
Workflow-Based Composition and Testing of

Combined e-services and components

Johann Oberleitner and Schahram Dustdar

Distributed Systems Group
Information Systems Institute

Vienna University of Technology Argentinierstrasse 8/E1841
A-1040 Wien, Austria

{joe,sd}@infosys.tuwien.ac.at

Abstract. Information systems are increasingly built using component
models such as Enterprise Java Beans, COM+, or CORBA objects.
Dynamically aggregated and composed Web services can be seen as a
newly emerging research area for Service oriented architectures, which
are combined with components. Our paper presents three main argu-
ments: firstly, that composition of combined e-services and components
is increasingly gaining momentum; secondly, that those compositions
should be workflow-supported by workflow-based languages such as BPEL4WS,
and thirdly, that (semi)automatic and interactive testing of those com-
bined services and components is of paramount importance. This paper
presents the underlying framework as well as an implementation of a
workflow-based composition system.

Keywords: Web services, Workflows, Coordination, Orchestration, Mid-
dleware

1 Introduction

Service oriented Computing (SOC) is a promising research area which is re-
ceiving considerable attention. This evolution in distributed computing builds
on many aspects and insights gained from object-oriented and component com-
puting. The SOC model puts services and their composition, interaction, and
orchestration into the forefront of concerns. Today information systems are in-
creasingly built using component models such as EJB, COM+, and CORBA
objects. The aim is to ultimately provide services in the sense of autonomous
platform-independent computational elements that can be described, published,
discovered, orchestrated and programmed. Composition and enactment of ser-
vice workflows face a number of challenging issues that need to be addressed.
The challenges discussed in this paper include:

– How can Web services be tested (semi)automatically before deployment and
runtime?

– How can abstract Web services Workflows be represented visually?



II

– How can one ensure efficiency (in terms of performance) of composed Web
services Workflows?

– What are suitable techniques for executing composed process (i.e. work-
flows)?

– How can one efficiently use monitoring techniques for run time analysis of
Web services process executions?

The contribution of this paper is as follows: (i) methods for combined com-
position of e-services and components is increasingly gaining momentum; (ii),
those compositions should be workflow-supported by workflow-based languages
such as BPEL4WS, and (iii) (semi)automatic and interactive testing (e.g. perfor-
mance) of those combined services and components is of paramount importance.
This paper presents the underlying framework as well as an implementation of
a workflow-based composition and testing system for services.

The reminder of the paper is structured as follows. In section 2 we discuss
composition approaches by presenting fundamental issues of component mod-
els and Web services workflows. Section 3 introduces our prototype system, the
Component Workbench and its support for workflow-based composition and test-
ing of combined e-services and components, supporting BPEL4WS primitives.
Section 4 provides some early suggestions for an increasingly important field
of e-services, namely interactive and (semi)automatic testing of component and
Web services enactments. Finally, section 5 concludes the paper.

2 Composition Approaches

2.1 Web services

Web services can be seen as a newly emerging distributed computing model
for Service Oriented Computing. The standardization process is driven by the
growing need to enable business-to-business (B2B) interactions on the Web.
Web services are self-contained, self-describing modular applications. Web ser-
vices introduced a componentized view of web applications and is becoming
the emerging platform for distributed computing. The architecture considers a
loosely integrated component model, where a Web-Service interface (component)
encapsulating any type of business logic is described in standardized interface
definition language, the Web services Description Language (WSDL) [1]. Web-
Service components interact using an XML messaging protocol and interoper-
ate with other components using communication protocols including the Simple
Object Access Protocol (SOAP) [2]. Many software vendors and a plethora of
standardization consortia, e.g. ebXML [3], W3C [3, 4], OASIS[2], are providing
models, languages, and interfaces for the life cycle of Web services: describing,
publishing, unpublishing, discovering, and making them available to users for
invocation.



III

2.2 Component Models and Web services Workflows

Software components are an important tool in building software systems. Reusing
existing and pre-tested components within projects leads to shorter development
cycles, higher quality, and hence reduced costs.

