information.

The inherent dynamicity in the run-time topology of elastic cloud applications raises several

issues in run-time control. As elastic applications scale out/in due to elasticity requirements, their

underlying virtual infrastructure is subject to run-time changes due to additional/removal of virtual

resources (e.g., virtual machines). Thus, cloud application monitoring must avoid associating monitoring

information only with virtual resources, as these resources are volatile, and are not present for the whole

lifetime of the application. For example, when the application usage is low, one application component

could use only one virtual machine, but during peak times would allocate more resources, and deallocate

them when load decreases. The other extreme of monitoring just the application level metrics (e.g,

response time) is also insufficient, as such high level metrics do not give any indicator on the performance

of the underlying virtual infrastructure. Thus, systems for monitoring elastic cloud applications must

follow a multi-level monitoring approach. Both virtual infrastructure and application level monitoring

data must be collected, and structured according to application’s logical structure, as done by Moldovan

et al. (2013). Evaluating the cost of an application running in a cloud environment is challenging due to

the diversity and heterogeneity of pricing schemes employed by various cloud providers (e.g., Provider A

may charge per I/O operation, while Provider B might charge only per storage size). This heterogeneity

generates a gap between the monitoring metrics collected by a monitoring system and the metrics targeted

by cloud billing schemes. Moreover, evaluating the cost of the application requires information about

particular cloud pricing schemes, information that cannot be monitored directly by a cloud monitoring

system. To address these issues, our work provides MELA (Moldovan et al. (2013)), which uses

monitoring information collected from cloud monitoring tools and the cloud application structure, to

provide a cross-layered, multi-level view over the performance and cost of elastic cloud applications.

2.3 Data Resources Elasticity Control

Data-related elasticity controls of cloud application usually entail, at system level,

removal/addition of data nodes in clusters of data. Elastically scaling data resources in the cloud requires

a data-aware approach in order to obtain the full benefit of extra added resources. The first and most

important thing that needs to be addressed during resource adjustment is uneven data distributions: when

data nodes join or leave from a data-storage component, they create imbalances in the initial data

distribution. Even when resources do not change, unpredictable data access patterns often create

unbalanced distributions that degrade performance. In that cases, load balancing approaches that

redistribute data between nodes are necessary.

 Consistent hashing techniques described by Karger et al. (1997) are a common and effective

solution for data control. The majority of modern NoSQL stores (e.g., Lakshman et al. (2010), DeCandia

et al. (2007)) make use of such techniques to equally allocate data and incoming requests to the available

nodes. Although hashing initially solves the data to machines allocation problem, there are many

situations in which this proves suboptimal. Hashing destroys locality and thus, it cannot be employed in

situations where semantically close items need to be stored in an order-preserving way. When an order-

preserving partitioner is desired, different load balancing schemes need to be devised in order to support

range queries. Range queries are present in many popular applications. Therefore, algorithms and systems

which handle this case are of great importance. In the literature, there are many load balancing algorithms

(e.g., Bharambe et al. (2004), Aspnes et al. (2004), Ganesan et al. (2004), Karger et al (2004),

Konstantinou et al. (2011)) which support range queries.

The need to support range queries highlights another problem which belongs to the load

balancing family. Although data placement can be balanced, there may be imbalances in the data request

load. Ananthanarayanan et al. (2011) show that in a highly skewed data access distribution, where a small

portion of popular data may get the majority of the applied load, the system performance may degrade

even in over provisioned infrastructures.

Dbalancer proposed by Konstantinou et al. (2013) is a generic and automated system, offering

load balancing in NoSQL datastores, which we choose to use and extend. Dbalancer is a generic

distributed module that performs fast and cost-efficient load balancing on top of any distributed NoSQL

datastore. The two main features of Dbalancer are the datastore and algorithm abstraction. Dbalancer is

completely independent of the underlying NoSQL datastore.

2.4 Complex Service Elasticity Control

Schatzberg et al. (2012) raise issues that appear in cloud elasticity control and outline that in

cloud computing elasticity is an important area of research, which will facilitate the development of

applications that would fully benefit from the advantages of cloud computing and from on-demand

resources allocation. The different perspectives of cloud applications performance/cost/quality

measurement are outlined by Li et al. (2012) who propose a list of categories of metrics which are used

for evaluating cloud applications. Their retrieved cloud application evaluation metrics are scattered over

three aspects of cloud applications: economics having as subdimensions cost and elasticity evaluation

metrics, performance with subdimensions communication, computation, memory, storage evaluation

metrics and security evaluation metrics. The abstract metrics are associated to measurable metrics for

easier grasp of reality and for being able to actually compute the abstract metrics.

Truong et al. (2010) estimate the cost of application hosting on the cloud considering different

sub-costs which may interfere during the lifetime of the application. Villegas et al. [Villegas 2012]

propose a framework for conducting empirical research in different IaaS clouds, comparing different

allocation and provisioning policies. The authors emphasize the importance of understanding the

performance and cost associated with different provisioning or allocation policies, for being able to

properly manage their application’s workloads.

Gonzalez et al. (2012) propose cloud infrastructure-level virtual machine management for

increasing the VM availability. The authors also provide a study on how different properties of the cloud

infrastructure affect the VM availability. Chaisiri et al. (2012) focus on the complexity of selecting cloud

applications under different provisioning plans, such as reservation and on-demand, defining an optimal

cloud resource provisioning algorithm that can provision resources in multiple provisioning stages. Using

deterministic equivalent formulation, sample-average approximation, and Benders decomposition, their

proposed solution minimizes the total cost of resource provisioning in cloud computing environments.

3 MOTIVATING SCENARIOS

We focus on user scenarios which we encountered in CELAR, namely: (i) the needs of a cancer

research application, and (ii) the requirements of a gaming application. For these cases, the applications

are designed such that they facilitate as many elasticity capabilities, in order to facilitate better elasticity

control.

3.1 Cancer Research Application

The first application, SCAN, shown in Figure 2 and described in detail in Xing et al. (2014), is a

cancer research application designed by the Cancer Research UK Manchester Institute, which analyzes

large-scale population genome data for helping doctors to determine personalized treatments. The SCAN

pipeline consists of four types of data processes: i) Genome data process; ii) Proteome data process; iii)

Cell Image data process; iv) Integrative network analysis. It employs a set of biological application tools

for those various data processes, such as Burrows-Wheeler Aligner (BWA) for gene alignment, Genome

Analysis Toolkit (GATK) for e.g., gene variations detection, The Global Proteome Machine for

proteomic data analyses, MaxQuant, CellProfiler for cell image analyses, or Cytoscape for data

integration.

Figure 2: SCAN Scientific Application

There are two major challenges regarding cloud-based deployments of such research pipelines.

First, different stages of the pipeline may require substantially different levels and types of resources. For

example, mapping of deep sequencing data to genome annotation via a relational database such as

ENSEMBLxiv relies on the ability to perform frequent joins across multiple tables containing millions of

rows, while computation of downstream statistics is often dependent on repeated numerical calculations

over permuted data. Second, a specific bio-component within a SCAN stage may have different resource

needs due to the size and complexity of the data for different SCAN runs. For example, SCAN mutation

detection process will take different time for various type of genome data, e.g., 4 CPU/hours for Whole

Exome Sequencing data (WES) or 10 CPU/hours for Whole Genome Sequencing (WGS) data.

To address the challenges described above, SCAN has been designed as an elasticity-ready bio-

computing application so that it can be intelligently orchestrated for adjusting resources to the various

situations which can be encountered. For instance, considering the fact that cancer diagnosis and

treatment is “time-sensitive”, sometimes doctors may need the result of SCAN for a patient in a particular

period. Therefore SCAN should be executed according to user specified priories. It is thus important to be

able to decide on the adequate amount and type of resources, depending on various metrics, e.g., available

money, desired time, or desired accuracy. Moreover, SCAN is comprised of a wide range of bio-

applications and may require a large amount of heterogeneous computing resources. The SCAN users

may need to query information about execution of bio-applications within different cloud infrastructures

in order to assist SCAN users to define, for example, policy of the execution.

