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ABSTRACT 

Today’s complex cloud applications are composed of multiple components executed in multi-cloud 

environments. For such applications, the possibility to manage and control their cost, quality and 

resources elasticity is of paramount importance. However, given that the cost of different services offered 

by cloud providers can vary a lot with their quality/performance, elasticity controllers must consider not 

only complex, multi-dimensional preferences and provisioning capabilities from stakeholders, but also 

various runtime information regarding cloud applications and their execution environments. In this 

chapter, we present the elasticity control approach of the EU CELAR Project, which deals with multi-

dimensional elasticity requirements and ensures multi-level elasticity control for fulfilling user 

requirements. We show the elasticity control mechanisms of the CELAR project, from application 

description to multi-level elasticity control. We highlight the usefulness of CELAR’s mechanisms for 

users, who can use an intuitive, user-friendly interface to describe and then to follow their application 

elasticity behavior controlled by CELAR. 
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1  INTRODUCTION   

With the popularity and diversity of cloud-based solutions from cloud providers and application 

providers/developers, there is a considerable need to customize these solutions and to provide cloud users 

with fine-grained mechanisms of controlling their cloud applications.  

Many existing frameworks allow the specification of various cloud application-related 

information, like the cloud application complex structure (e.g., Di Nitto et al. (2013)) and functional 

requirements (e.g., Di Cosmo et al. (2013)) when deploying the cloud application on the cloud. Moreover, 

many tools are capable of describing and deploying cloud applications (e.g., Binz et al. (2013)) on 

different cloud infrastructures.  The requirements of the cloud application stakeholders differ and depend 

on a number of variables, e.g., the cost of the cloud application reported to the number of clients, or the 

various cloud application quality parameters (e.g., a banking cloud application differs greatly in 

requirements from a scientific cloud application).  However, current state-of-the-art on elasticity control 

techniques require the specification of low-level, detailed information. For instance, Auto Scale 

applications provided by Amazoni, Rackspaceii, Azureiii or RightScaleiv enable users to specify, for each 

Virtual Machine they are using, scaling policies, depending on IaaS-level metrics. Proposed frameworks 

take into consideration cloud application level metrics, e.g., response time, but do not allow users to 

specify their requirements, the optimization factor being defined in an ad-hoc manner (e.g., equilibrium 

between the cost and response time) (e.g., Serrano et al. (2013), Simjanoska et al. (2013)).  

The concept of multi-dimensional elasticity,  covering  resources elasticity, cost elasticity and 

quality elasticity (see Dustdar et al. (2011)) and the relations among them, shows how complex the 

elasticity control of cloud applications actually is. Such a concept facilitates custom cloud application 

elasticity depending on what a cloud application stakeholder (e.g., service provider) actually needs. A 

visual representation of the elasticity dimensions is shown in Figure 1, each of the main dimensions, cost, 

resource and quality being further decomposed into storage cost and network cost, CPU and memory, and 

respectively quality of data and performance.  Elasticity is defined as the relationship among these 

dimensions, in time, which change for fulfilling user’s elasticity requirements. Considering that 

distributed cloud applications have complex structures, each component having such complex elasticity 

behavior in time, we can affirm that elasticity controllers face challenging tasks in managing such 

applications.  

 
Figure 1: Cloud Service Elasticity Dimensions  

For controlling elasticity of cloud services, several challenges need to be addressed:  

i. Enabling the application stakeholders to specify elasticity requirements, encapsulating 

what is a proper application elasticity behavior is, as various users would evaluate 



subjectively whether their cloud applications are behaving properly (e.g., depending on 

the business perspective, the allocated cost, or intended QoS for clients) 

ii. Managing elasticity control at multiple application levels (e.g., components, groups of 

components or even application level) for fulfilling user’s elasticity requirements 

iii. Enforcing the elasticity control in a generic manner, on different types of cloud 

infrastructures, enabling stakeholders to obtain elastic applications on their preferred 

clouds 

In this chapter, we present elasticity control techniques developed in the EU CELAR Projectv for 

addressing above challenges.  Our techniques enable  cloud application stakeholders to specify the 

requirements at different levels of granularities, for controlling cloud applications at multiple levels, 

applying different types of elasticity control mechanisms suited for data-intensive or compute-intensive 

parts of the cloud application. CELAR control techniques take real-time decisions for cloud application 

adaptation to meet user (any application stakeholder, e.g., application developer, or service provider) 

elasticity requirements, facilitating an automatic adaptation process of the cloud application to “outside” 

stimuli (e.g., workload, increasing cost, or decreasing quality) without the need of user intervention. 

Moreover, not only real-time adaptation decisions are enforced but also smart deployment of the cloud 

application, considering cloud providers applications and estimated cost with respect to quality and 

performance.   

The rest of this chapter is organized as follows: Section 2 presents related work. In Section 3 we 

present CELAR users and their possible requirements with regard to the elasticity control, in Section 4 we 

present our elasticity specification language and show how CELAR’s user interface component facilitates 

the description of multi-level elasticity requirements. The next section, Section 5, presents the conceptual 

architecture of the CELAR elasticity control module, and its techniques. We present experiments in 

Section 6, a discussion on control frameworks in Section 7 and conclude the chapter in Section 8. 

2 RELATED WORK 

In this section, we take a look at current cloud application elasticity status quo regarding cloud 

application control. We present the elasticity capabilities of cloud providers which are part of the CELAR 

project, both on data and on computing resources. Next, we focus on computing resource and data 

resource elasticity control, and compare the state of the art with what we do for controlling elasticity in 

CELAR. Finally, we take a look at higher, and multiple level application control existent in literature, and 

compare our approach with them.  

2.1 Computing and Data Resources Low-level Controls 

We firstly consider the possibilities of runtime reconfiguration offered by the CELAR cloud 

providers, Flexiantvi and ~okeanosvii. Table 1 presents the fundamental control mechanisms available for 

computing and network resources, while Table 2 presents data elasticity control mechanisms.  Although 

they have different names for the applications being offered (e.g., VM and Server refer to Virtual 

Machine), they have similar offerings. For instance, common elasticity control mechanisms are  

create/start/reboot VM, with minor differences e.g., Flexiant FCO offers Bento Boxes which are complex 

clusters which can be deployed as a group, while ~okeanos offers the opportunity of constructing 

arbitrary network topologies. Other big cloud providers (e.g., Googleviii, Azureix, or Amazonx) typically 

offer similar capabilities, in the sense of VM and disk level horizontal or vertical scaling, with variations 

on hot-pluggable capabilities. Although they currently offer low-level capabilities, there is a considerable 

effort towards offering services between IaaS and PaaS, e.g., Google managed VMsxi, part of their PaaS 



services, facilitate automated management similar with the management offered for manually created 

VMs. 

