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Abstract—The consumption-based rating of MapReduce jobs
is tightly coupled with metering the infrastructure resource usage
it runs on. In this context, metering and controlling the job
execution depends on the number and type of containers used to
setup and run the Hadoop cluster as well as the duration of the
job execution. Duration-basis metering like an hourly rate for
every instance per hour usage, poses challenges of surcharge of
jobs lasting less/more than an hour. Jobs lasting for 61 minutes
will unfairly be charged for two hours. In response to these
findings, the authors offer Job-basis telemetry mechanism rather
than Duration-basis where the metering granularity is carried
on MapReduce DAG bundles, jobs and tasks levels. This model
is developed as an elastic data telemetry (TED) middleware
to provide real-time resource utilization awareness over data-
intensive applications. Clients will benefit from this model by
enforcing their applications elasticity policies and achieve pricing
transparency over their actual usage. This granular elasticity
control is achieved by moving jobs among priority queues which
fit cost and quality requirements. TED collects the emitted
usage data stream, generates billable artifacts to form a tailored
policy (scale up/down) to satisfy several desirable properties. This
contributes to a supervised, finer-grained resource allocation due
to the application behavior.

I. INTRODUCTION

Utility computing[1], [2] is an evolving facet of cloud
computing that aims to leverage and treat computing resources
as a metered service, like natural gas. It enables a Pay-per-use
or utility-based pricing model through metered data to achieve
more financial transparency. Metering measures rates of re-
source utilization via metrics, such as data storage or memory
usage, consumed by the cloud service subscribers. Metrics are
statistical units that indicate how consumption is measured and
priced. Furthermore, metering is the process of measuring and
recording the usage of an entire application, individual parts
of an application, or specific services, tasks and resources.
From the provider view, the metering mechanisms for service
usage differ widely, due to their offerings that are influenced
by their cloud business models. Such mechanisms range from
usage over time, volume-basis to subscription models. Thus,
providers are encouraged to offer reasonable pricing models[3]
to monetize the corresponding metering model.

In the cloud market, providers are expected to have a
layered metering model together with its associated pricing
schema to exploit various resource usage granularity. In ef-
fect, the more fine-grained the metering service is, the more
transparent is the utilization. Data aggregation is needed to
provide a broader view of resource usage and conversely,

small-footprint or micro metering is required to achieve a more
granular view of the resource utilization. Thus, increasing the
resolution and precision of metering the underlying resource
unit to improve the validity of the quantified cost appears
to be vital. However, this comes with an elevated cost for
monitoring, which we assume is reasonable. In this context,
the underlying resource usage events are time-series data that
are streamed at tiny time intervals (e.g., 3 seconds) to enable
current and consistent data retrieval of a metered unit.

The quest for telemetry of the client’s job resource usage
becomes more challenging when the job is deployed and
processed in a distributed model. For instance, the MapReduce
framework[4] offers an abstraction that simplifies the execution
of data processing. Such computation intensive applications
run in a distributed setting while hiding the details of paral-
lelization, data distribution, load balancing and fault tolerance.
It aims to parallelize the data-intensive application processing
and less focus is put on efficient underlying resource utiliza-
tion. Enriching MapReduce with telemetry services will con-
tribute to more optimized resource utilization and performance
in the cluster. This leads to a question, how can granular
metering contribute to more utilization value? The reason is
granular elasticity control. Metering Map or Reduce tasks
enables granular elasticity control on multiple levels by varying
elasticity requirements like cost and quality[5]. The next
question is how does granular metering improve performance?
The solution is process-weight classification of the application
jobs. With the classification framework, the job types are
classified in terms of resource usage (map or reduce-intensive),
and this seeds algorithms for an optimal tailored scheduling.
This leads to a more optimized resource allocation than other
current plugged policies. From the consumer view, clients
seek to economize their usage patterns by optimizing their
map or reduce-intensive jobs. Along with these motivations,
MapReduce-based utility computing contributes to planning
a cluster’s future resource requirements for more elasticity
and performance. The flip side of the coin is that providers
will gain an understanding of how their underlying resources
are being consumed to bill users respectively. Thus, it makes
eminent sense to meter emitted data of MapReduce resource
usage.