Based on the application description above, our control will ensure the following: (i) deciding the

appropriate size of resources, (ii) ensuring predefined levels of service quality, (iii) ensuring that the

SCAN pipeline runs within desired costs, and (iv) deciding the concurrency level and appropriate time

periods of different stages. Moreover, since SCAN is comprised of pipes (i.e., components grouped

together), the control needs to facilitate the fulfillment of multi-level requirements (e.g., a specific pipe

needs to finish executing, with certain quality, before another pipe), and controlling high level metrics

(e.g., overall application cost, quality indicators over specific pipes).

The SCAN application needs to benefit from the on-demand storage capabilities offered by the

IaaS providers (~okeanosvii or Flexiantvi), as well as application-specific control mechanisms, this way

offering personalized treatments within time and cost constraints. SCAN performance and cost can be

customized according to real-time elasticity metrics, thus resulting in a personalized control of the

application. For understanding the relation between requirements regarding SCAN execution, and the

performance/cost obtained, CELAR’s user interface component can be used to browse historical

execution data. Moreover, cost and functionalities offered by different IaaS providers can be compared

and elasticity control actions taken during the execution of the SCAN pipeline can be analyzed.

3.2 Gaming Application

Playgen’s Data Play is a gaming application, shown in Figure 3 and described in detail in Cox et

al. (2014). The DataPlay application is designed with elasticity in mind. The main elasticity capabilities

designed and embedded in DataPlay are horizontal and vertical scaling of game components, such as the

Game Server, the Data Processing component, and the Data Access layer. For enforcing such

capabilities, implemented elasticity actions target both the virtual infrastructure (e.g., adding/removing

virtual machines), and the application level (e.g., reconfiguring load balancers or data storage).

Figure 3: DataPlay Application

Starting from industry known guidelines, Data Play requirements are response time<1.5
seconds, I/O Performance >= 100 MBps, and cost as small as possible. CELAR will analyze the

behavior of all Data Play components’ instances, and, leveraging on the embedded elasticity capabilities

of the Data Play, take appropriate actions to ensure the performance and reduce cost of running the Data

Play in cloud. Starting from the game requirements, our controller will extract system-level requirements

(e.g., CPU usage, memory usage, disk I/O performance) and application level requirements for the

individual game components. Having a complete view over system and application level requirements,

CELAR will monitor and enforce the supplied requirements using the game’s elasticity capabilities.

DataPlay is centered on users exploring data (Volatile and Persistent data), thus introducing data-related

elasticity concerns. Persistent data is static, or changed with a very low frequency (a couple times a year),

but it is frequently accessed, highlighting the need for data consistency. Volatile data is created for each

DataPlay user, and, for performance, holds temporary data .If a client is manipulating a dataset, then the

application treats that as a different table for speed reasons, but if the client’s session expires then that

table is destroyed. Therefore, for this application we have a continuous increase/decrease in data

depending on the client number, on the size of the datasets they are interested in and on the time they use

that data for.

Large volumes of data can also come in at any time, for instance from tweets and RSS feed

updates. However, the volatile data is copied for individual users depending on their interest and

gameplay. For this kind of data usage, data freshness is an important factor, as one needs to have as fresh

as possible trending-related data, especially if the data s/he uses has been cached for performance reasons.

4 ELASTICITY REQUIREMENTS SPECIFICATION

4.1 SYBL Overview

For describing what types of elasticity controls could be required, considering the complexity of

CELAR user’s elasticity requirements, we examine various types of elasticity requirements from different

stakeholders, at different granularities, presented in detail in Copil et al. (2013a). Elasticity requirements

are abstract or high level demands formulated by application stakeholders (e.g., application provider,

application developer) which affect the application pathway in the elasticity space presented in detail in

Moldovan et al. (2013). Although current state of the art (e.g., Amazon AutoScale) facilitates description

of low-level, infrastructure-related requirements, the application stakeholder should to be able to specify

requirements concerning more abstract metrics (e.g., the cost per application user that the stakeholder

needs to pay per hour).

SYBL is a language for elasticity requirements specification, having three types of constructs at

its core, enabling the specification of elasticity requirements: (i) MONITORING enables the designation

of different metrics or formulas of metrics which should be monitored; (ii) CONSTRAINT specifies the

desired state of the application, while (iii) STRATEGY specifies the desired behavior of the application

or of different application parts. More information regarding the SYBL language is available in Copil et

al. (2013a). SYBL allows the specification of elasticity requirements at three levels: application unit level

for component related elasticity requirements, service topology elasticity requirements related to groups

of components and application level for application related elasticity requirements. At service unit level,

the SYBL user (e.g., service provider, or service developer) can specify requirements for the component

which is of interest (e.g., for a business unit we can have STRATEGY CASE NumberOfClients<100
AND small(ResponseTime) : minimize (cost)). For service topology level, SYBL user can

specify higher level goals which target higher level metrics (e.g., CONSTRAINT DataAccessSkewness
< 90%), while at cloud service level s/he can specify complex requirements for the entire cloud service,

targeting the overall behavior of the cloud service (e.g., STRATEGY maximize (cost/clientNb))

The SYBL language is not tied to any specific implementation language (e.g., SYBL elasticity

requirements can be seen as Java annotations, C# annotations, or Python decorators). Moreover, the

SYBL elasticity requirements can be injected into any cloud application description language (e.g.,

TOSCA standard proposed by OASIS (2013)) or can be specified separately through XML description.

The current language interpretation mechanism is implemented in Java, and supports TOSCA-injected,

XML-based, or Java annotation-based elasticity requirements specification.

Figure 4 shows an excerpt from a TOSCA policy based specification, describing the constraint

that the cost for the PilotCloudService should be below 100$. The SYBL elasticity requirements can

be easily integrated within TOSCA policies, and interpreted by the CELAR Decision Module. When

discovering that this requirement is violate, the Decision Module will evaluate a series of possible actions

to be enforced for ensuring that the user’s requirements are fulfilled, as we show in Section 5.

We therefore facilitate the user to specify SYBL elasticity requirements with the help of CELAR

user interface, as part of the process of cloud application description, as presented below.

4.2 SYBL Elasticity Requirements Specification with c-Eclipse

To simplify the task of the developer, we integrate elasticity requirement specification into c-

Eclipse, which facilitates the user to describe his/her application, requirements for it and monitor

application evolution at runtime (c-Eclipse is described in detail in Sofokleous et al. (2014)). C-Eclipse

enables the specification of SYBL elasticity requirements and their injection into TOSCA XML

application descriptions. The TOSCA language does not directly specify how to define elasticity

requirements for Cloud applications. The way c-Eclipse achieves elasticity specification in TOSCA is by

making use of TOSCA’s Policy element. TOSCA defines “Policies” as the means by which we can

express non-functional behavior or quality-of-services for an application (see OASIS TOSCA

Specification (2013)). Thus, we make use of the two types of elasticity requirements defined in the SYBL

XML schema (Constraint and Strategy), and inject them into TOSCA as Policy elements of the

corresponding types.

Figure 5: Elasticity Requirements Specification with c-Eclipse

Figure 5 presents the Properties View of c-Eclipse, specifically the Elasticity Tab, through which

users can define the elasticity requirements of their application in an intuitive, user-friendly manner.