Table 1: Computing Resources Control Mechanisms 

Provider Elasticity 

Capability 

Description 

~okeanos Create New VM Creates a new Virtual Machine from an existing image 

Start VM Starts an already created virtual machine, booting the OS 

Shutdown VM Shuts down the operating system and stops the VM 

Reboot VM Performs an OS restart 

Destroy VM  Deletes the VM 

Initialize VM 

Configuration 

Number of CPUs, Size of RAM, System disk, OS, Network 

connectivity (dual IPV4/IPV6), 

Create private 

virtual L2 network 

Creating a subnet (e.g., for constructing arbitrary network 

topologies) 

Flexiant 

FCO 

 

Create Bento Box Template entire complex clusters and deploy at the click of 

a button 

Add/ Remove 

compute nodes to 

cluster 

Flexiant offers the possibility of grouping compute nodes 

into clusters which are controlled/monitored as a group 

Initialize Server 

Configuration 

Number of CPUs, Size of RAM, System disk, OS, Network 

connectivity (dual IPV4/IPV6), user, password, 

contextualization information  

Create Server Creates a new server from an existing image 

Start Server Starts an already creating server, booting the OS 

Duplicate Server When Server A is duplicated, a new server (Server B) is 

created, and the initial configuration of Server A is applied 

to Server B 

Shutdown Server Shuts down the operating system and stops the Server 

Reboot Server Performs an OS restart 

Destroy Server Deletes the Server 

Manage Firewalls Add/remove/configure firewalls for the server 

Manage Chef 

Settings for Server 

Edit chef account settings 

Create/Manage 

Virtual Data 

Center 

Virtual Data Center is a logical grouping of servers 

Application 

Specific 

Configure software 

x with 

configuration y 

Configure software which is part of the application or on 

which the application depends, in order to have different 

quality/performance/cost parameters for the application. 

Table 2: Data Elasticity Control Mechanisms 

Provider Elasticity Capability Description 

~okeanos Storage 

Configurations 

Local, distributed and centralized, out of which both 

SAN, NAS 



Volume creation Create volume with specified size 

Volume deletion Delete specified volume 

On-the-air attachment 

of volume 

Attach volume to existing computing node (VM), 

without the need of rebooting the node 

On-the-air de-

attachment of volume 

De-attach volume from existing computing node (VM) 

without the need of rebooting the node 

Snapshotting existing 

volume 

Create a snapshot of the specified volume (available 

copy-on-write of snapshotable volumes) 

Hashing snapshots  Facilitates deduplication, thus reducing the storage 

cost of each hashed object 

Resizing existing 

volume 

Resize volume to specified size 

Flexiant 

FCO 

 

Storage 

Configurations 

Three types of storage: local, distributed and 

centralized, out of which both SAN, NAS 

Create disk Create disk with specified size 

Remove disk Remove specified disk 

Snapshot disk Take a snapshot of the disk 

Add the disk to a new 

or existing deployment 

instance 

Add existing disk to a deployment instance (group of 

servers) 

Data 

Specific 

Clean Data  Remove data which is not valid for improving the data 

completeness and data access performance 

Move Data Move data from one disk to another, from one block to 

another, etc.  

Other Data Specific 

Control Mechanisms 

Reconfigure data in different other ways 

Application 

Specific 

Configure software x 

with configuration y 

Configure software which is part of the application or 

on which the application depends, in order to have 

different quality/performance/cost parameters for the 

application. 

2.2 Computing Resource Elasticity Control 

To leverage the low-level elasticity capabilities of cloud infrastructures, several controllers have 

been developed. Current computing elasticity controllers such as Amazon AutoScalingi, Paraleap 

AzureWatchxii and RightScalexiii can scale – automatically and seamlessly – large Cloud applications. 

However, their controlling actions are limited to only scaling horizontally the tiers of an application based 

on a small number of low-level metrics (e.g., CPU usage and memory usage). For a simple web 

application, such elasticity controllers are capable of only scaling the application server tier and the 

distributed database backend by adding/removing virtual instances, when predefined thresholds are 

violated. Moreover, for large-scale applications, in order to reduce costs and match the current demand, 

one requires from elasticity controllers to apply various complex adaptation mechanisms, which we refer 

to as elasticity control plans. These mechanisms are required to carefully assess the actual application 

logic with respect to its internal dependencies and (implicit) requirements towards the cloud provider 

APIs, including communication, consistency management and scheduling. Overall, managing elasticity of 

cloud applications by using the most popular mechanisms of computing resources control is not a trivial 



task. For small-scale application deployments, organizations can (de-) allocate resources manually, but 

for large-scale distributed applications which require a deployment comprised of multiple virtual 

instances, which often have complex inter-dependencies, this task must be done, inevitably, 

automatically.  

To facilitate complex adaptation mechanisms, an elastic compute resource provisioning system 

must not limit its decisions based on low-level monitoring information. Instead, it is required to assess 

heterogeneous types of monitoring information of different granularity, from low-level system metrics 

(e.g., CPU, memory, network utilization) to high-level application specific metrics (e.g., latency, 

throughput, availability), which are collected across multiple levels (physical, virtualization, application 

level) in a Cloud environment at different time intervals, as Trihinas et al. (2014) do. To accommodate 

these limitations, our work incorporates JCatascopia (presented in detail in Trihinas et al. (2014)), a fully-

automated, multi-layer, interoperable cloud monitoring system which provides access to monitoring 

information through its REST API. 

To enforce complex adaptation mechanisms, decisions originating from an elasticity controller 

must also be aware of what are the offerings and limitations of the underlying IaaS provider. Specifically, 

the controller must consider: (i) what are the resizing actions permitted per resource and (ii) the quotas for 

each user/tenant. Knowing the elasticity capabilities of each IaaS resource is of extreme importance when 

determining which elasticity mechanism should be enforced. For example, let us consider two IaaS 

providers (Provider A and Provider B) where only the first provider offers users the capability of 

vertically scaling virtual instances by allocating more memory, while both offer horizontally scaling 

capabilities. If we consider a three-tier web application deployed on Provider B, the control mechanism 

can only scale horizontally the Application Server Tier when memory utilization increases. For Provider 

A though, the decision-making mechanism can take advantage of Provider A’s extra capabilities and 

decide upon either scaling horizontally the Application Server Tier or, enlarging the allocated memory of 

existing instances. This approach takes cost into consideration since resizing existing VM(s) may be 

cheaper than constantly initializing small virtual instances. Additionally, it is important for elasticity 

controllers to also consider the per tenant quotas such as: (i) the total capacity of resources that a tenant 

can allocate; and (ii) the multiplicity of resources that can be concurrently allocated at any given time. In 

continuation of the previous example, if the permitted number of allocated VMs per tenant is low, our 

application deployed on Provider B will face quota problems when scaling to satisfy very high demands, 

whereas for Provider A, an intelligent elasticity controller can scale the application both vertically and 

horizontally to satisfy an even higher demand. To accommodate these limitations, our work constructs an 

information management tool (described in detail in Trihinas et al. (2013)) which provides access to IaaS 

specific information. 