Cloud Market-Leader Amazon offers an Elastic MapRe-
duce (EMR) web service, for instance, a hosted platform on
the Amazon cloud where users can instantly provision Hadoop
clusters to perform their data-intensive tasks. Amazon EMR
uses Hadoop, an open source framework, to distribute your
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Fig. 1: TED middleware data and process flow with their sequence of events in YARN

data and processing across a resizable cluster of Amazon EC2
instances. Based on the Amazon EMR pricing1 model, you pay
an hourly rate for every instance-hour you use. The hourly
rate depends on the instance type used (e.g. standard, high
cpu, high memory, high storage, etc). Hourly prices range from
$0.011/hour to $0.27/hour ($94/year$ to $2367/year$). The
Amazon EMR price is in addition to the Amazon EC2 price
(the price for the underlying servers). There are a variety of
Amazon EC2 pricing options, including On-demand, Reserved,
and Spot instances. Besides, Amazon EMR uses other services
such as Amazon S3, SQS, SimpleDB for its operations which
are billed separately.

Due to the Amazon EMR pricing model, a 10-node cluster
running for 10 hours costs the same as a 100-node cluster
running for 1 hour. Kambatla et al [13] drilled this down for
more transparency and showed us that resource elasticity for
MapReduce jobs is not entirely symmetric, i.e., 1 hour on 100
nodes may not accomplish the same resource usage throughput
as 100 hours on 1 node. This poses a challenging decision
of choosing the right cost-efficient cluster size. Following
the previous scenario, there is a potential situation where the
duration of job’s execution time comes into play. If the job
doesn’t go into overtime, but runs for 61 minutes then you
would get charged for the next hour, doubling the cost of
the job! The most remarkable feature of EMR billing is that
Amazon bills by an hourly increment. Cluster initialization
seems to take 5 minutes or so with the Amazon distribution,
so if one of your job’s input paths is missing, it will take about
5 minutes to fail, but you’ll be charged for the whole hour. You
can definitely buy more machines and get a job done in less
than an hour, but the cost-efficiency goes down. For instance,
if your job completes in 30 minutes you will roughly double
the cost.

However, in this context, the visible challenge for MapRe-
duce jobs that must scale to extremely high capacity, is to
ensure actual application resource consumption in terms of
quality and cost elasticity. To address the above challenges,
we implement an elastic data telemetry middleware called TED

1http://aws.amazon.com/elasticmapreduce/pricing/

for YARN framework. TED collects “actual telemetry” events
of running map/reduce tasks and then “meters” such data in
meaningful way by returning the outcomes of its granular
metering for two purposes. First, to generate billing statements
to charge clients respectively and, second to generate and en-
force tailored policies to control current applications’ resource
consumption behavior.

A mapreduce application can be represented by a directed
acyclic graph (DAG). The DAG is used to represent a set of
tasks where the input, output, or execution of one or more
tasks is dependent on one or more other jobs. The tasks are
nodes in the graph, and the edges identify the dependencies.
The elasticity strategies can be applied on the whole DAG or
parts of it. Similarly a set of DAGs can be bundled into a
data analytic workflow driven by the Apache Oozie engine2.
Some strategies might constitute constraints over the number
of pending or running DAG jobs, maps or reduces.

As illustrated in figure 1, we have positioned and deployed
our TED middleware in the resource manager node on the
YARN architecture. The figure also depicts the event flow
sequence corresponding to the mapreduce job life-cycle to-
gether with its metering process. YARN dynamically allocates
resources for MR Jobs as they run. Let us demonstrate how
TED utilizes resource provisioning. In this scenario, at stages
1, 2, 3, 4 as shown in Fig. 1, a client submits a job or a DAG
of jobs with the required container launch context (CLC) in-
formation to the resource manager and copy data source to the
HDFS. As soon as the job is submitted, the ResourceAllocator
negotiates a container and instantiates the ApplicationMaster
for the job at stages 5a and 5b. At this moment, stages 6a
and 6b, the ApplicationMaster initializes the job and requests
containers from the ResourceManager. Then, at 9a, 9b, 10 and
11, it launches the granted container, runs the job and monitors
its execution. The containers are configured based on the CLC
specification. Our focus lies on stages 12a and 12b, where
TED retrieves and meters the resource usage data, interprets
the job’s behavior and then plugs the suitable and tailored

2http://oozie.apache.org
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elasticity policy (scale-up/down) into the resource allocator for
enforcement.