Users can use simple low level metrics offered by the platform, such as CPU Usage, to complex user-

defined metrics (e.g., cost/client/h), and specify the desired requirements for these metrics. They can also

<tosca:ServiceTemplate name=”PilotCloudService”>
<tosca:Policy name=”Co1” policyType=”SYBLConstraint”>

 Co1:CONSTRAINT Cost < 100\$
 </tosca:Policy>
 …
</tosca:ServiceTemplate>

Figure 4: SYBL Elasticity Requirement in TOSCA

define more complex metrics by combining simple metrics with mathematical operators to design new

metrics. Both types of metrics can be used to formulate the Constraints and Strategies for an application,

using the SYBL language defined in Copil et al. (2013). In this case, the user chooses to specify a

strategy which should be applied when a condition holds, i.e., when cost is sufficiently small, 1$, the

strategy of minimizing throughput should be applied. This takes into account that the throughput cannot

be minimized indefinitely, and that the stakeholders have a strict upper bound for the cost per hour which

shouldn’t be exceeded.

The user-specified elasticity requirements are automatically translated into XML SYBL

requirements which in turn are injected into the XML TOSCA description of the application. The code

snippet below reflects the elasticity Strategy specified through c-Eclipse, shown in Figure 6. In this

strategy, the user wants to maximize throughput for an application component (right side of Figure 5),

when the cost is less than 1 $/h (in the center of Figure 5, the “Apply Strategy under Condition” window).

Elasticity requirements can be linked to simple application components, composite components

or the entire application, depending on which graphical element from the application description is

selected when the user specifies the requirements.

5 MULTI-LEVEL AND MULTI-DIMENSIONAL ELASTICITY CONTROL

In this section we focus on the mechanisms used in CELAR for multi-level control of the cloud

application, for fulfilling user’s elasticity requirements.

5.1 CELAR Elasticity Control Overview

CELAR proposes application elasticity management, from deployment to runtime control, in an

automated fashion. CELAR targets the control of applications deployed in a single cloud. For each cloud

where the user has an account and at least one application deployed, consuming cloud provider resources,

CELAR deploys an orchestration instance (CELAR Orchestration VM in Figure 7), hosting all CELAR

components necessary for deploying, monitoring, analyzing and controlling application’s elasticity.

Figure 6: Elasticity strategy expressed through policy template by c-Eclipse

<tosca:PolicyTemplate type="pol:ElasticityStrategy" id="Throughput_Strategy">
<tosca:Properties>

 <sybl:StrategyProperties>
 <Condition>
 <BinaryRestrictionsConjunction Type="LessThan">
 <LeftHandSide>
 <Metric>cost</Metric>
 </LeftHandSide>
 <RightHandSide>
 <Number Metric="$/h" >1</Number>
 </RightHandSide>
 </BinaryRestrictionsConjunction>
 </Condition>
 <ToEnforce ActionName="Maximize" Parameter="Throughput"/>
 </sybl:StrategyProperties>

</tosca:Properties>
</tosca:PolicyTemplate>

Figure 7: Communication among CELAR Components

Figure 7 shows a snapshot of a CELAR-based deployment, containing all CELAR components,

the application which is being controlled and communication among them, with examples for ~okeanos

and Flexiant cloud providers. CELAR user first describes his/her application through c-Eclipse, in the

Application Description Tool. This description includes application topology, elasticity requirements at

the different levels of the cloud application, and specific artifacts of the application (e.g., web services, or

configuration scripts). All information from application description step is described using TOSCA

standard defined by OASIS Technical Committee (2013), the description together with the artifacts being

packed into a Cloud Application Archive (CSAR) and using the c-Eclipse Application Submission Tool,

the cloud provider is selected, the authentication information set and the cloud application deployment

call is sent to the CELAR Manager from the CELAR Orchestration VM on the selected cloud. For the

same user, we can have a single orchestration instance per cloud provider, which controls and monitors all

the user’s applications. The CELAR Manager has the mission of coordinating the communication among

CELAR modules: (i) it receives the cloud application archive from c-Eclipse, forwards it to decision

module in case the user needs suggestions regarding application configurations, and then sends it to

Resource Provisioner for allocating the necessary resources, (ii) whenever the Decision Module, which

controls the cloud application, decides that control processes need to be enforced for fulfilling user-

specified requirements, the CELAR Manager coordinates the enforcement of the generated action plan

with the Resource Provisioner.

The process of controlling the cloud application is depicted in Figure 8, from c-Eclipse

application description, to deployment configuration and elasticity control. Whenever the CELAR user

would like a more complex application configuration describing the resources used or with the software

artifacts to be deployed, it can ask, through c-Eclipse, for a smart deployment strategy, containing

complete information for deployment (e.g., resource configuration, or missing artifacts). After the

deployment, the application is monitored and analyzed continuously, and elasticity control is enforced for

fulfilling elasticity requirements.

Figure 8: Elasticity control process – from description to control

For analyzing and controlling the cloud service, we model various application-related information

into a dependency graph, based on the model published in Copil et al. (2013b), depicted in Figure 9. At

runtime, the information is represented as a dependency graph, with each concept instance (e.g.,

Composite Component) from the model being a node, while the relationships (e.g.,

hasElasticityCapabilities in Figure 9) are edges connecting them.

Figure 9: Cloud Application Model – Copil et al. (2013b)

The structural information captures components (e.g., NoSQL database node, or a tool in the

SCAN pipeline) and groups of semantically connected components into composite components (e.g.,

business layer, or a SCAN stage). To each of these, during runtime, are associated resources like

processes, virtual machines (equivalent to servers on Flexiant cloud), virtual clusters (equivalent to virtual

data centers in Flexiant).

5.2 Cloud Application Deployment Configuration

For configuring cloud application deployment, we have developed a service, SALSA (Le et al.

(2014)), generating smart deployment configurations, by analyzing application structure and elasticity

requirements. This service takes a high level application description, application profiling information,

and available cloud description information and generates a deployment configuration.

Figure 10 depicts the simple flow of generating a deployment plan from the high level application

description. When deciding whether or not they want to use smart deployment, the CELAR users consider

how complex the application is, and how familiar they are with the application. The trigger for a smart

deployment and necessary information is sent by c-Eclipse when a new application deployment or a re-

deployment of running components is needed.

Figure 10: Flow of Deployment Configuration

The input for SALSA Service is a TOSCA description from c-Eclipse which consists of a high

level application description, containing only structural and application-specific information (e.g.,

application artifacts), without a description of resources needed for deployment. The input is processed

via Architecture refinement and Cloud resource configuration modules, and produces a

deployment configuration and sends it to c-Eclipse.

The high level application description defines components in an abstract way. For instance, cloud

resources can be described using specific categories such as compute, storage, network; software

dependencies can be represented by types such as web container, database, API libraries, which are all to

be found in c-Eclipse as types of software requirements. For each deployment configuration step (see

Figure 8), we interpret SYBL requirements, in order to detect deployment preferences (e.g., optimize

cost, maximize resource usage, or maximize latency), and guide our deployment configuration with

identified preferences. The architecture refinement step in Figure 10 aims to enrich the application

topology with artifacts/software using CELAR repository of existing artifacts (e.g., Tomcat web server).

The output of this step is a full application topology with all the needed artifacts. Moreover, in the cloud

resource configuration step of Figure 10, we associate the required resources to each components/artifacts

previously selected, using cloud provider and application profiling information. The resulted

configuration is expressed as a TOSCA description, and returned to c-Eclipse for being analyzed and

modified as needed by the CELAR user.

5.3 Cloud Application Monitoring and Analysis

For application monitoring and analysis we use MELA, described in detail in Moldovan et al.

(2013), which analyzes the elasticity of cloud applications, focusing on the three elasticity dimensions:

cost, quality and performance. MELA provides elasticity analysis capabilities on the aggregated

monitoring data coming from the Cloud Information and Performance Monitor, determining the elasticity

boundaries, space and pathway of cloud application. This information is used by rSYBL (see Section 5.4)

in controlling the elasticity of such applications.

For analyzing and controlling the cloud application, elasticity space boundaries are determined

for all application components, composite components, and whole application, and are equal to the

maximum and minimum encountered metric values when the elasticity requirements were respected.

Thus, starting from supplied user requirements, MELA determines and continuously updates

requirements for the rest of the application components, requirements then enforced by rSYBL, as

described in Section 5.4.