The inherent dynamicity in the run-time topology of elastic cloud applications raises several 

issues in run-time control. As elastic applications scale out/in due to elasticity requirements, their 

underlying virtual infrastructure is subject to run-time changes due to additional/removal of virtual 

resources (e.g., virtual machines). Thus, cloud application monitoring must avoid associating monitoring 

information only with virtual resources, as these resources are volatile, and are not present for the whole 

lifetime of the application. For example, when the application usage is low, one application component 

could use only one virtual machine, but during peak times would allocate more resources, and deallocate 

them when load decreases. The other extreme of monitoring just the application level metrics (e.g, 

response time) is also insufficient, as such high level metrics do not give any indicator on the performance 

of the underlying virtual infrastructure. Thus, systems for monitoring elastic cloud applications must 

follow a multi-level monitoring approach. Both virtual infrastructure and application level monitoring 

data must be collected, and structured according to application’s logical structure, as done by Moldovan 

et al. (2013). Evaluating the cost of an application running in a cloud environment is challenging due to 

the diversity and heterogeneity of pricing schemes employed by various cloud providers (e.g., Provider A 



may charge per I/O operation, while Provider B might charge only per storage size). This heterogeneity 

generates a gap between the monitoring metrics collected by a monitoring system and the metrics targeted 

by cloud billing schemes. Moreover, evaluating the cost of the application requires information about 

particular cloud pricing schemes, information that cannot be monitored directly by a cloud monitoring 

system. To address these issues, our work provides MELA (Moldovan et al. (2013)), which uses 

monitoring information collected from cloud monitoring tools and the cloud application structure, to 

provide a cross-layered, multi-level view over the performance and cost of elastic cloud applications. 

2.3 Data Resources Elasticity Control 

Data-related elasticity controls of cloud application usually entail, at system level, 

removal/addition of data nodes in clusters of data. Elastically scaling data resources in the cloud requires 

a data-aware approach in order to obtain the full benefit of extra added resources. The first and most 

important thing that needs to be addressed during resource adjustment is uneven data distributions: when 

data nodes join or leave from a data-storage component, they create imbalances in the initial data 

distribution. Even when resources do not change, unpredictable data access patterns often create 

unbalanced distributions that degrade performance. In that cases, load balancing approaches that 

redistribute data between nodes are necessary. 

 Consistent hashing techniques described by Karger et al. (1997) are a common and effective 

solution for data control. The majority of modern NoSQL stores (e.g., Lakshman et al. (2010), DeCandia 

et al. (2007)) make use of such techniques to equally allocate data and incoming requests to the available 

nodes. Although hashing initially solves the data to machines allocation problem, there are many 

situations in which this proves suboptimal. Hashing destroys locality and thus, it cannot be employed in 

situations where semantically close items need to be stored in an order-preserving way. When an order-

preserving partitioner is desired, different load balancing schemes need to be devised in order to support 

range queries. Range queries are present in many popular applications. Therefore, algorithms and systems 

which handle this case are of great importance. In the literature, there are many load balancing algorithms 

(e.g., Bharambe et al. (2004), Aspnes et al. (2004), Ganesan et al. (2004), Karger et al (2004), 

Konstantinou et al. (2011)) which support range queries. 

The need to support range queries highlights another problem which belongs to the load 

balancing family. Although data placement can be balanced, there may be imbalances in the data request 

load. Ananthanarayanan et al. (2011) show that in a highly skewed data access distribution, where a small 

portion of popular data may get the majority of the applied load, the system performance may degrade 

even in over provisioned infrastructures. 

Dbalancer proposed by Konstantinou et al. (2013) is a generic and automated system, offering 

load balancing in NoSQL datastores, which we choose to use and extend. Dbalancer is a generic 

distributed module that performs fast and cost-efficient load balancing on top of any distributed NoSQL 

datastore. The two main features of Dbalancer are the datastore and algorithm abstraction. Dbalancer is 

completely independent of the underlying NoSQL datastore.  

2.4 Complex Service Elasticity Control 

Schatzberg et al. (2012) raise issues that appear in cloud elasticity control and outline that in 

cloud computing elasticity is an important area of research, which will facilitate the development of 

applications that would fully benefit from the advantages of cloud computing and from on-demand 

resources allocation. The different perspectives of cloud applications performance/cost/quality 

measurement are outlined by Li et al. (2012) who propose a list of categories of metrics which are used 

for evaluating cloud applications. Their retrieved cloud application evaluation metrics are scattered over 

three aspects of cloud applications: economics having as subdimensions cost and elasticity evaluation 



metrics, performance with subdimensions communication, computation, memory, storage evaluation 

metrics and security evaluation metrics. The abstract metrics are associated to measurable metrics for 

easier grasp of reality and for being able to actually compute the abstract metrics.  

Truong et al. (2010) estimate the cost of application hosting on the cloud considering different 

sub-costs which may interfere during the lifetime of the application. Villegas et al. [Villegas 2012] 

propose a framework for conducting empirical research in different IaaS clouds, comparing different 

allocation and provisioning policies. The authors emphasize the importance of understanding the 

performance and cost associated with different provisioning or allocation policies, for being able to 

properly manage their application’s workloads. 

Gonzalez et al. (2012) propose cloud infrastructure-level virtual machine management for 

increasing the VM availability. The authors also provide a study on how different properties of the cloud 

infrastructure affect the VM availability. Chaisiri et al. (2012) focus on the complexity of selecting cloud 

applications under different provisioning plans, such as reservation and on-demand, defining an optimal 

cloud resource provisioning algorithm that can provision resources in multiple provisioning stages.  Using 

deterministic equivalent formulation, sample-average approximation, and Benders decomposition, their 

proposed solution minimizes the total cost of resource provisioning in cloud computing environments.  