ApplicationMaster monitors the job execution flow
through NodeManager, and observes their status and resource
usage metrics (cpu, memory, disk, network). Then it
negotiates resources for a single application (a single job
or a directed acyclic graph of jobs). The ApplicationMaster
initial request is structured in the [resource-name,
priority, resource-requirement, number-
of-containers] format. Then, via heartbeats negotiates
ResourceManager its changing resource needs. After
negotiation, it applies the dynamic adjustments to ensure
resource consumption restraints are met. ResourceManager
controls the container allocation by enforcing our plugged
elasticity policy for a specific job. Before launching the
container it has to construct the CLC object according to its
needs which can include the allocated resource capability,
security tokens, resource dependencies, environment variables,
local directories. Next is to execute the task on the launched
container.

To this end, our contribution is twofold: (i) An elastic
and granular metering and resource scheduling mechanism
for a class of MapReduce-based applications. (ii) In support
of such a mechanism, we develop an elastic data telemetry
(TED) framework as a basis for a multi-level resource metering
model. This contributes to fine-grained resource consumption
transparency and elasticity control. Our TED framework im-
plements a layered approach to the interpretation of the time
series resource usage events. TED achieves resource granular
metering model in a hierarchical modeling topology. Having
the metered data collected, TED highlights operational events,
aggregates, and enriches them with the corresponding pricing
model, then correlates the data with the associated client
account and generates the billable artifact respectively. This
leads to useful insights into the MapReduce job behavior for
generating new allocation policies to achieve the intended
performance defined in the service level agreements (SLAs).

With this motivation in mind, the paper continues with
an initial analysis to identify and elicit the requirements for
the TED framework in section II. With some definitive clues
on how the MapReduce jobs are currently being metered and
monetized, we propose a new elastic data telemetry frame-
work (TED) to fulfill each requirement. The TED framework
layered architecture together with its interacting components
are detailed in section III. This section is devoted to the
core elements of the TED model i.e., resource usage retrieval,
MapReduce metering metrics, pricing kernel, a classification
model for granular usage pattern interpretation, and a billing
gateway to expose telemetry billable artifacts via FIX protocol.
In support of our model, we have developed a primary TED
framework able to handle MapReduce job metering in a
Hadoop YARN cluster. The available prototype3 is put to
production by metering real MapReduce jobs. We evaluate our
TED framework and numerical results will be given in section
IV to prove the efficiency of our model. Subsequently, section
V surveys related work. Finally, section VI concludes the paper
and presents an outlook on future research directions.

3https://github.com/soheil4TUWien/TED

II. RESOURCE CONSUMPTION METERING

REQUIREMENTS

In architecting our metering middleware we initially de-
fined the requirements in which it will operate. The appro-
priate metrics for the metering methods and the jobs that are
metered could vary quite significantly based on factors such as
telemetry requirements and application domain context. Next,
we elicit our requirements.

A. YARN Cluster Capacity Planning via Metering

YARN clusters are elastic in nature. They host MapRe-
duce applications and adapt themselves to varying loads by
elastically allocating and releasing underlying resources to
map and reduce tasks. Obviously, it is an obligation for
YARN providers to assure the availability of required supply.
Otherwise, lack of resources results in unmet demands and
poor performance, triggering the SLA violations and leads to
financial consequences and penalties. YARN supply planning
depends on a few factors: types of machines (Nodes), types of
workload (Memory/Storage/CPU-intensive), Number of tasks
(map or reduce) per node and etc. Usually count 1 core per
task. If the job is not too heavy on the CPU, then the number
of tasks can be greater than the number of cores. For instance:
12 cores, jobs use 75% of CPU, free task slots = 14, maxMap-
Tasks = 8, maxReduceTasks = 6. By default, the tasktracker
and datanode take each 1GB of RAM. For each task calcu-
late mapred.child.java.opts (200MB per default) of
RAM. In addition, count 2GB for the OS. So say, using 24GB
of memory, 24− 2 = 22GB available for our tasks – thus we
can assign 1.5GB for each of our 14 tasks (14 ∗ 1.5 = 21GB).
YARN uses yarn.nodemanager.resource.memory-
mb and yarn.nodemanager.resource.cpu-vcores
to control the amount of memory and cpu on each node, which
both are available to maps and reduces. Resource allocation
plans and elasticity requirements can be enforced using these
configurations.