For elasticity control of cloud applications we also use the elasticity pathway function, which

gives an indicator on the historical behavior of the cloud application and correlations between the

application’s metrics. The elasticity pathway information provides a base for refining user-defined

requirements, and validating the Decision Module’s control strategy. In the current prototype of the

MELA we adapt as elasticity pathway function an unsupervised behavior learning technique using self-

organizing maps (SOMs) proposed by Dean et al. (2012). We classify monitoring snapshots by

encountering rate in DOMINANT, NON-DOMINANT, and RARE. Such a pathway is important for

understanding if the regular behavior of the application fulfills user-defined elasticity requirements.

5.4 Cloud Application Elasticity Control

Considering the model of the application described through the runtime dependency graph

presented in the previous subsection, we use rSYBL elasticity control, described in detail in Copil et al.

(2013b), to enable multiple levels elasticity control of the described application, based on the flow shown

in Figure 11. The flow presented in Figure 11 is executed continually, and is based on the monitoring

information, application description, initial deployment and different types of elasticity requirements (left

hand side of Figure 11). The elasticity requirements are evaluated and conflicts which may appear among

them are resolved. The dependency graph, populated with this information, is continually analyzed, to

evaluate whether there are ways of improving requirements fulfillment. Based on this analysis, we use a

map coverage approach described in detail in Copil et al. (2013b) for generating an action plan which is

composed of abstract actions, which are mapped into infrastructure or application level actions and then

enforced with the help of used cloud infrastructure APIs.

Figure 11: Flow of Elasticity Control

Let us consider a simple example shown in Figure 12 of controlling the entire application, e.g., by

the system designer. The described elasticity requirements, Co1, Co2, and Co3 are not conflicting, and

actions are searched for fulfilling these requirements. Possible actions are, for instance, for the case the

running time is higher than 10 hours and the cost is still in acceptable limits, to scale-out for the

computation composite component, increasing the processing speed. An example of an action plan,

shown in Figure 12 could be:

𝐴𝑐𝑡𝑖𝑜𝑛𝑃𝑙𝑎𝑛1 = [[𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛], [𝑠𝑐𝑎𝑙𝑒𝑂𝑢𝑡, 𝑠𝑒𝑡𝑇ℎ𝑟𝑒𝑎𝑑𝑃𝑜𝑜𝑙 = 100]].

This action plan would address performance issues for the second elasticity requirement Co2, and

availability issues for the third elasticity requirement Co3. Each of the generated abstract actions are

mapped into complex API calls. For instance, increaseReplication action would consist of calls for

adding and configuring a new database node and configuring the cluster for higher replication, while the

scaleOut action would be the addition of a new virtual machine, deployment of the ComputationEnd

component on the new machine, and necessary calls for the new instance of the component to join the

computation topology cluster.

Figure 12: Action Plan Example

6 APPLICATIONS OF ELASTICITY CONTROL

The two applications described in Section 3 are currently being developed. Therefore we choose

to showcase CELAR control approach on a Machine-to-Machine (M2M) DaaS Service. The M2M DaaS

Service is quite complex, containing two composite components, one application server-based and one

which is a NoSQL. This is similar to the gaming application presented in Section 3.2, which also has

requirements regarding application-level metrics like response time and latency. Moreover, the M2M

DaaS composite components are similar to pipes in SCAN application presented in Section 3.1, in which

the SCAN developer wants to introduce requirements at pipe-level as well as at component level, thus

having multi-level elasticity control for the SCAN application.

Considering a CELAR user that wants to deploy this M2M DaaS in the cloud and expects an

elastic application behavior, the CELAR user needs to describe two types of information: structural

information regarding application artifacts, and elasticity requirements at the different application level.

The M2M DaaS, shown in Figure 13, is comprised of two composite components, an Event
Processing Composite Component and a Data End Composite Component. Each composite

component consists of two components, one with a processing goal, and the other acting as the composite

component balancer/controller. To stress this application we generate random sensor event information

which is processed by the Event Processing Composite Component, and stored/retrieved from the

Data End Composite Component.

Figure 13: Application Used for Evaluation

Moreover, the CELAR user is interested in specifying a number of elasticity requirements, both at

component, composite component, and at whole application level. The requirement specified at whole

application level (St1) specifies as a strategy to increase as much as possible the throughput, but under

specific cost condition. In the upper part of Figure 13 shows the various elasticity requirements which we

associate to the different levels of M2M application. For having the application elasticity controlled by

CELAR, the M2M application as well as these elasticity requirements need to be described with c-

Eclipse, as we describe in Section 6.1. After describing the application and pressing the deploy button, the

application is controlled following the approach presented in Section 5, control results being presented in

Section 6.2.

6.1 Application Description with c-Eclipse

The c-Eclipse framework provides an intuitive, user-friendly interface through which users can

describe their applications for deployment over cloud platforms. The c-Eclipse user interface is depicted

in Figure 14. At the left-hand side, the CELAR user can see the CELAR Project View where all the files

related to an application description are organized in a hierarchy. The Palette, shown at the right-hand

side, includes most of the elements required for creating application descriptions, categorized under

different Palette sections. By simply dragging and dropping pictorial elements from the Palette onto the

center Canvas, users can create a graphical representation of an application. Additional information can

be provided for each element via the Properties View (see in Figure 14). Application descriptions are

translated on the fly into XML, according to the open TOSCA specification for cloud applications.

The first step in describing an application is to define the application’s structure/topology,

following the abstract application composition-based model described in Section 5.2.1. To do so, the user

must use components and composite components from the Palette’s Components section and then create

the relationships between these components by using relationships from the Palette’s Connections section.

Once the application structure is defined, the user can define the application’s properties such as the VM

images (shown in the Palettes Images section) and other executables to be installed on the defined

application components (Palette’s Deployment Scripts section). Moreover, s/he can describe the

important monitoring metrics at each application level (Palette’s Monitoring Probes section), together

Figure 14: Application Used for Evaluation Described in c-Eclipse

with the elasticity actions to be applied when scaling the application’s deployment (Palette’s Elasticity

Actions section), and the time when these actions should be applied. Specifically:

 At Component Level, the user can define the following:

 VM Image that will be used by the underlying platform when materializing instances

of the component (green color box).

 Key Pairs generated by the user that will be used by the underlying platform when

deploying the component. Thus, a user can make use of the key pair later to access

the deployed component (yellow color box).

 User Applications, such as .jar and .war files, that will be used by the underlying

platform when materializing instances of the component (orange color box).

 At Application, Component and Composite Component Level, the user can define the

following:

 Deployment Scripts that will be executed by the underlying platform when

initializing instances of the component (pink color box).

 Monitoring Probes that will be used by the Monitoring System to capture and return

the corresponding metrics to the user. Furthermore, the metrics referred by the probes

can be used in the specification of elasticity policies.

 Elasticity Actions that can be applied to the components. Elasticity actions can also

be used in the specification of elasticity policies.

Figure 14 shows the c-Eclipse application description, following the structure depicted in Figure

13. For achieving this c-Eclipse application description, the user will first drag a composite component

from the Palette’s Components section onto the Canvas to create the Event Processing component.

Then, he will drag two simple components and drop them inside the composite component one for the

Load Balancer component and one for the Event Processing component. In a similar way the user

can create the Data End composite component with the two simple components inside it for the Data
Controller and the Data Node.

Apart from the structure of the application, the user can specify other application properties, such

as its elasticity policies. For example, by using the Properties View of c-Eclipse (bottom of Figure 14) the

user can define the constraint of keeping the Response Time for the Event Processing
Composite Component below 350 ms.

6.2 Controlling the Application with CELAR Decision Module

After describing the application as above, with the help of c-Eclipse, the CELAR user chooses the

cloud provider to be used, and specifies his/her credentials, and with a simple press of a button, the

application, together with all the necessary CELAR tools are deployed in the cloud. After this, the

CELAR user can observe the evolution of application metrics, which is being controlled with the

approach presented in Section 5.