Binary components rely on the black-box reuse paradigm and have advan-
tages compared with source code components that foster white-box reuse. The
primary difference is that components built with black-box in mind do not expose
internals of the component to clients. In contrary, clients can access a compo-
nent only with its external interface(s). Furthermore it is not possible to access
internal data structures of component instances by clients. These allows that
a component that supports a particular external interface can be replaced by
versions with corrected functionality or better performance.

In recent years various component models for black-box compositions, such as
Sun’s JavaBeans, Sun’s Enterprise JavaBeans, Microsoft’s COM+ components,
or OMG CORBA components, have emerged. Microsoft’s .NET framework sup-
ports components, too. These models define standards for building components,
and for interoperability of components within one component model. Further-
more, these models define how a component’s external interface is accessed from
programming languages. In addition, most of these component models support
the access of components across system boundaries, hence enabling remote access
to components. To aid developers in building components component models of-
ten provide facilities such as transaction monitors, role-based access control, or
instance pooling.

2.3 Workflows

A Process Model describes the steps that occur in the real world (e.g., the trucks
that deliver goods from point A to point B, the schedules and locations of the
drivers) and a Workflow Model describes the technology interactions that sup-
port, interact with, or implement the real world process model (e.g., system X
sends request for purchase order to system Y). Business processes based on Web
services can be characterised by some ingredients: they specify (a) the potential
execution order of operations from a collection of Web services; (b) the data
shared between these Web services; (c) involved partners and their roles in the
business process; (d) joint exception handling for collections of Web services,
and (e) other issues involving how multiple services and organizations partici-
pate internally, or between business partners. Those interactions are modeled by
exchanging messages between business partners. One can distinguish between
a tightly coupled interaction (conversation), meaning that the responses always
require the context of the request (e.g. the phrase book type 19” tells nothing
useful on its own. Furthermore it is highly relevant to understand who the busi-
ness partners one is having an interaction (conversation) with, are, since the
conversations differ substantially between a business partner and an external
project consultant, to name an example.



IV

Generally speaking, one goal of software engineers is to construct applications
by composing already existing components including Web services. Composition
of Web services can be analysed from two standpoints: (a) Composition in the
part-of sense (granularity), i.e. larger part encapsulates Web services (compos-
ite) and exposes itself as a Web service. An analogy are method invocations
as part of method definition; and (b) Composition in the sequencing sense, i.e.
definition of the invocation order of Web services (often called orchestration,
choreography, or coordination). In our paper we will use the following working
definition: Composition consists of those activities required to combine and link
existing Web services (atomic and composite services) and other components to
create new processes.

The current basic layer of Web services builds a foundation for a Service-
Oriented Architecture and concentrates on single Web services. It lacks methods
for composition of many (atomic or composite) Web services into a reliable and
dependable business solution supporting an appropriate level of complexity. In
traditional workflow systems the selection of tasks is made from a repository [4–
6]. It contains tens to a few hundreds of tasks and the selection is humanly
manageable. In Web services workflows, in contrast, potentially thousands of
Web services are available. It is impossible for a designer to manually browse
through all of the Web services available and select the most suitable ones. Thus,
this requires the analysis of Web services QoS with operational metrics charac-
terizing the Quality of Service (QoS)[7] that Web services exhibit when invoked.
Web services are autonomous; therefore designers cannot identify operational
metrics of Web services at design time. However, when composing (build time)
a process, it is required to know the Web services operational metrics. This is
still an issue of ongoing research.

3 Composition Environment

This section describes the Vienna Component Framework we have built to access
components and Web services and the Component Workbench, our graphical
composition environment that allows the design of component compositions in
an interactive way.

3.1 Vienna Component Framework

The Vienna Component Framework (VCF) [8] allows interoperability and com-
posability of components from different component models such as Enterprise
JavaBeans (EJB) [9], CORBA distributed objects [10], or Microsoft COM+ com-
ponents [11].