Metering can provide valuable information about these
factors to show the way that an application is used. This re-
quires classifying the job types (CPU bound, Memory or Disk
I/O bound, or Network I/O bound) into: balanced workload,
compute intensive, I/O intensive or evolving workload patterns.
Such classification can identify trends that indicate future
needs such as storage and compute resource requirements.
Moreover, this may indicate which resources are more utilized
in map or reduce intensive job phases affecting response
times. Such utilization knowledge might also influence the
effort towards development of optimized storage methods,
cost reduction or additional storage, like using AWS spot
instances4. The fundamental unit of resource allocation in
YARN is the priority queue which we will discuss later in
details.

B. Metering for Granular Consumption Transparency

The level of a resource metering unit becomes an essential
facet of facilitating a way of hierarchical metering and pro-
cessing of usage patterns indexed by information granules. By
granule metering, we mean a collection of metrics aggregated
together by their functional relationship or closeness. Such

4aws.amazon.com/ec2/purchasing-options/spot-instances/
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granules are then formulated by adopting and leveraging a
certain level of abstraction to achieve further utility. Each
abstraction level is formed by grouping metrics together into
semantically meaningful constructs to reflect the structure
of the original data into its granular counterpart. Granular
metering enables diving deeper into measuring the resource
usage on the per-DAG-flow, per-DAG, per-Job, per-Map or
per-Reduce levels. Such metering granules can be regarded
as more abstract and interpretable entities in charging clients
and in elasticity policy enforcement. We treat them as a scale
unit. This provides users real-time visibility over their resource
consumption and the ongoing money stream being paid as they
go. Furthermore, it enables clients realtime application control
to ensure that quality and cost constraints are met.

Meanwhile, we see the resource usage events as time-series
data whereas the consumption information granulation occurs
in time intervals. In this context, the duration of the map or
reduce phases’ run could form a scale of time granulation. As
elaborated above, we identify three factors: granule unit, time
interval and metric type to building granular representatives
of usage data. The granulation mechanism involves criterion
of closeness of elements, and if required, could also embrace
some aspects of functional resemblance. In other words: we
collect underlying usage events and elevate them into granule
units in reasonable time intervals. Such granular classifica-
tion of application metering enable Pay-per-granules enables
for mapreduce-based applications where customers are billed
based on their actual application resource usage and can track
their ongoing costs.

C. Fine-grained Metering for Elasticity Control

Elastic metering allows fine-grained adequate resource
allocation and prevents exceeding the preset resource usage
and limits. By elastic metering we mean to enforce resource
quotas on the cost and quality constraints. This requires a
scheduled utility that observes key threshold constraints and
fires the appropriate notification event to enforce the suitable
elasticity control policy like Scale-in or Scale-out. To apply
such control, we provide a granular classification on the usage
data. The schemes of granular classification are comprised of
several functional steps. A crux of the scheme is shown in the
following:

Usage Events (1)
[key,value]−−−−−−−−→
Retrieval

Metrics Feature Space

(2)
Granulation−−−−−−−−→
Aggregation

Granular Feature Space (3)
Correlation−−−−−−−−→
Association

Usage Interpretation (4)
TailoredPolicy−−−−−−−−−−→
Enforcement

Queue Classifier

Let us briefly elaborate on the essence of the successive
phases of the overall metering scheme. The first step is
dedicated to meaningful representation of the resource usage
data to form a metric feature space. As a result of this
representation, one returns a vector of numeric descriptors
characterizing the time series and used in consecutive phases.
This vector of jobTaskAttemptCounters contains a
list of [key,value] of our job metrics. In our case we

retrieve the CPU_MILLISECONDS, PHYSICAL_MEMORY_-
BYTES and VIRTUAL_MEMORY_BYTES metric values of
tasks for further processing.

At any given time t in the second phase, TED provides
enriched pieces of information about the MapReduce job
resource usage observations. Such observations can be rep-
resented as a column-vector ot ≡ [vt,1 vt,2 ... vt,n]

T ∈ Rn

of YARN metrics data stream values at time t. The stream of
usage data can be regarded as a frequently expanding t × n
matrix Ot := [o1 o2 ... ot]T ∈ Rt×n where the new incoming
streams are added as matrix rows at each time interval t in
real-time. In our YARN case, Ot is the measurements column-
vector at t over all the metrics, where n is the length of
the vector and indicates the number of hadoop metrics and
t is the measurement time-stamp. These vectors represent the
set of measurements obtained for the n metrics at a specific
observation. In particular the rows of the matrix represent
various monitoring observations in a given period,
while the columns are the sample values detected for each
metric during the observations.