3 MOTIVATING SCENARIOS 

We focus on user scenarios which we encountered in CELAR, namely: (i) the needs of a cancer 

research application, and (ii) the requirements of a gaming application. For these cases, the applications 

are designed such that they facilitate as many elasticity capabilities, in order to facilitate better elasticity 

control.  

3.1 Cancer Research Application 

The first application, SCAN, shown in Figure 2 and described in detail in Xing et al. (2014), is a 

cancer research application designed by the Cancer Research UK Manchester Institute, which analyzes 

large-scale population genome data for helping doctors to determine personalized treatments. The SCAN 

pipeline consists of four types of data processes: i) Genome data process; ii) Proteome data process; iii) 

Cell Image data process; iv) Integrative network analysis. It employs a set of biological application tools 

for those various data processes, such as Burrows-Wheeler Aligner (BWA) for gene alignment, Genome 

Analysis Toolkit (GATK) for e.g., gene variations detection, The Global Proteome Machine for 

proteomic data analyses, MaxQuant, CellProfiler for cell image analyses, or Cytoscape for data 

integration. 



 
Figure 2: SCAN Scientific Application 

There are two major challenges regarding cloud-based deployments of such research pipelines. 

First, different stages of the pipeline may require substantially different levels and types of resources. For 

example, mapping of deep sequencing data to genome annotation via a relational database such as 

ENSEMBLxiv relies on the ability to perform frequent joins across multiple tables containing millions of 

rows, while computation of downstream statistics is often dependent on repeated numerical calculations 

over permuted data. Second, a specific bio-component within a SCAN stage may have different resource 

needs due to the size and complexity of the data for different SCAN runs. For example, SCAN mutation 

detection process will take different time for various type of genome data, e.g., 4 CPU/hours for Whole 

Exome Sequencing data (WES) or 10 CPU/hours for Whole Genome Sequencing (WGS) data. 

To address the challenges described above, SCAN has been designed as an elasticity-ready bio-

computing application so that it can be intelligently orchestrated for adjusting resources to the various 

situations which can be encountered. For instance, considering the fact that cancer diagnosis and 

treatment is “time-sensitive”, sometimes doctors may need the result of SCAN for a patient in a particular 

period. Therefore SCAN should be executed according to user specified priories. It is thus important to be 

able to decide on the adequate amount and type of resources, depending on various metrics, e.g., available 

money, desired time, or desired accuracy. Moreover, SCAN is comprised of a wide range of bio-

applications and may require a large amount of heterogeneous computing resources. The SCAN users 

may need to query information about execution of bio-applications within different cloud infrastructures 

in order to assist SCAN users to define, for example, policy of the execution. 

Based on the application description above,  our control will ensure the following: (i) deciding the 

appropriate size of resources, (ii) ensuring predefined levels of service quality, (iii) ensuring that the 

SCAN pipeline runs within desired costs, and (iv) deciding the concurrency level and appropriate time 

periods of different stages. Moreover, since SCAN is comprised of pipes (i.e., components grouped 

together), the control needs to facilitate the fulfillment of multi-level requirements (e.g., a specific pipe 

needs to finish executing, with certain quality, before another pipe), and controlling high level metrics 

(e.g., overall application cost, quality indicators over specific pipes). 

The SCAN application needs to benefit from the on-demand storage capabilities offered by the 

IaaS providers (~okeanosvii or Flexiantvi), as well as application-specific control mechanisms, this way 

offering personalized treatments within time and cost constraints. SCAN performance and cost can be 

customized according to real-time elasticity metrics, thus resulting in a personalized control of the 



application. For understanding the relation between requirements regarding SCAN execution, and the 

performance/cost obtained, CELAR’s user interface component can be used to browse historical 

execution data. Moreover, cost and functionalities offered by different IaaS providers can be compared 

and elasticity control actions taken during the execution of the SCAN pipeline can be analyzed.  

3.2  Gaming Application 

Playgen’s Data Play is a gaming application, shown in Figure 3 and described in detail in Cox et 

al. (2014). The DataPlay application is designed with elasticity in mind. The main elasticity capabilities 

designed and embedded in DataPlay are horizontal and vertical scaling of game components, such as the 

Game Server, the Data Processing component, and the Data Access layer.  For enforcing such 

capabilities, implemented elasticity actions target both the virtual infrastructure (e.g., adding/removing 

virtual machines), and the application level (e.g., reconfiguring load balancers or data storage).  

 
Figure 3: DataPlay Application 

Starting from industry known guidelines, Data Play requirements are response time<1.5 
seconds, I/O Performance >= 100 MBps, and cost as small as possible.  CELAR will analyze the 

behavior of all Data Play components’ instances, and, leveraging on the embedded elasticity capabilities 

of the Data Play, take appropriate actions to ensure the performance and reduce cost of running the Data 

Play in cloud. Starting from the game requirements, our controller will extract system-level requirements 

(e.g., CPU usage, memory usage, disk I/O performance) and application level requirements for the 

individual game components. Having a complete view over system and application level requirements, 

CELAR will monitor and enforce the supplied requirements using the game’s elasticity capabilities. 

DataPlay is centered on users exploring data (Volatile and Persistent data), thus introducing data-related 



elasticity concerns. Persistent data is static, or changed with a very low frequency (a couple times a year), 

but it is frequently accessed, highlighting the need for data consistency. Volatile data is created for each 

DataPlay user, and, for performance, holds temporary data .If a client is manipulating a dataset, then the 

application treats that as a different table for speed reasons, but if the client’s session expires then that 

table is destroyed. Therefore, for this application we have a continuous increase/decrease in data 

depending on the client number, on the size of the datasets they are interested in and on the time they use 

that data for.  

Large volumes of data can also come in at any time, for instance from tweets and RSS feed 

updates. However, the volatile data is copied for individual users depending on their interest and 

gameplay. For this kind of data usage, data freshness is an important factor, as one needs to have as fresh 

as possible trending-related data, especially if the data s/he uses has been cached for performance reasons. 

4 ELASTICITY REQUIREMENTS SPECIFICATION 

4.1 SYBL Overview 

For describing what types of elasticity controls could be required, considering the complexity of 

CELAR user’s elasticity requirements, we examine various types of elasticity requirements from different 

stakeholders, at different granularities, presented in detail in Copil et al. (2013a). Elasticity requirements 

are abstract or high level demands formulated by application stakeholders (e.g., application provider, 

application developer) which affect the application pathway in the elasticity space presented in detail in 

Moldovan et al. (2013). Although current state of the art (e.g., Amazon AutoScale) facilitates description 

of low-level, infrastructure-related requirements, the application stakeholder should to be able to specify 

requirements concerning more abstract metrics (e.g., the cost per application user that the stakeholder 

needs to pay per hour). 