VCF provides a single Java API to reuse components that adhere to different
component models within one single application. VCF abstracts the internals of
the different component models, therefore simplifies the use of different compo-
nent models and reduces the difficulties inherent in these models.



V

VCF uses plugins to ease the extension with new component models. Cur-
rently, we have implemented plugins that provide uniform access for compo-
nents that adhere to either JavaBeans, Enterprise JavaBeans, Microsoft COM+,
CORBA distributed objects, and Web services that use SOAP as communication
medium.

Each plugin provides the functionality to access a component models meta-
data facility to find out about the operations, properties, and event callbacks a
component supports. For controlling the lifecycle of a component’s instance and
each of those kinds of features VCF defines an interface that contains operations
for accessing them. The plugin provides implementations for each of these inter-
faces, if the component model supports the feature, to provide uniform access
for the corresponding component model. Once, a component instance has been
created instances of the features are created. For instance, for each operation
found with the component’s metadata an instance of the class that implements
IMethod is created and initialized with sufficient information to dynamically call
the method.

All features can be accessed with feature queries. For instance, it is possible
to get all features that have a particular name or all property features. The
use of feature interfaces allows a reflective programming style similar to Java
reflection or CORBA’s Dynamic Interface Invocation. Since this is tedious for
programmers VCF also allows the construction of wrapper classes that make the
use of these feature interfaces more convenient. However, having access to feature
interfaces and supporting arbitrary complex feature queries ease the construction
of graphical composition tools such as the Component Workbench.

Table 1 lists various feature interfaces predefined by VCF. Of particular inter-
est is the IComposite feature. This allows the construction of components that
contain child components. The IComposite feature provides methods to add and
remove child component instances to or from a component instance. Hence, it is
possible to construct nested components that have virtually unlimited nesting
depth. In addition, this feature allows to attach additional information to each
child component, such as a readable name for a component instance or layouting
information for graphical tools.

Feature interface Description

ILifecycle Controls instantiation/destruction of a component
IMethod Invokes operations of a component instance

IProperty Queries or modifies the state of a component instance
IEventset Allows the registration of callbacks

IGUI Provides a graphical representation of a component
IComposite Supports nested components.

Table 1. VCF Component Plugin Features

New feature interfaces can be defined by new component plugins. However,
use of these interfaces is then restricted to this component plugin.



VI

3.2 VCF Connectors

To compose components together, VCF supports connectors that implement in-
teraction between components and Web services. Similar to component plugins,
VCF uses connector plugins that implement features for making connections.
The implemented feature types, however, are different for VCF component and
VCF connector plugins. Table 2 shows the feature types predefined for connector
plugins.

Feature interface Description

IControl Connects and disconnects a connection
IRole Defines a role, and allows to set bindings for the role

IConnectorGUI Draws the connector, i.e. an arrow
IConnectorInfo Information about dependent components

Table 2. VCF Connector Plugin Features

The IControl feature is responsible for enabling a connection between the
participants. Each connector has one or more end-points. In VCF these are called
role. The IRole interface provides methods to extract information about the
role and links such an end-point to a particular binding. A binding is a concrete
interaction with another component or a Web service. For instance, a binding
for a target role can be the call of a method or the modification of a component
instance’s state. A binding for a source role can be a notification event. Bindings
can use other bindings for delivering arguments. For instance, a method call
binding can require parameters that are constructed by calling other methods
or are just constant values. The IConnectorInfo feature delivers information
about the components that are linked with bindings. The IConnectorGUI feature
provides a graphical visualization for the connector.

3.3 Component Workbench

The Component Workbench (CWB) [12] is a graphical environment for compo-
nent composition. It uses VCF to unify component access. As VCF, the CWB
allows composition of components that adhere any of VCF’s supported compo-
nent models.

Components or Web services that shall be used with the CWB are configured
with XML files. These components are shown in toolbars and can be instanti-
ated directly on CWB windows. CWB workpane windows are used to model
component compositions. These windows correspond to composite components
that implement the VCF IComposite feature described above. Components and
Web services are directly useable and testable within the CWB. Hence, it is
possible to modify the state of a component instance with a property sheet that
displays all component properties. It is also possible to invoke methods directly
within the CWB.