Figure 15 depicts a view from the MELA user interface, which is integrated into c-Eclipse for

CELAR users to be able to follow cloud application behavior during runtime. The CELAR user can

observe various metrics, at the different cloud application levels,

Figure 15: Example of visual cloud application elasticity control enforcement

By clicking on different components or complex components, the user is lead to a new view, in

which s/he can observe various charts showing metrics evolution in time, and statistical data. Due to the

scaling actions enforced by the CELAR Decision Module, the response time is able to stay within the

required boundaries, as shown in the left side of Figure 14, at a relatively stable value without increasing

more than acceptable for a too high period. The user can observe that due to CELAR control, there is a

correlation between the number of VMs and the number of clients, as depicted in Figure 16, thus showing

that the Decision Module is able to adapt the application in order to accommodate a varying demand. This

is strengthened by the elasticity pathway depicted in Figure 18. From the pathway’s “x” axis, the situation

encounter rate, i.e., the percentage of time that situation was encountered, one can see that in 90% of the

situations, the response time was maintained within acceptable values.

Figure 16: Elasticity control shown at Event Processing composite component

Figure 17: Response Time for Event Processing composite component

Figure 18: Elasticity pathway for Event Processing composite component

CELAR facilitates the intuitive, user-friendly description of cloud applications to be elastically

controlled, together with their elasticity requirements, which can be both expressive for advanced users

and simple for inexperienced ones. Using this description, CELAR analyzes and controls the application,

managing cloud resources as well as application configurations for fulfilling user’s requirements.

Moreover, the CELAR user is continually informed on the cloud service behavior, being able to better

understand the application and the consequences of different requirement preferences.

The control provided by CELAR enables applications to fulfill users’ requirements, regardless of

the highly oscillating load (number of clients metric in Figure 16), as shown in Figure 17 where the

response time is kept within user-specified requirements. Moreover, this entire process, which normally

would have meant for application stakeholders a lot of manual configurations, is happening automatically

and without user intervention, while keeping within user specified requirements, thus avoiding

undesirable situations (e.g., very good quality parameters at a much too high cost from application

stakeholders perspective).

7 DISCUSSION ON CONTROL FRAMEWORKS
Table 3 shows existing cloud control frameworks or tools, considering the following perspectives: (i) the

cloud model level at which the framework is focused, (ii) the manner in which requirements can be

specified by stakeholders, (iii) the control mechanisms employed, (iv) the deployment mechanisms

employed, and (v) which is the supported application complexity (e.g., it is assumed that the application

consists of a single component, multiple components, or even hierarchical structuring of groups of

components). We can see that, when compared to most frameworks available on the market, CELAR

approach encapsulates some powerful features, from elasticity requirements specification language to

application components or control/deployment mechanisms used, which could help substantially

application stakeholders throughout the application elasticity control lifecycle.

Table 3: Control frameworks for elastic cloud applications

Framework

name/

authors

Addressed

cloud level

Requirements

specification

Control

mechanisms

Deployment

mechanisms

Application

complexity

CELAR

approach

IaaS, PaaS SYBL language Elasticity space

analysis, map

coverage &

heuristic based,

conflict resolution

c-Eclipse for simple

description,

discovers missing

dependencies, finds

best configurations

Multiple

hierarchical

levels

(component,

composite

component)

CloudScale

(Shen et al.

(2011))

PRESS

(Gong et al.

(2010))

Hypervisor

(Xen)

Low level SLA

Los

Online adaptive

padding

Based on

signature/state

driven predictions

No Single-

component

application

Kingfisher

(Sharma et

al. (2011))

Hypervisor

(Xen)

No Integer linear

programs

No Single-

component

application

Martin et al.

(2011)

IaaS User goals through

a goal graph

MAPE-based

elasticity

management

No Multi-

component

application

Buch et al.

(2012)

AppScale Language for

configuration and

deployment of

applications

No Guided by language Scientific

applications

Malkowski et

al. (2011)

IaaS Low-level SLA Prediction and SLA

driven

No n-tier application

Naskos et al.

(2014)

IaaS Automatically

generated

Markov decision

process based

No NoSQL

databases

Almeida et IaaS SLA Uses branch and No Multi-

8 CONCLUSIONS AND FUTURE WORK

In this chapter we presented the CELAR approach to cloud application elasticity control. We

have shown that the complexity of cloud application elasticity control is highly dependent on the

application complexity, on the underlying infrastructure possibilities, and on the requirements that the

cloud application stakeholders have. We have shown how CELAR facilitates the description of cloud

applications, and the description of stakeholder requirements with reference to various application parts.

Moreover, we have presented our control approach, integrating multi-level elasticity monitoring, analysis

and control, for fulfilling the specified requirements.

As CELAR is an ongoing project xv, we will further focus on studying and developing additional

analysis, enforcement and control mechanisms, tailored to improve the elasticity of a wider range of cloud

applications. Moreover, for improving the quality of our elasticity control plans, we will study and

develop mechanisms for estimating the behavior of cloud application and individual components. We

plan to provide CELAR both as an integrated platform for designing, deploying, monitoring and

controlling elastic cloud services, and as individual components which can be embedded in existing

platforms.

9 ACKNOWLEDGEMENT
This work was supported by the European Commission in terms of the CELAR FP7 project (FP7-ICT-

2011-8 #317790).

REFERENCES

Almeida, A., Dantas, F., Cavalcante, E., & Batista, T., (2014) A Branch-and-Bound Algorithm for

Autonomic Adaptation of Multi-cloud Applications, IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing (CCGrid), 2014 14th, vol., no., pp.315,323, 26-29 May 2014

doi: 10.1109/CCGrid.2014.25

Ananthanarayanan, G., Agarwal, S., Kandula, S., Greenberg, A., Stoica, I., Harlan, D., & Harris, E.

(2011) Scarlett: Coping with Skewed Content Popularity in MapReduce Clusters. In Proceedings of the

sixth conference on Computer systems. ACM, New York, NY, USA, 287-300.

Aspnes, J., Kirsch, J., & Krishnamurthy, A. (2004). Load Balancing and Locality in Range-Queriable

Data Structures”. In Proceedings of the Twenty-third Annual ACM Symposium on Principles of

Distributed Computing, PODC ’04, pages 115–124, St. John’s, Newfoundland, Canada, 2004. ACM.

Bharambe, A. R., Agrawal, M., & Seshan, S. (2004). Mercury: Supporting Scalable Multi-Attribute

Range Queries. In Proceedings of the 2004 Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communications, SIGCOMM ’04, pages 353–366, Portland, Oregon, USA,

2004. ACM.

Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A., & Wagner, S. (2013)

OpenTOSCA – A Runtime for TOSCA-Based Cloud services. In Proceedings of the 11th International

al. (2014) bound to control

services from

multiple types of

clouds

http://link.springer.com/search?facet-author=%22Uwe+Breitenb%C3%BCcher%22
http://link.springer.com/search?facet-author=%22Florian+Haupt%22
http://link.springer.com/search?facet-author=%22Oliver+Kopp%22
http://link.springer.com/search?facet-author=%22Frank+Leymann%22
http://link.springer.com/search?facet-author=%22Sebastian+Wagner%22

Conference, ICSOC 2013, Berlin, Germany, December 2-5, 2013, pp 692-695, doi: 10.1007/978-3-642-

45005-1_62

Bunch, C., Drawert, B., Chohan, N., Krintz, C., Petzold, L., & Shams, K. (2012) Language and Runtime

Support for Automatic Configuration and Deployment of Scientific Computing Software over Cloud

Fabrics. J. Grid Comput. 10, 1 (March 2012), 23-46. doi:10.1007/s10723-012-9213-8

Chaisiri, S., Lee, B.-S., & Niyato, D. (2012) Optimization of Resource Provisioning Cost in Cloud

Computing, IEEE Transactions on Services Computing, vol. 5, no. 2, pp. 164-177, 2012 doi:

10.1109/TSC.2011.7

Copil, G., Moldovan, D., Truong, H.-L., & Dustdar., S. (2013a) SYBL: an Extensible Language for

Controlling Elasticity in Cloud Applications. 13th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing - CCGRID2013, Delft, the Netherlands, May 14-16,

2013.doi:10.1109/CCGrid.2013.42

Copil, G., Moldovan, D., Truong, H.-L., & Dustdar S. (2013b) Multi-level Elasticity Control of Cloud

Services,the 11th International Conference on Service Oriented Computing. Berlin, Germany, on 2-5

December, 2013. doi:978-3-642-45005-1

Cox, B., Allsopp, J., Moldovan, D., Star, K., Garcia ,U., & Le, D. H. (2014) CELAR Deliverable: Cloud

Policy Game Design Document. http://www.celarcloud.eu/wp-

content/uploads/2014/04/celar_d7.1_finalrelease_1.pdf

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian,

S., Vosshall, P., & Vogels., W. (2007) Dynamo: amazon's highly available key-value store.