SYBL is a language for elasticity requirements specification, having three types of constructs at 

its core, enabling the specification of elasticity requirements: (i) MONITORING enables the designation 

of different metrics or formulas of metrics which should be monitored; (ii) CONSTRAINT specifies the 

desired state of the application, while (iii) STRATEGY specifies the desired behavior of the application 

or of different application parts. More information regarding the SYBL language is available in Copil et 

al. (2013a). SYBL allows the specification of elasticity requirements at three levels: application unit level 

for component related elasticity requirements, service topology elasticity requirements related to groups 

of components and application level for application related elasticity requirements.  At service unit level, 

the SYBL user (e.g., service provider, or service developer) can specify requirements for the component 

which is of interest (e.g., for a business unit we can have STRATEGY CASE NumberOfClients<100 
AND small(ResponseTime) : minimize (cost)). For service topology level, SYBL user can 

specify higher level goals which target higher level metrics (e.g., CONSTRAINT DataAccessSkewness 
< 90%), while at cloud service level s/he can specify complex requirements for the entire cloud service, 

targeting the overall behavior of the cloud service (e.g., STRATEGY maximize (cost/clientNb) ) 

The SYBL language is not tied to any specific implementation language (e.g., SYBL elasticity 

requirements can be seen as Java annotations, C# annotations, or Python decorators). Moreover, the 

SYBL elasticity requirements can be injected into any cloud application description language (e.g., 

TOSCA standard proposed by OASIS (2013)) or can be specified separately through XML description. 

The current language interpretation mechanism is implemented in Java, and supports TOSCA-injected, 

XML-based, or Java annotation-based elasticity requirements specification.  

Figure 4 shows an excerpt from a TOSCA policy based specification, describing the constraint 

that the cost for the PilotCloudService should be below 100$. The SYBL elasticity requirements can 



be easily integrated within TOSCA policies, and interpreted by the CELAR Decision Module. When 

discovering that this requirement is violate, the Decision Module will evaluate a series of possible actions 

to be enforced for ensuring that the user’s requirements are fulfilled, as we show in Section 5. 

 

 

 

 

 

 

We therefore facilitate the user to specify SYBL elasticity requirements with the help of CELAR 

user interface, as part of the process of cloud application description, as presented below.  

4.2 SYBL Elasticity Requirements Specification with c-Eclipse 

To simplify the task of the developer, we integrate elasticity requirement specification into c-

Eclipse, which facilitates the user to describe his/her application, requirements for it and monitor 

application evolution at runtime (c-Eclipse is described in detail in Sofokleous et al. (2014)). C-Eclipse 

enables the specification of SYBL elasticity requirements and their injection into TOSCA XML 

application descriptions. The TOSCA language does not directly specify how to define elasticity 

requirements for Cloud applications. The way c-Eclipse achieves elasticity specification in TOSCA is by 

making use of TOSCA’s Policy element. TOSCA defines “Policies” as the means by which we can 

express non-functional behavior or quality-of-services for an application (see OASIS TOSCA 

Specification (2013)). Thus, we make use of the two types of elasticity requirements defined in the SYBL 

XML schema (Constraint and Strategy), and inject them into TOSCA as Policy elements of the 

corresponding types.  

 

Figure 5: Elasticity Requirements Specification with c-Eclipse 

Figure 5 presents the Properties View of c-Eclipse, specifically the Elasticity Tab, through which 

users can define the elasticity requirements of their application in an intuitive, user-friendly manner. 

Users can use simple low level metrics offered by the platform, such as CPU Usage, to complex user-

defined metrics (e.g., cost/client/h), and specify the desired requirements for these metrics. They can also 

<tosca:ServiceTemplate name=”PilotCloudService”> 
<tosca:Policy name=”Co1” policyType=”SYBLConstraint”>  

  Co1:CONSTRAINT Cost &lt 100\$  
 </tosca:Policy> 
 … 
</tosca:ServiceTemplate> 

Figure 4: SYBL Elasticity Requirement in TOSCA 

 



define more complex metrics by combining simple metrics with mathematical operators to design new 

metrics. Both types of metrics can be used to formulate the Constraints and Strategies for an application, 

using the SYBL language defined in Copil et al. (2013).  In this case, the user chooses to specify a 

strategy which should be applied when a condition holds, i.e., when cost is sufficiently small, 1$, the 

strategy of minimizing throughput should be applied. This takes into account that the throughput cannot 

be minimized indefinitely, and that the stakeholders have a strict upper bound for the cost per hour which 

shouldn’t be exceeded.  

The user-specified elasticity requirements are automatically translated into XML SYBL 

requirements which in turn are injected into the XML TOSCA description of the application. The code 

snippet below reflects the elasticity Strategy specified through c-Eclipse, shown in Figure 6. In this 

strategy, the user wants to maximize throughput for an application component (right side of Figure 5), 

when the cost is less than 1 $/h (in the center of Figure 5, the “Apply Strategy under Condition” window).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Elasticity requirements can be linked to simple application components, composite components 

or the entire application, depending on which graphical element from the application description is 

selected when the user specifies the requirements.  

5 MULTI-LEVEL AND MULTI-DIMENSIONAL ELASTICITY CONTROL 

In this section we focus on the mechanisms used in CELAR for multi-level control of the cloud 

application, for fulfilling user’s elasticity requirements. 

5.1 CELAR Elasticity Control Overview  

CELAR proposes application elasticity management, from deployment to runtime control, in an 

automated fashion. CELAR targets the control of applications deployed in a single cloud. For each cloud 

where the user has an account and at least one application deployed, consuming cloud provider resources, 

CELAR deploys an orchestration instance (CELAR Orchestration VM in Figure 7), hosting all CELAR 

components necessary for deploying, monitoring, analyzing and controlling application’s elasticity.  