Ot,n =

⎛
⎜⎜⎝

jobID1,1 taskID1,2 CPU1,3 · · · Mem1,n

jobID2,1 taskID2,2 CPU2,3 · · · Mem2,n

...
...

...
. . .

...
jobIDt,1 taskIDt,2 CPUt,3 · · · Memt,n

⎞
⎟⎟⎠

(1)

In our scenario, as shown in Equation 1, let O be a
matrix representing the job’s tracking data measured by metrics
counters in the allocated container. For instance, key element
of CPUt,3 represents the CPU usage value of the specific
taskIDt,2 of the specific jobIDt,1 at time t. This leads to
granular representation of time series data.

In the third phase, a collection of information granules is
constructed and positioned as belonging to granularity classes.
This forms a layered approach to constructing a classification
framework of granular interpretation of time-varying resource
consumption events. Such interpretation abilities could help
to understand the type and behavior of the job in terms of
resource insensitivity. The queue classifiers positioned as the
last functional module of a metering framework scheme are
used to realize mapping of discovered running job types on
the current job scheduling policy and its associated elasticity
control strategy class labels. This mapping helps in choosing
the suitable economic decisions and accordingly actions taken
on the job elasticity control like moving the job to a proper
queue.

Having such classifications in effect, TED manages the
level of resource provisioning on various granules to a specific
YARN deployment to keep the job up and running and ensure
elasticity requirements are met. Next, we describe the design
and implementation of our metering solution for mapreduce-
based applications deployed in YARN cluster. Last, but not
least, about the architecture robustness, if TED faces its
own deployment issues then this may have a major impact
on vendor profitability. Our approach is to schedule some
background log analysis utilities like logstash5 to detect and
even restart the suspended TED instance.

5http://logstash.net
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III. TED FRAMEWORK ARCHITECTURE

Looking forward, figure 2 provides a schematic view on
architecting TED’s collaborating components. The next section
lays out the basis for the underlying resource metering metrics
together with its retrieval mechanism.

A. Usage Data Retrieval

Collecting and streaming usage data from mapreduce jobs
in Hadoop needs a lightweight solution to avoid additional
network I/O for the sake of performance. Each usage event
contains information about the job like subscriber, timing,
the result (success, failure), resource usage metrics and their
values. One solution is to receive notification events via
callback feature of the Hadoop. At job completion, an HTTP
request will be sent to job.end.notification.url
value6. Both the JOB_ID and JOB_STATUS can be retrieved
from the notification URL that we supplied in Job config-
uration. The URL connection is fire-and-forget (FAF)7. We
take a skeptical view of this approach since we will not
receive any notification in case of task completion. Typically,
when you run a map/reduce job you get the object of type
org.apache.hadoop.mapreduce.Job. Using this ob-
ject you can poll the JobTracker in a predefined interval to
check its status.
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Fig. 2: MapReduce Job Metering & Rating Middleware
Architecture.

The collection of monitored metrics data that are exposed
by Hadoop Metrics2 system daemons are written into the time-
series database to make it ready for querying and processing.

6http://localhost:8080/jobstatus.php?jobId=$jobId&amp;jobStatus=$jobStatus
7http://www.w3.org/TR/xmlp-scenarios/#S1

We register our sinks to retrieve our desired metrics. The
metering event data along with its job metadata is streamed
to a tree-like8 schema in a time series database to reflect our
metering granularity in hierarchical layering. The metering
tree schema is a JSON object that defines the hierarchical
granularity topology in a tree model. TED traverses the tree
via its HTTP API endpoint for further metering processes. The
root(depth: 0) of the metering tree is the YARN cluster. One
depth level below root is the DAGs-flow where the workflow of
mapreduce jobs are hosted at the depth of 1. Moving forward,
the MapReduce DAG branch is exposed at depth 2. Next,
the depth increases to 3 where the MapReduce Job branch
resides. This leads to a deeper branch of depth 4 where leaves
exist with the map and reduce task’s granularity. Navigating
to the leaves of the tree represents the actual data points for
metering events. With this approach implemented, TED will
receive metering events and data for the completed tasks in
the form of REST calls and JSON formatted data.