VII

Connections between components make use of VCF connectors. To connect
components the roles and their bindings have to be declared with CWB. This can
be either done with a wizard that guides the user through every step in defining
the roles, or it can be done directly on the workpane. Connections are visualized
on the workpanes. Usually this are just lines with arrows denoting the direction
of the connection. It is also possible to visualize indirect connections to connect
component instances that provide bindings for a connection. Figure 1 shows two
composite components of the CWB with various components and connectors.

4 Composition of e-services and components

4.1 BPEL4WS

The Business Process Execution Language for Web services (BPEL4WS) [13]
is an XML-based flow language that defines how business processes interact
within or between organizations. It replaces and integrates IBM’s proposed Web
services Flow Language (WSFL) [14] and Microsoft’s XLANG [15] proposi-
tion, which is currently implemented in BizTalk Server products. The initial
BPEL4WS 1.0 specification was jointly proposed by IBM, Microsoft, BEA in
August, 2002 and updated in May 2003 by version 1.1. It allows long-running
transactions to execute as Web services with support for consistency and reli-
ability. It supports graphs and algebra and addresses abstract and executable
processes. BPEL supports compensation-based business transactions as defined
by the WS-Transaction specification. Business Processes specified in BPEL4WS
are fully executable and portable between BPEL-conformant environments.

BPEL4WS is a block-structured programming language, allowing recursive
blocks, but restricting definitions and declarations to the top level. The language
defines activities as the basic building elements of a process definition. Struc-
tured activities prescribe the order in which a collection of activities take place.
Ordinary sequential control between activities is provided by sequence, switch,
and while. Concurrency and synchronization between activities is provided by
the flow constructor. Nondeterministic choice based on external events is pro-
vided by the pick constructor. It contains handlers for events including message
events (onMessage with portType, operation and partner) and timed events such
as duration or deadline. The first event handler of a pick element to receive its
event will be executed. Process instance-relevant data (containers) can be re-
ferred to in routing logic and expressions. BPEL4WS defines a mechanism for
catching and handling faults similar to common programming languages, like
Java. One may also define a compensation handler to enable compensatory ac-
tivities in the event of actions that cannot be explicitly undone. BPEL4WS does
not support nested process definition. One of the key aspects of Service Oriented
Architectures is the support of dynamic finding and binding of services at run-
time (e.g. in a repository such as UDDI). However, in BPEL4WS the notion of
dynamic finding and binding is not supported directly. These activities need to
be modeled explicitly (as activities, i.e. Web services). The tables 3, 4, and 5



VIII

Fig. 1. Composite Components



IX

summarizes BPEL4WS activity primitives. The realization within the CWB is
discussed in section 4.2.

BPEL Tags Characteristics CWB model

<invoke> Invokes a Web service (e.g. provided by a partner) invoke connector

<receive> Listens to a message at the service interface (i.e.
receives message from other Web services)

receive event

<reply> Generates a response reply for the received ac-
tivity. Together with the <receive>activity they
constitute a request/response pattern.

reply method

<wait> Enables the process to wait for a defined time. wait component

<assign> Variables can be updated (assigned) with new
data.

assign component
copy connector

<throw>
<catch>

The throw activity signals an internal error, which
can be catched.

<terminate> A process may be terminated explicitly. terminate event

<empty> An empty activity, which may be used to work on
an error (for example).

empty component

Table 3. BPEL4WS - Primitive Activities

Furthermore, BPEL4WS allows describing relationships (third party dec-
laration) how services interact (what they offer) by introducing Partner Link
Types (PLNK), with a collection of roles, where each role indicates a list of
portTypes. At runtime, the BPEL runtime (execution) engine has to deal with
the binding. BPEL4WS also supports the notion of compensation and fault han-
dling. Both concepts are based on the concept of scopes (i.e. units of compen-
sation or fault). BPEL4WS creates process instances implicitly, i.e. whenever
instances receive a message, an instance is created. This is different to many
workflow systems, which identify process instances by their ID. In the case of
BPEL4WS any key field, such as an invoice number in an order fulfilment sce-
nario, could be used for this purpose. The BPEL4WS middleware has to deal
with. This mechanism is called message correlation.