Figure 6: Elasticity strategy expressed through policy template by c-Eclipse 

<tosca:PolicyTemplate type="pol:ElasticityStrategy" id="Throughput_Strategy"> 
<tosca:Properties> 

  <sybl:StrategyProperties> 
   <Condition> 
    <BinaryRestrictionsConjunction Type="LessThan"> 
     <LeftHandSide> 
      <Metric>cost</Metric> 
     </LeftHandSide> 
     <RightHandSide> 
      <Number Metric="$/h" >1</Number> 
     </RightHandSide> 
    </BinaryRestrictionsConjunction>  
   </Condition> 
   <ToEnforce ActionName="Maximize" Parameter="Throughput"/> 
  </sybl:StrategyProperties>    

</tosca:Properties> 
</tosca:PolicyTemplate> 

 



 

Figure 7: Communication among CELAR Components 

Figure 7 shows a snapshot of a CELAR-based deployment, containing all CELAR components, 

the application which is being controlled and communication among them, with examples for ~okeanos 

and Flexiant cloud providers. CELAR user first describes his/her application through c-Eclipse, in the 

Application Description Tool. This description includes application topology, elasticity requirements at 

the different levels of the cloud application, and specific artifacts of the application (e.g., web services, or 

configuration scripts). All information from application description step is described using TOSCA 

standard defined by OASIS Technical Committee (2013), the description together with the artifacts being 

packed into a Cloud Application Archive (CSAR) and using the c-Eclipse Application Submission Tool, 

the cloud provider is selected, the authentication information set and the cloud application deployment 

call is sent to the CELAR Manager from the CELAR Orchestration VM on the selected cloud. For the 

same user, we can have a single orchestration instance per cloud provider, which controls and monitors all 

the user’s applications. The CELAR Manager has the mission of coordinating the communication among 

CELAR modules: (i) it receives the cloud application archive from c-Eclipse, forwards it to decision 

module in case the user needs suggestions regarding application configurations, and then sends it to 

Resource Provisioner for allocating the necessary resources, (ii) whenever the Decision Module, which 

controls the cloud application, decides that control processes need to be enforced for fulfilling user-

specified requirements, the CELAR Manager coordinates the enforcement of the generated action plan 

with the Resource Provisioner. 

The process of controlling the cloud application is depicted in Figure 8, from c-Eclipse 

application description, to deployment configuration and elasticity control. Whenever the CELAR user 

would like a more complex application configuration describing the resources used or with the software 

artifacts to be deployed, it can ask, through c-Eclipse, for a smart deployment strategy, containing 

complete information for deployment (e.g., resource configuration, or missing artifacts). After the 

deployment, the application is monitored and analyzed continuously, and elasticity control is enforced for 

fulfilling elasticity requirements.  



 

Figure 8: Elasticity control process – from description to control 

For analyzing and controlling the cloud service, we model various application-related information 

into a dependency graph, based on the model published in Copil et al. (2013b), depicted in Figure 9. At 

runtime, the information is represented as a dependency graph, with each concept instance (e.g., 

Composite Component) from the model being a node, while the relationships (e.g., 

hasElasticityCapabilities in Figure 9) are edges connecting them.  

 

Figure 9: Cloud Application Model – Copil et al.  (2013b) 

The structural information captures components (e.g., NoSQL database node, or a tool in the 

SCAN pipeline) and groups of semantically connected components into composite components (e.g., 

business layer, or a SCAN stage). To each of these, during runtime, are associated resources like 

processes, virtual machines (equivalent to servers on Flexiant cloud), virtual clusters (equivalent to virtual 

data centers in Flexiant).  

5.2 Cloud Application Deployment Configuration 

For configuring cloud application deployment, we have developed a service, SALSA (Le et al. 

(2014)), generating smart deployment configurations, by analyzing application structure and elasticity 



requirements. This service takes a high level application description, application profiling information, 

and available cloud description information and generates a deployment configuration.  

Figure 10 depicts the simple flow of generating a deployment plan from the high level application 

description. When deciding whether or not they want to use smart deployment, the CELAR users consider 

how complex the application is, and how familiar they are with the application. The trigger for a smart 

deployment and necessary information is sent by c-Eclipse when a new application deployment or a re-

deployment of running components is needed.  

 

Figure 10: Flow of Deployment Configuration 

The input for SALSA Service is a TOSCA description from c-Eclipse which consists of a high 

level application description, containing only structural and application-specific information (e.g., 

application artifacts), without a description of resources needed for deployment. The input is processed 

via Architecture refinement and Cloud resource configuration modules, and produces a 

deployment configuration and sends it to c-Eclipse. 

The high level application description defines components in an abstract way. For instance, cloud 

resources can be described using specific categories such as compute, storage, network; software 

dependencies can be represented by types such as web container, database, API libraries, which are all  to 

be found in c-Eclipse as types of software requirements. For each deployment configuration step (see 

Figure 8), we interpret SYBL requirements, in order to detect deployment preferences (e.g., optimize 

cost, maximize resource usage, or maximize latency), and guide our deployment configuration with 

identified preferences. The architecture refinement step in Figure 10 aims to enrich the application 

topology with artifacts/software using CELAR repository of existing artifacts (e.g., Tomcat web server). 

The output of this step is a full application topology with all the needed artifacts. Moreover, in the cloud 

resource configuration step of Figure 10, we associate the required resources to each components/artifacts 

previously selected, using cloud provider and application profiling information. The resulted 

configuration is expressed as a TOSCA description, and returned to c-Eclipse for being analyzed and 

modified as needed by the CELAR user. 

5.3 Cloud Application Monitoring and Analysis 

For application monitoring and analysis we use MELA, described in detail in Moldovan et al. 

(2013), which analyzes the elasticity of cloud applications, focusing on the three elasticity dimensions: 

cost, quality and performance. MELA provides elasticity analysis capabilities on the aggregated 

monitoring data coming from the Cloud Information and Performance Monitor, determining the elasticity 

boundaries, space and pathway of cloud application. This information is used by rSYBL (see Section 5.4) 

in controlling the elasticity of such applications. 

For analyzing and controlling the cloud application, elasticity space boundaries are determined 

for all application components, composite components, and whole application, and are equal to the 

maximum and minimum encountered metric values when the elasticity requirements were respected. 



Thus, starting from supplied user requirements, MELA determines and continuously updates 

requirements for the rest of the application components, requirements then enforced by rSYBL, as 

described in Section 5.4. 

For elasticity control of cloud applications we also use the elasticity pathway function, which 

gives an indicator on the historical behavior of the cloud application and correlations between the 

application’s metrics. The elasticity pathway information provides a base for refining user-defined 

requirements, and validating the Decision Module’s control strategy. In the current prototype of the 

MELA we adapt as elasticity pathway function an unsupervised behavior learning technique using self-

organizing maps (SOMs) proposed by Dean et al. (2012). We classify monitoring snapshots by 

encountering rate in DOMINANT, NON-DOMINANT, and RARE. Such a pathway is important for 

understanding if the regular behavior of the application fulfills user-defined elasticity requirements.  

5.4 Cloud Application Elasticity Control 

Considering the model of the application described through the runtime dependency graph 

presented in the previous subsection, we use rSYBL elasticity control, described in detail in Copil et al. 