B. Meteor Object Factory (MOF)

So far, we have retrieved the usage data and loaded in the
time series database in a dynamically built tree-like schema
to keep the granularity. Once the metering data has been
accumulated, the MOF component navigates the tree branches
and their leaves as an input for constructing the Meteor objects.
The MOF parses the metering events to extract resource
usage keys and values. The meteor objects are basically
aggregated metering events grouped by specific granularity and
a user ID. For instance, a meteor on the MR-app granularity
contains all the jobs’ aggregated MR-tasks resource usage into
a summarized JSON object. We call this object, a Meteor
which will be processed and used to charge the user. Since
the user already knows the size of their coming meteor, they
then can be prepared in advance for that financially, etc. A
meteor object structure is driven by [key,value] parity.
The actual meteor that we generate carries 8 elements of which
6 represent the metrics.

To take a closer look of a meteor, think of metering the
usage of a service. If service metering schema indicates that
the metering pattern should be based on the number of service
invocations. Then, having 10 calls from a service subscriber
enables the telemetry instrumentation system to collect 10
metering events and the MOF generates 1 Meteor object
indicating the service was invoked 10 times with the summary
of resource usage. The process of meteor construction can
be carried out on a predefined frequency of data collection.
Meteors are built at various level of granularity that makes
it easier to interpret, discover trends, gain insights into usage
and performance for future elasticity strategy/policy selection
and enforcement. When construction and transmission of some
meteors might have priority in terms of their influence in
elasticity decision making, then the priority queue pattern is
considered in its life-cycle.

C. Telemetry Handler

The Telemetry Handler (TH) frequently invokes the Gran-
ulation REST API to generate the Meteors by aggregating the

8We use OpenTSDB 2.0 tree structure, a hierarchical method of organizing
time-series into an easily navigable structure.
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usage events into granules defined in the metering schema.
Each meteor represents one completed job’s aggregated re-
source usage. Then TH observes and audits the meteors
JSON objects with the elasticity requirements to detect if any
threshold is hit. The proper allocation policy (Scale Up/Down)
will be plugged in if any check constraint is violated.

D. Billable Artifact Builder (BAB)

The constructed meteors in the MOF component will
be transmitted to the BAB component. The BAB rates and
monetizes the meteors by enriching them with the associated
pricing schema and the user profile into a billable artifacts.
Billable artifacts are granular resource usage-centric constructs
capturing financial valuation of the abstract entities like job,
map, reduce, etc. They indicate the econometric of the aggre-
gate consumption data. The enriched meteors will be correlated
with the elasticity controls for future policy enforcements,
allocating or releasing resources, for instance. Job subscribers
will be charged based on their usage pattern indicated in their
billable artifacts. BAB enables an end-to-end mapping of the
operational meteors and pricing schema to expose metered and
billable artifacts to the billing system. This achieves a fine-
grained unit of work for metering and pricing on the fly at
economies of scale. BAB measures a number of metrics (CPU,
storage, memory, etc) in [key, value] elements embraced
by the granule and exposes them as billable artifacts to billing
systems. Moreover, this exposure reveals the cost incurred on
currently running mapreduce-based applications. The spending
meter is updated at intervals to keep users aware of their
payment stream in real time.

E. FIX Billing Gateway

Financial Information eXchange (FIX)9 protocol is an open
messaging specification to streamline electronic communi-
cations among financial entities for trade allocation, order
submissions, etc. FIX billing gateway offers an architecture
for exposing the billable artifacts to external billing systems
(BS) and keep the pricing and metering schemata updated from
partner endpoints.
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Fig. 3: TED tunnels billable artifacts using FIX protocol.

In our solution the metering service bus acts as the
core message gateway, sending various billable artifacts and
services to FIX endpoints using the built-in FIX transport

9http://www.fixtradingcommunity.org/

adapter. The FIX message gateway connects endpoints by
transforming messages to standard FIX messages using its
base data dictionary and specifications. TED FIX protocol
implementation is illustrated in figure 3. Proxy services are
configured to transport billable artifacts in FIX messages to
BS via message broker (i.e., Apache Synapse10). The service
bus converts FIX messages into XML which will be wrapped
inside the Synapse message and sent to the BS. The FIX
transport layer maintains session message correlation using
message-id and correlation-id that allows the ESB to send
relevant executions and acknowledgments back to the original
FIX endpoint.