In Proceedings of twenty-first ACM SIGOPS symposium on Operating systems principles (SOSP '07).

ACM, New York, NY, USA, 205-220

Di Cosmo, R., Mauro, J., Zacchiroli, S., & Zavattaro, G. (2013) Component Reconfiguration in the

Presence of Conflict. In Proceedings of ICALP 2013, Part II, pages 187 -- 198. Springer, 2013

Di Nitto, E. (2013) Supporting the Development and Operation of Multi-Cloud services: The

MODAClouds Approach. 15th International Symposium on Symbolic and Numeric Algorithms for

Scientific Computing (SYNASC), 23-26 Sept. 2013

Dustdar, S., Guo Y., Satzger, B., & Truong, H.-L. (2011) Principles of Elastic Processes, Internet

Computing, IEEE , vol.15, no.5, pp.66,71, Sept.-Oct. 2011

Gambi, A., Moldovan, D., Copil, G., Truong, H.-L. & Dustdar, S. (2013) On estimating actuation delays

in elastic computing systems. In Proceedings of the 8th International Symposium on Software

Engineering for Adaptive and Self-Managing Systems (SEAMS '13). IEEE Press, Piscataway, NJ, USA,

33-42

Gong, Z., Gu, X., & Wilkes, J. (2010, October). Press: Predictive elastic resource scaling for cloud

systems. In Network and Service Management (CNSM), 2010 International Conference on (pp. 9-16).

IEEE.

Gonzalez, A. J., & Helvik, B. E. (2012) System management to comply with SLA availability guarantees

in cloud computing. 2012 IEEE 4th International Conference on Cloud Computing Technology and

Science (CloudCom), vol., no., pp.325,332, 3-6 Dec. 2012

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6427508&isnumber=6427477

Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., & Lewin, D. (1997) Consistent hashing

and random trees: distributed caching protocols for relieving hot spots on the World Wide Web.

http://www.celarcloud.eu/wp-content/uploads/2014/04/celar_d7.1_finalrelease_1.pdf
http://www.celarcloud.eu/wp-content/uploads/2014/04/celar_d7.1_finalrelease_1.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6427508&isnumber=6427477

In Proceedings of the twenty-ninth annual ACM symposium on Theory of computing (STOC '97). ACM,

New York, NY, USA, 654-663.

Karger, D., & Ruhl, M. (2004) Simple efficient load balancing algorithms for peer-to-peer systems. In

Proceedings of the sixteenth annual ACM symposium on Parallelism in algorithms and architectures (pp.

36-43). ACM.

Konstantinou, I., Tsoumakos, D., Mytilinis, I., & Koziris, N. (2011) Fast and cost-effective online load-

balancing in distributed range-queriable system. IEEE Transactions on Parallel and Distributed Systems,

22(8), 1350-1364.

Konstantinou, I., Tsoumakos, D., Mytilinis, I., & Koziris, N. (2013) DBalancer: distributed load

balancing for NoSQL data-stores. In Proceedings of the 2013 international conference on Management of

data (pp. 1037-1040). ACM.

Lakshman, A., & Malik, P. (2010) Cassandra: A Decentralized Structured Storage System. SIGOPS

Oper. Syst. Rev. 44, 2 (April 2010), 35-40.

Le, D.-H., Truong, H.-L., Copil, G., Moser, O., Nastic, S., Gambi, A. & Dustdar S. (2014) SALSA: A

dynamic configuration tool for cloud-based applications, 6'th International Conference on Cloud

Computing, CloudCom. Singapore, December, 2014 On submission

Li, Z., O’Brien, L., Zhang, H., & Cai, R. (2012) On a Catalogue of Metrics for Evaluating Commercial

Cloud Services.2012 ACM/IEEE 13th International Conference on Grid Computing (GRID), pp.164,173,

20-23 Sept. 2012 doi: 10.1109/Grid.2012.15

Malkowski, S. J., Hedwig, M., Li, J., Pu, C., & Neumann D. (2011). Automated control for elastic n-tier

workloads based on empirical modeling. In Proceedings of the 8th ACM international conference on

Autonomic computing (ICAC '11). ACM, New York, NY, USA, 131-140. doi:10.1145/1998582.1998604

Martin, P., Brown, A., Powley, W., & Vazquez-Poletti, J.L., (2011) Autonomic management of elastic

services in the cloud, 2011 IEEE Symposium on Computers and Communications (ISCC), vol., no.,

pp.135,140, June 28 2011-July 1 2011 doi: 10.1109/ISCC.2011.5984006

Moldovan, D., Copil, G., Truong, H.-L., & Dustdar, S. (2013) MELA: Monitoring and Analyzing

Elasticity of Cloud Services, 5'th International Conference on Cloud Computing, CloudCom. Bristol, UK,

2-5 December, 2013

Naskos, A., Stachtiari, E., Gounaris, A., Katsaros, P., Tsoumakos, D., Konstantinou, I., Sioutas, S. (2014)

Cloud elasticity using probabilistic model checking, CoRR abs/1405.4699

Schatzberg, D., Appavoo, J., Krieger, O., & Van Hensbergen, E. (2012) Why Elasticity Matters.

Technical Report BUCS-TR-2012-006, Computer Science Department, Boston University, April 15,

2012.

Serrano, D., Bouchenak, S., Kouki, Y., Ledoux, T., Lejeune, J., Sopena, J., Arantes, L., & Sens, P. (2013)

Towards QoS-Oriented SLA Guarantees for Online Cloud Services, 13th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2013, vol., no., pp.50,57, 13-16 May 2013,

doi: 10.1109/CCGrid.2013.66

Sharma, U., Shenoy, P., Sahu, S., & Shaikh, A. (2011) A Cost-Aware Elasticity Provisioning System for

the Cloud. In Proceedings of the 2011 31st International Conference on Distributed Computing Systems

(ICDCS '11). IEEE Computer Society, Washington, DC, USA, 559-570. doi:10.1109/ICDCS.2011.59

Shen, Z., Subbiah, S., Gu, X., & Wilkes, J. (2011). CloudScale: elastic resource scaling for multi-tenant

cloud systems. In Proceedings of the 2nd ACM Symposium on Cloud Computing (SOCC '11). ACM, New

York, USA, Article 5, doi:10.1145/2038916.2038921

Simjanoska, M., Ristov, S., Velkoski, G., & Gusev, M. (2013) Scaling the performance and cost while

scaling the load and resources in the cloud, 2013 36th International Convention on Information &

Communication Technology Electronics & Microelectronics (MIPRO), vol., no., pp.151,156, 20-24 May

2013

Sofokleous, C., Loulloudes, N., Trihinas, D., Pallis, G., & Dikaiakos, M. (2014) c-Eclipse: An Open-

Source Management Framework for Cloud Applications, EuroPar 2014, Porto, Portugal 2014

OASIS, Topology and Orchestration Specification for Cloud Applications (TOSCA), (2013)

http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html

Trihinas, D., Loulloudes, N., Moldovan, D., Sofokleous, S., Pallis, G., & Dikaiakos, M. D. (2013)

CELAR Deliverable: Cloud Monitoring Tool V1,

http://www.celarcloud.eu/wp-content/uploads/2013/11/Cloud-Monitoring-Tool-V1.pdf

Trihinas, D., Pallis, G., & Dikaiakos, M. D. (2014a) JCatascopia: Monitoring Elastically Adaptive

Applications in the Cloud, in 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing, 2014.