(2013b), to enable multiple levels elasticity control of the described application, based on the flow shown 

in Figure 11. The flow presented in Figure 11 is executed continually, and is based on the monitoring 

information, application description, initial deployment and different types of elasticity requirements (left 

hand side of Figure 11). The elasticity requirements are evaluated and conflicts which may appear among 

them are resolved. The dependency graph, populated with this information, is continually analyzed, to 

evaluate whether there are ways of improving requirements fulfillment. Based on this analysis, we use a 

map coverage approach described in detail in Copil et al. (2013b) for generating an action plan which is 

composed of abstract actions, which are mapped into infrastructure or application level actions and then 

enforced with the help of used cloud infrastructure APIs. 

 

Figure 11: Flow of Elasticity Control 

Let us consider a simple example shown in Figure 12 of controlling the entire application, e.g., by 

the system designer. The described elasticity requirements, Co1, Co2, and Co3 are not conflicting, and 

actions are searched for fulfilling these requirements. Possible actions are, for instance, for the case the 

running time is higher than 10 hours and the cost is still in acceptable limits, to scale-out for the 

computation composite component, increasing the processing speed. An example of an action plan, 

shown in Figure 12 could be: 

𝐴𝑐𝑡𝑖𝑜𝑛𝑃𝑙𝑎𝑛1 = [ [ 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛], [ 𝑠𝑐𝑎𝑙𝑒𝑂𝑢𝑡, 𝑠𝑒𝑡𝑇ℎ𝑟𝑒𝑎𝑑𝑃𝑜𝑜𝑙 = 100]]. 

This action plan would address performance issues for the second elasticity requirement Co2, and 

availability issues for the third elasticity requirement Co3. Each of the generated abstract actions are 

mapped into complex API calls. For instance, increaseReplication action would consist of calls for 

adding and configuring a new database node and configuring the cluster for higher replication, while the 



scaleOut action would be the addition of a new virtual machine, deployment of the ComputationEnd  

component on the new machine, and necessary calls for the new instance of the component to join the 

computation topology cluster. 

 

Figure 12: Action Plan Example 

6  APPLICATIONS OF ELASTICITY CONTROL 

The two applications described in Section 3 are currently being developed. Therefore we choose 

to showcase CELAR control approach on a Machine-to-Machine (M2M) DaaS Service.  The M2M DaaS 

Service is quite complex, containing two composite components, one application server-based and one 

which is a NoSQL. This is similar to the gaming application presented in Section 3.2, which also has 

requirements regarding application-level metrics like response time and latency.  Moreover, the M2M 

DaaS composite components are similar to pipes in SCAN application presented in Section 3.1, in which 

the SCAN developer wants to introduce requirements at pipe-level as well as at component level, thus 

having multi-level elasticity control for the SCAN application. 

Considering a CELAR user that wants to deploy this M2M DaaS in the cloud and expects an 

elastic application behavior, the CELAR user needs to describe two types of information: structural 

information regarding application artifacts, and elasticity requirements at the different application level. 

The M2M DaaS, shown in Figure 13, is comprised of two composite components, an Event 
Processing Composite Component and a Data End Composite Component.  Each composite 

component consists of two components, one with a processing goal, and the other acting as the composite 

component balancer/controller. To stress this application we generate random sensor event information 

which is processed by the Event Processing Composite Component, and stored/retrieved from the 

Data End Composite Component.  

 

Figure 13: Application Used for Evaluation 

Moreover, the CELAR user is interested in specifying a number of elasticity requirements, both at 

component, composite component, and at whole application level. The requirement specified at whole 

application level (St1) specifies as a strategy to increase as much as possible the throughput, but under 

specific cost condition. In the upper part of Figure 13 shows the various elasticity requirements which we 

associate to the different levels of M2M application. For having the application elasticity controlled by 



CELAR, the M2M application as well as these elasticity requirements need to be described with c-

Eclipse, as we describe in Section 6.1. After describing the application and pressing the deploy button, the 

application is controlled following the approach presented in Section 5, control results being presented in 

Section 6.2.  

6.1 Application Description with c-Eclipse 

The c-Eclipse framework provides an intuitive, user-friendly interface through which users can 

describe their applications for deployment over cloud platforms. The c-Eclipse user interface is depicted 

in Figure 14. At the left-hand side, the CELAR user can see the CELAR Project View where all the files 

related to an application description are organized in a hierarchy. The Palette, shown at the right-hand 

side, includes most of the elements required for creating application descriptions, categorized under 

different Palette sections. By simply dragging and dropping pictorial elements from the Palette onto the 

center Canvas, users can create a graphical representation of an application. Additional information can 

be provided for each element via the Properties View (see in Figure 14). Application descriptions are 

translated on the fly into XML, according to the open TOSCA specification for cloud applications. 

 

The first step in describing an application is to define the application’s structure/topology, 

following the abstract application composition-based model described in Section 5.2.1. To do so, the user 

must use components and composite components from the Palette’s Components section and then create 

the relationships between these components by using relationships from the Palette’s Connections section. 

Once the application structure is defined, the user can define the application’s properties such as the VM 

images (shown in the Palettes Images section) and other executables to be installed on the defined 

application components (Palette’s Deployment Scripts section). Moreover, s/he can describe the 

important monitoring metrics at each application level (Palette’s Monitoring Probes section), together 

Figure 14: Application Used for Evaluation Described in c-Eclipse 



with the elasticity actions to be applied when scaling the application’s deployment (Palette’s Elasticity 

Actions section), and the time when these actions should be applied.  Specifically: 

 At Component Level, the user can define the following:  

 VM Image that will be used by the underlying platform when materializing instances 

of the component (green color box).  

 Key Pairs generated by the user that will be used by the underlying platform when 

deploying the component. Thus, a user can make use of the key pair later to access 

the deployed component (yellow color box). 

 User Applications, such as .jar and .war files, that will be used by the underlying 

platform when materializing instances of the component (orange color box). 

 At Application, Component and Composite Component Level, the user can define the 

following: 

 Deployment Scripts that will be executed by the underlying platform when 

initializing instances of the component (pink color box). 

 Monitoring Probes that will be used by the Monitoring System to capture and return 

the corresponding metrics to the user. Furthermore, the metrics referred by the probes 

can be used in the specification of elasticity policies.  

 Elasticity Actions that can be applied to the components. Elasticity actions can also 

be used in the specification of elasticity policies. 