F. TED Job Queueing

Queueing theory is modelled on how to serve many arriving
jobs while having scarce resources. In YARN, a queue is a
logical collection of applications with a guaranteed resource
capacity. They reflect the economies of resource allocation
policies. Given the job’s resource requirements, the goal is to
improve performance by deploying a more optimized schedul-
ing policy to achieve economies of scale. Our tailored policy in
this study is to move the application to a queue which satisfies
the application launch context. It is an indication that the
following metrics underlying our model have been considered
in rating the target queue for the proper positioning of the
application.

♦ Queue Utilization: (ρi) is the fraction of time a container
i is in use (non-idle). It is calculated by total observation of
busy time (Tb) over length of observation period (τ ), that can
be formulated in ρi =

Tb

τ equation.

♦ Queue Throughput: (Xi) is the rate of task completion
(e.g., jobs/sec) at container i. Formally, the total number of
completed jobs, J at container i within period of (τ ) results
in Xi = Jvm

τ throughput.

♦ MapReduce Job Size: (Smr) indicates the amount of
required time to run a job on the specific CPU alone. (E[Smr])
represents the average required time to run the job excluding
the queueing time (e.g., 1

4sec).

♦ Job Average Arrival Rate: (λ) is the average rate of the
job’s arrival to the queue (e.g., λ = 2 jobs/s).

♦ Job Average Serving Rate: (μ) is the job’s average
serving rate in the queue (e.g., μ = 4 jobs/s = 1

E[Smr]
).

♦ Price of Entry & Cost of Waiting : (P ) is the job’s entry
price in the queue and the c indicates the cost per unit time
of waiting in the queue (e.g., P = 2 e and c = 10 cents/s).

♦ Job Migration Cost: (Mc) contains the active job migra-
tion cost (e.g., Mc = 50 cents per/job-size). This might come
with a high cost because of state (memory). Such costs will
be amortized over the new queue on its remaining processing
time.

♦ User Budget: (Bu) contains the initial user budget limit
to run the job.

In our model, after the migration, we enforce the shortest
remaining processing time (SRPT) priority algorithm as a

10http://synapse.apache.org/
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Fig. 4: TED Hierarchical Queueing Model & Job Migration.

serving mechanism for the migrated jobs. TED’s queueing
model is illustrated in Fig 4. In this mode, the used capacity
of any parent queue is defined as the aggregate sum of used
capacity of all the descendant queues recursively. the used
capacity of a leaf queue is the amount of resources that are
used by allocated containers of all applications running in that
queue. Such a container is a unit of resource allocation across
multiple resource types incorporating resource elements such
as memory, CPU, disk, network etc, to execute a specific task
of the application.

Algorithm 1 shows how applications are moved across
queues in TED. The scheduling algorithm clarifies when to
move which application to another queue. It is implemented
and evaluated in the following section. The algorithm applies
only for running jobs which are submitted on a specific queue.

Algorithm 1 TED scheduling algorithm for running jobs

1: procedure MOVETOQUEUE(AppID, targetQueue)
2: if (AppStatus == ”Running”
3: && AppQueue == ”Cloudera”){
4: mapTasks[] ← list of maps of current Job
5: reduceTasks[] ← list of reduces of current Job
6: //check for the first completed map task
7: for (each task in mapTasks)
8: if (state of task equals ”Succeeded”)
9: completedMapTaskId←currentMapTaskId;

10: Compute ρi and Xi to classify highPriority queues
11: if (completedMapTaskId �= null){
12: // read the completed map task information from tsdb
13: CPU ← store CPU usage of map task (ms);
14: // Store HEAP & VMEM & PMEM values used by mapper
15: costPerMap = CPU × targetQueue_cpuCost
16: // plus the sum of HEAP, VMEM and PMEM;
17: //estimate cost of job on the target higherPriority queue
18: totalEstimatedCost=costPerMap×num.map-

Tasks + costPerMap×num.reduceTasks+P;
19: if (totalEstimatedCost < user_budget)
20: app.setQueue(targetQueue); }
21: }

IV. MODEL EVALUATION

Now, we present results from our real-world observations
that show the efficiency of our model. We have implemented

two threads; one for streaming the usage metrics data to tsdb
and the other one for creating the meteors, cost estimations
and migrating the job to the target queue. As a real job, we
executed the YARN Pi example which computes the Pi value
with the given precision with two configurations. In the first
case, we have run the Pi job on 60 mappers with 30 samples
per map. As for the environment set up, the Fair scheduler
of YARN is in place and we have two queues of lowPriority
(weight = 1) and highPririty (weight = 2). The observations
on CPU consumption growth is trending over queue change in
time. The aggregate results imply utility and are summarized
in Fig 5.