Villegas, D., Antoniou, A., Sadjadi, S. M., & Iosup, A. (2012) An Analysis of Provisioning and

Allocation Policies for Infrastructure-as-a-Service Clouds.In Proceedings of the 2012 12th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012) (CCGRID '12). IEEE

Computer Society, Washington, DC, USA, 612-619. DOI=10.1109/CCGrid.2012.46

Xing, W., Tsoumakos, D., Sofokleous, S., Liabotis, I., Floros, V., & Loverdos, C. (2014) CELAR

Deliverable: Translational Cancer Detection Pipeline Design http://www.celarcloud.eu/wp-

content/uploads/2014/05/celar_d8.1_finalrelease.pdf

ADDITIONAL READING

1. Copil, G., Moldovan, D., Truong, H.-L., & Dustdar., S. (2013a) SYBL: an Extensible Language

for Controlling Elasticity in Cloud Applications. 13th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing - CCGRID2013, Delft, the Netherlands, May 14-16,

2013.doi:10.1109/CCGrid.2013.42

2. Copil, G., Moldovan, D., Truong, H.-L., & Dustdar S. (2013b) Multi-level Elasticity Control of

Cloud Services,the 11th International Conference on Service Oriented Computing. Berlin,

Germany, on 2-5 December, 2013. doi:978-3-642-45005-1

3. Dustdar, S., Guo Y., Satzger, B., & Truong, H.-L. (2011) Principles of Elastic Processes, Internet

Computing, IEEE , vol.15, no.5, pp.66,71, Sept.-Oct. 2011

4. Moldovan, D., Copil, G., Truong, H.-L., & Dustdar, S. (2013) MELA: Monitoring and Analyzing

Elasticity of Cloud Services, 5'th International Conference on Cloud Computing, CloudCom.

Bristol, UK, 2-5 December, 2013

5. Sofokleous, C., Loulloudes, N., Trihinas, D., Pallis, G., & Dikaiakos, M. (2014) c-Eclipse: An

Open-Source Management Framework for Cloud Applications, EuroPar 2014, Porto,

Portugal 2014

http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
http://www.celarcloud.eu/wp-content/uploads/2014/05/celar_d8.1_finalrelease.pdf
http://www.celarcloud.eu/wp-content/uploads/2014/05/celar_d8.1_finalrelease.pdf

6. Trihinas, D., Pallis, G., & Dikaiakos, M. D. (2014a) JCatascopia: Monitoring Elastically

Adaptive Applications in the Cloud, in 14th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, 2014.

7. Truong, H.-L., Dustdar, S., Copil, G., Gambi, A., Hummer, W., Le, D.-H., & Moldovan, D.

CoMoT – A Platform-as-a-Service for Elasticity in the Cloud IEEE International Workshop on

the Future of PaaS, IEEE International Conference on Cloud Engineering (IC2E 2014), Boston,

Massachusetts, USA, 10-14 March 2014

8. Almeida, A., Dantas, F., Cavalcante, E., & Batista, T., (2014) A Branch-and-Bound Algorithm

for Autonomic Adaptation of Multi-cloud Applications, IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing (CCGrid), 2014 14th, vol., no., pp.315,323, 26-29 May

2014 doi: 10.1109/CCGrid.2014.25

9. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak A., & Wagner, S. (2013)

OpenTOSCA – A Runtime for TOSCA-Based Cloud services. In Proceedings of the 11th

International Conference, ICSOC 2013, Berlin, Germany, December 2-5, 2013, pp 692-695, doi:

10.1007/978-3-642-45005-1_62

10. Konstantinou, I., Tsoumakos, D., Mytilinis, I., & Koziris, N. (2013) DBalancer: distributed load

balancing for NoSQL data-stores. In Proceedings of the 2013 international conference on

Management of data (pp. 1037-1040). ACM.

11. Tsoumakos, D., Konstantinou, I., Boumpouka, C., Sioutas, S., & Koziris, N., Automated, Elastic

Resource Provisioning for NoSQL Clusters Using TIRAMOLA, (2013) 14th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing, pp. 34-41, 2013 13th

IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, 2013

12. Naskos, A., Stachtiari, E., Gounaris, A., Katsaros, P., Tsoumakos, D., Konstantinou, I., Sioutas,

S. (2014) Cloud elasticity using probabilistic model checking, CoRR abs/1405.4699

13. Serrano, D., Bouchenak, S., Kouki, Y., Ledoux, T., Lejeune, J., Sopena, J., Arantes, L., & Sens,

P. (2013) Towards QoS-Oriented SLA Guarantees for Online Cloud Services, 13th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2013, vol., no.,

pp.50,57, 13-16 May 2013, doi: 10.1109/CCGrid.2013.66

14. Simjanoska, M., Ristov, S., Velkoski, G., & Gusev, M. (2013) Scaling the performance and cost

while scaling the load and resources in the cloud, 2013 36th International Convention

on Information & Communication Technology Electronics & Microelectronics (MIPRO), vol.,

no., pp.151,156, 20-24 May 2013

15. OASIS, Topology and Orchestration Specification for Cloud Applications (TOSCA), (2013)

http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html

16. Copil, G., Trihinas, D., Truong, H.-L., Moldovan, D., Pallis, G., Dustdar, S., & Dikaiakos, M..

(2014) ADVISE - a Framework for Evaluating Cloud Service Elasticity Behavior, 12th

International Conference on Service Oriented Computing. Paris, France, 3-6 November, 2014.

17. Guinea, S., Kecskemeti, G., Marconi, A., & Wetzstein, B., (2011) Multi-layered monitoring and

adaptation, Proceedings of the 9th international conference on Service-Oriented Computing,

ICSOC'11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 359-373. doi:10.1007/978-3-642-

25535-9_24

http://link.springer.com/search?facet-author=%22Uwe+Breitenb%C3%BCcher%22
http://link.springer.com/search?facet-author=%22Florian+Haupt%22
http://link.springer.com/search?facet-author=%22Oliver+Kopp%22
http://link.springer.com/search?facet-author=%22Frank+Leymann%22
http://link.springer.com/search?facet-author=%22Sebastian+Wagner%22
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html

18. Inzinger, C., Nastic, S., Sehic, S., Vogler, M., Li F., &Dustdar, S., (2014) Madcat – a

methodology for architecture and deployment of cloud application topologies, 8th International

Symposium on Service-Oriented System Engineering, IEEE, 2014.

19. Kranas, P., Anagnostopoulos, V., Menychtas, A., & Varvarigou, T., (2012) ElaaS: An Innovative

Elasticity as a Service Framework for Dynamic Management across the Cloud Stack Layers,

Sixth International Conference on Complex, Intelligent and Software Intensive Systems (CISIS),

2012, pp. 1042 -1049. doi:10.1109/CISIS.2012.117.

20. Tai, S., Leitner, P., & Dustdar, S., Design by Units: Abstractions for Human and Compute

Resources for Elastic Systems, IEEE Internet Computing 16 (4) (2012) 84-88.

doi:http://doi.ieeecomputersociety.org/10.1109/MIC.2012.81.