Figure 14 shows the c-Eclipse application description, following the structure depicted in Figure 

13. For achieving this c-Eclipse application description, the user will first drag a composite component 

from the Palette’s Components section onto the Canvas to create the Event Processing component. 

Then, he will drag two simple components and drop them inside the composite component one for the 

Load Balancer component and one for the Event Processing component. In a similar way the user 

can create the Data End composite component with the two simple components inside it for the Data 
Controller and the Data Node.  

Apart from the structure of the application, the user can specify other application properties, such 

as its elasticity policies. For example, by using the Properties View of c-Eclipse (bottom of Figure 14) the 

user can define the constraint of keeping the Response Time for the Event Processing 
Composite Component below 350 ms. 

6.2 Controlling the Application with CELAR Decision Module 

After describing the application as above, with the help of c-Eclipse, the CELAR user chooses the 

cloud provider to be used, and specifies his/her credentials, and with a simple press of a button, the 

application, together with all the necessary CELAR tools are deployed in the cloud. After this, the 

CELAR user can observe the evolution of application metrics, which is being controlled with the 

approach presented in Section 5. 

Figure 15 depicts a view from the MELA user interface, which is integrated into c-Eclipse for 

CELAR users to be able to follow cloud application behavior during runtime. The CELAR user can 

observe various metrics, at the different cloud application levels,  



 

Figure 15: Example of visual cloud application elasticity control enforcement 

By clicking on different components or complex components, the user is lead to a new view, in 

which s/he can observe various charts showing metrics evolution in time, and statistical data. Due to the 

scaling actions enforced by the CELAR Decision Module, the response time is able to stay within the 

required boundaries, as shown in the left side of Figure 14, at a relatively stable value without increasing 

more than acceptable for a too high period. The user can observe that due to CELAR control, there is a 

correlation between the number of VMs and the number of clients, as depicted in Figure 16, thus showing 

that the Decision Module is able to adapt the application in order to accommodate a varying demand. This 

is strengthened by the elasticity pathway depicted in Figure 18. From the pathway’s “x” axis, the situation 

encounter rate, i.e., the percentage of time that situation was encountered, one can see that in 90% of the 

situations, the response time was maintained within acceptable values.  

 

Figure 16: Elasticity control shown at Event Processing composite component 



 

Figure 17: Response Time for Event Processing composite component 

 

Figure 18: Elasticity pathway for Event Processing composite component 

CELAR facilitates the intuitive, user-friendly description of cloud applications to be elastically 

controlled, together with their elasticity requirements, which can be both expressive for advanced users 

and simple for inexperienced ones. Using this description, CELAR analyzes and controls the application, 

managing cloud resources as well as application configurations for fulfilling user’s requirements. 

Moreover, the CELAR user is continually informed on the cloud service behavior, being able to better 

understand the application and the consequences of different requirement preferences. 

The control provided by CELAR enables applications to fulfill users’ requirements, regardless of 

the highly oscillating load (number of clients metric in Figure 16), as shown in Figure 17 where the 

response time is kept within user-specified requirements. Moreover, this entire process, which normally 

would have meant for application stakeholders a lot of manual configurations, is happening automatically 

and without user intervention, while keeping within user specified requirements, thus avoiding 

undesirable situations (e.g., very good quality parameters at a much too high cost from application 

stakeholders perspective).   

 

7 DISCUSSION ON CONTROL FRAMEWORKS 
Table 3 shows existing cloud control frameworks or tools, considering the following perspectives: (i) the 

cloud model level at which the framework is focused, (ii) the manner in which requirements can be 

specified by stakeholders, (iii) the control mechanisms employed, (iv) the deployment mechanisms 

employed, and (v) which is the supported application complexity (e.g., it is assumed that the application 



consists of  a single component, multiple components, or even hierarchical structuring of groups of 

components). We can see that, when compared to most frameworks available on the market, CELAR 

approach encapsulates some powerful features, from elasticity requirements specification language to 

application components or control/deployment mechanisms used, which could help substantially 

application stakeholders throughout the application elasticity control lifecycle. 

Table 3: Control frameworks for elastic cloud applications 

Framework 

name/ 

authors 

Addressed 

cloud level 

Requirements 

specification 

Control 

mechanisms 

Deployment 

mechanisms 

Application 

complexity 

CELAR 

approach 

IaaS, PaaS SYBL language Elasticity space 

analysis, map 

coverage & 

heuristic based, 

conflict resolution 

c-Eclipse for simple 

description, 

discovers missing 

dependencies, finds 

best configurations 

Multiple 

hierarchical 

levels 

(component, 

composite 

component) 

CloudScale 

(Shen et al. 

(2011)) 

PRESS          

(Gong et al. 

(2010)) 

Hypervisor 

(Xen) 

Low level SLA 

Los 

Online adaptive 

padding 

Based on 

signature/state 

driven predictions 

No Single-

component 

application 

Kingfisher 

(Sharma et 

al. (2011)) 

Hypervisor 

(Xen) 

No Integer linear 

programs 

No Single-

component 

application 

Martin et al. 

(2011) 

IaaS User goals through 

a goal graph 

MAPE-based 

elasticity 

management 

No Multi-

component 

application 

Buch et al. 

(2012) 

AppScale Language for 

configuration and 

deployment of 

applications 

No Guided by language Scientific 

applications 

Malkowski et 

al. (2011) 

IaaS Low-level SLA Prediction and SLA 

driven 

No n-tier application 

Naskos et al. 

(2014) 

IaaS Automatically 

generated 

Markov decision 

process based 

No NoSQL 

databases 

Almeida et IaaS SLA Uses branch and No Multi- 



 

8 CONCLUSIONS AND FUTURE WORK 

In this chapter we presented the CELAR approach to cloud application elasticity control. We 

have shown that the complexity of cloud application elasticity control is highly dependent on the 

application complexity, on the underlying infrastructure possibilities, and on the requirements that the 

cloud application stakeholders have. We have shown how CELAR facilitates the description of cloud 

applications, and the description of stakeholder requirements with reference to various application parts. 

Moreover, we have presented our control approach, integrating multi-level elasticity monitoring, analysis 

and control, for fulfilling the specified requirements.  

As CELAR is an ongoing project xv, we will further focus on studying and developing additional 

analysis, enforcement and control mechanisms, tailored to improve the elasticity of a wider range of cloud 

applications. Moreover, for improving the quality of our elasticity control plans, we will study and 

develop mechanisms for estimating the behavior of cloud application and individual components. We 

plan to provide CELAR both as an integrated platform for designing, deploying, monitoring and 

controlling elastic cloud services, and as individual components which can be embedded in existing 

platforms.  
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