Fig. 5: YARN Pi example with 60 mappers and 30 samples
(OpenTSDB sum diagram).

Taking these results together, four points stand out in this
evaluation. First, the job was running in the first queue for
about 25 seconds. Second, TED decides to migrate the job to
a higherPriority queue after 25 seconds of jobs execution in
which only 4 maps have been executed. Third, the migration
takes 5 seconds and the job continues to run in the new
queue at the starting time of 22 : 58 : 30. Finally, the first
4 maps were executed in 15 seconds while after migration
the remaining 56 maps together with reduces executed in 40
seconds in the new queue.

Running the Pi with the second configuration results in
Fig 6. It also took almost 4 maps to enforce the migration
to the new queue at 02 : 33 : 00 which took 3 minutes to
move to the new queue due to the larger size of the job.
Having the migration in place, we can observe that the job
is utilizing more resources to be finished. Since we had the
SRPT policy in place, at the end of job, we see that it has
the highest priority to be finished sooner. Results presented
above are convincing enough to lead us to ascertain that in
the highPriority queue the allocated memory and CPU were
considerably higher to execute the job faster than the time it
was submitted to lowPriority queue.

The empirical evidence observed in this study suggests
that our consumption-based pricing model for MapReduce
jobs provides statistically and economically important insights
into financial behavior of an underlying resource usage model.
TED enables applications to implement “elasticity-aware poli-
cies” to satisfy their resource requirements. If an associated
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Fig. 6: YARN Pi example with 300 mappers and 100
samples (OpenTSDB minmax diagram).

job migration policy among queues is triggered, the allocation
is leveled to the pre-configured queue capacity dynamically.
This capacity leveling keeps the amount of resource alloca-
tion within the range (minSize and maxSize) of an intended
resource allocation.

V. RELATED WORK

To the best of our knowledge, this is the first paper
that leverages the metering to the data processing domain.
Meanwhile, there is some commendable research regarding the
cloud service usage metering. Elmsroth et al.[6] proposed a
loosely coupled architecture solution for an accounting and
billing system for use in the RESERVOIR[7] project. In a
separate work, Prasad et el.[8] described the usage of open
source tools such as OpenTSDB, Hbase and Hadoop to store
time series data and perform analytics on the time series
data to get useful insights related to power consumption and
get the result in pictorial format, essentially a graph. These
papers do not provide any implementation or evaluation of
the proposed architecture. There are some alternatives that
propose billing and metering solutions, Narayan et al.[9].
Petersson[10] describes cloud metering and billing solution.
Naik et al.[11] proposed a solution for metering of services
delivered from multiple cloud providers. They incorporate the
cloud service broker together with a metering control system
to report metered data at configurable intervals. Their solution
is developed and deployed as a plugin for IBM SmartCloud
Enterprise. None of these solutions address mapreduce-based
application metering and is not applicable to a cloud-based
data processing framework like the Hadoop environment.

In relation to our approach, the SequenceIQ 11 project
brings SLA policy based auto-scaling to Hadoop YARN. Their
project is quite established and now is part of Hortonworks.
It is built on top of YARN schedulers, allows to associate
SLA policies to individual applications. It monitors application
progress and apply scaling policies based on their CPU and

11http://sequenceiq.com

memory usage. In contrast to all the noted related work, our
TED middleware addresses granular metering of mapreduce
jobs while considering the clients cost constraint regarding
their jobs resource usage.

VI. CONCLUSION

We have presented an elastic data telemetry system that en-
ables granular metering and automatic control of MapReduce
applications due to their current behavior and preset config-
urations. TED is designed to enhance the resource utilization
using YARN cluster queueing system. It observes the running
job’s progress, interprets its cost and quality behavior, audits
the predefined job requirements. Then it generates a tailored
resource allocation policy with regard to capacity constraints
and moves the job to the potential queues to scale in or up.

So far, the authors offered and implemented a solution
for the YARN environment which provides a data processing
telemetry solution for mapreduce-based applications. As an
outlook, our future work includes further extension to the TED
model to formulate intuitions for best priority queue selection
in multi-queue systems. We then move on to analyzing trees
of queues with trendy metrics like slowdown, starvation and
fairness for a workflow of jobs.
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