21. Sharma, U., Shenoy, P., Sahu, S., & Shaikh, A., A Cost-Aware Elasticity Provisioning System for

the Cloud, 2011 31st International Conference on Distributed Computing Systems (ICDCS),

2011, pp. 559 - 570. doi:10.1109/ICDCS.2011. 59

22. Kouki, Y., & Ledoux, T., CSLA : a Language for improving Cloud SLA Management,

Proceedings of the International Conference on Cloud Computing and Services Science, Porto,

Portugal, 2012, pp. 586-591.

23. Satzger, B., Hummer, W., Inzinger, C., Leitner, P., & Dustdar, S. (2013) Winds of Change: From

Vendor Lock-In to the Meta Cloud. IEEE Internet Computing 17(1): 69-73

24. Dustdar, S. 2014. Principles and methods for elastic computing. In Proceedings of the 17th

international ACM Sigsoft symposium on Component-based software engineering (CBSE '14).

ACM, New York, NY, USA, 1-2. doi:10.1145/2602458.2611455

25. Gambi, A., Filieri, A., & Dustdar, S. (2013) Iterative test suites refinement for elastic computing

systems. Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering

(ESEC/FSE 2013). ACM, New York, NY, USA, 635-638. doi:10.1145/2491411.2494579

26. Bersani, M. M., Bianculli, D., Dustdar, S., Gambi, A., Ghezzi, C., & Krstić, S. (2014) Towards

the formalization of properties of cloud-based elastic systems. Proceedings of the 6th

International Workshop on Principles of Engineering Service-Oriented and Cloud Systems

(PESOS 2014). ACM, New York, NY, USA, 38-47. doi:10.1145/2593793.2593798

KEY TERMS AND DEFINITIONS

 Elasticity

 Elasticity Requirements

 Elasticity Control

 Elasticity Space

 Elasticity Pathway

 SYBL

 MELA

 c-Eclipse

BIOGRAPHY:

Georgiana Copil is a PhD student and university assistant at the Distributed Systems Group, Institute of

Information Systems, Vienna University of Technology, with background on distributed and cloud

computing.

Daniel Moldovan is a PhD student and research assistant at the Distributed Systems Group, Institute of

Information Systems, Vienna University of Technology, having a background in distributed, green and

elastic computing.

Duc-Hung Le is a research assistant and PhD student at the Distributed Systems Group, Institute of

Information Systems, Vienna University of Technology since 2013. His current research focuses on

dynamic and automatic configuration of cloud-based applications in multiple clouds.

Hong-Linh Truong is an assistant professor for Service Engineering Analytics at the Distributed Systems

Group, Institute of Information Systems, Vienna University of Technology. More info at

http://dsg.tuwien.ac.at/staff/truong

Schahram Dustdar is a full professor of computer science and head of the Distributed Systems Group,

Institute of Information Systems, at the Vienna University of Technology. He is an ACM Distinguished

Scientist and IBM Faculty Award recipient.

Chrystalla Sofokleous is working as a special scientist at the Dept. of Computer Science, University of

Cyprus. With undergraduate studies at the University of Cyprus, and graduate studies at the University of

Southampton, UK, her research interests focus on cloud computing, elastic resource provisioning,

Semantic Web and Linked Data.

Nicholas Loulloudes is a PhD candidate at the Dept. of Computer Science, University of Cyprus. His

research focuses around the areas of Cloud/Grid computing systems, Complex Network Science and

Vehicular Sensor Network routing and data dissemination algorithms.

Demetris Trihinas is a Master's candidate and Research Assistant at the Department of Computer Science

of the University of Cyprus. He holds a Dipl.-Ing. degree in Electrical and Computer Engineering from

the National Technical University of Athens (NTUA) since 2012, his research interests including

monitoring and data analysis, cloud computing and distributed systems.

George Pallis is faculty member at the Computer Science Department, University of Cyprus. His research

interests include distributed systems, such as the Web and clouds, content distribution networks,

information retrieval, and data clustering.

Marios D. Dikaiakos is Professor and Head of the Computer Science Department at the University of

Cyprus. He received his Ph.D. in Computer Science from Princeton University (1994). His research

interests include Cloud Computing and Web Technologies.

Ioannis Giannakopoulos is a PhD student at the Computing Systems Laboratory of the National Technical

University of Athens (NTUA). He received his Diploma in Electrical and Computer Engineering from

NTUA in 2012 and began the PhD programme in the research field of Distributed Systems and Data

Management.

Nikolaos Papailiou is a PhD candidate in the Computing Systems Laboratory of School of ECE at the

National Technical University of Athens, Greece. His research focuses on scalability, elasticity and

efficiency of distributed systems and especially distributed databases.

Ioannis Konstantinou is a senior researcher at the Computing Systems Laboratory of the National

Technical University of Athens (NTUA). He received his Diploma in Electrical and Computer

Engineering from NTUA in 2004, his M.Sc. in Techno-Economic Systems from NTUA in 2007 and his

PhD from NTUA in 2011.

Dimitrios Tsoumakos is an Assistant Professor in the Department of Informatics of the Ionian University.

He is also a senior researcher at the Computing Systems Laboratory of the National Technical University

of Athens (NTUA).

Craig Sheridan (BSc) is Head of Research Projects at Flexiant Limited and was part of the team behind

Europe's first public Cloud platform 'Flexiscale' in 2007 which led to the founding of Flexiant in

2009. Craig has developed his Cloud computing expertise with his work on a number of Seventh

Framework Programme projects since 2010, including OPTIMIS, CumuloNimbo, 4CaaSt,

MODAClouds, PaaSage and CELAR and has worked as an external expert for the European Commission

Christos KK Loverdos is a research-inclined software professional. He has been working in the software

industry for fifteen years designing, implementing and delivering flexible, enterprise-level systems and

making strategic technical decisions.

Evangelos Floros holds a B.Sc. and a M.Sc. in Informatics and Telecommunications from the National

and Kapodistrian University of Athens, Greece. He currently works in GRNET as a Project Manager

coordinating national and European projects in the areas of Cloud and High-Performance Computing.

Dr Wei Xing is the Head of Scientific Computing at Cancer Research UK Manchester Institute (CRUK-

MI), University of Manchester. His current research interests focus on cloud computing, large-scale data

integration, and big data analysis.

Kam Star is a digital media entrepreneur, researcher, investor and award winning games developer.

Creating his first computer game in 1986, he studied Architecture and is currently undertaking his PhD at

the Serious Games Institute at Coventry University exploring the interplay between game dynamics and

personality traits to maximize collective intelligence.

i http://aws.amazon.com/autoscaling
ii http://www.rackspace.com/blog/easily-scale-your-cloud-with-rackspace-auto-scale
iii http://www.windowsazure.com/en-us/documentation/articles/cloud-services-how-to-scale/#autoscale
iv http://www.rightscale.com/products/automation-engine.php
v http://www.celarcloud.eu/
vi http://www.flexiant.com/
vii https://okeanos.grnet.gr/
viii https://cloud.google.com/products/compute-engine/
ix http://azure.microsoft.com
x http://aws.amazon.com
xi https://developers.google.com/cloud/managed-vms
xii https://www.paraleap.com
xiii http://www.rightscale.com
xiv http://www.ensembl.org
xv Open source CELAR implementation is available in GitHub: http://github.com/CELAR

http://aws.amazon.com/autoscaling
http://www.rackspace.com/blog/easily-scale-your-cloud-with-rackspace-auto-scale
http://www.windowsazure.com/en-us/documentation/articles/cloud-services-how-to-scale/#autoscale
http://www.rightscale.com/products/automation-engine.php
http://www.celarcloud.eu/
http://www.flexiant.com/
https://okeanos.grnet.gr/
https://cloud.google.com/products/compute-engine/
http://azure.microsoft.com/
http://aws.amazon.com/
https://developers.google.com/cloud/managed-vms
https://www.paraleap.com/
http://www.rightscale.com/
http://www.ensembl.org/
http://github.com/CELAR