4.2 Modeling BPEL primitives with CWB

A primary goal of this paper was to describe how BPEL can be modeled with
VCF and the CWB. To integrate BPEL with CWB we have designed a compo-
nent model for BPEL workflows and built a corresponding VCF plugin. Since it
is possible in the Component Workbench to mix components of arbitrary com-
ponent models, as long as a VCF plugin is available this allows us to use COM+,
or EJB components, CORBA objects or JavaBeans, and Web services that use
SOAP for communication.

To design the workflow plugin we have mapped each BPEL4WS activity
tag to appropriate VCF constructs, components or connectors that implement



X

BPEL Tags Characteristics CWB realization

<sequence> Permits sequential invocation of activities. sequence connector

<switch> Allows modeling of several branches (such as in
programing languages). Alternate route is shown
with ¡otherwise¿ clause.

switch connector

<while> Allows modeling of repetitive activity while a con-
dition is, for example, true.

while connector

<pick> This construct allows to block and wait for ex-
actly a suitable message to arrive or for a time-
out alarm to go off. When one of these triggers
occurs, the associated activity is executed and the
pick completes.

<flow> The flow construct allows the specification of one
or more activities to be executed in parallel. Links
can be used within parallel activities to define ar-
bitrary control structures.

implicit

Table 4. BPEL4WS - Structured Activities

BPEL Tags Characteristics CWB model

<scope> The scope construct allows definition of a nested
activity with its own assoated fault and compen-
sation handlers.

<compensate>The compensate construct is used to invoke com-
pensation on an inner scope that has already com-
pleted its execution normally. This construct can
be invoked only from within a fault handler or
another compensation handler.

Table 5. BPEL4WS - Fault Handling

the semantics of the BPEL4WS tag. Although it would have been possible to
model each activity as a component and connect these components by connectors
(corresponding to the semantics), we have decided to chose different constructs
to allow better GUI for modeling business processes with the CWB.

In the CWB components are arranged on workpane windows that map to
composite components. We have modified these composite components to allow
for BPEL4WS processes. The receive activity is the only way to instantiate a
business process in BPEL4WS [13]. We have modeled receive activities as events
of the composite component. These events can then be connected to the com-
ponent that represents the first activity to be executed. However, since different
receive activities are possible to instantiate a business process, it is necessary to
inform the composite component of the set of allowed receive messages. This is
done by configuring the composite component in a CWB dialog.

The reply activity is the counterpart of a corresponding receive activity and
returns a return message to the caller. This activity has been modelled as a



XI

method of the composite component that can be called with the corresponding
receive event name as arguments.

The composite components itself allow arrangement of arbitrary components.
The semantics of putting components in a CWB composite window (section 3.3
is as follows. If a component is put onto the composite component it is executed
concurrently. Hence, this implements BPEL4WS’s flow activity. To build the
sequence construct we have built a special connector, the sequence connector.
Activities that are linked with this connector are executed in order of the arrow
direction.

The invoke activity is modeled as a VCF connector. This allows making a
call after a particular service has finished. The source role of this connector is
linked to the Web service or the component that is executed before the invocation
will happen. The target role is linked to the Web service or the component that
shall be invoked.

BPEL variables are modeled as components. The SOAP plugin has already a
builtin facility for creating Java record classes that map XML Schema types for
SOAP messages. With the JavaBeans plugin the Component Workbench allows
the instantiation of these record classes as variable components. BPEL variables
are scoped. In the CWB this scope is the surrounding composite component that
is the parent of the variable component.

The BPEL assign activity is modeled as a component, too. The assign ac-
tivity starts one or more copy operations between variables. In the CWB the
assign component acts as initiator for the copy operations. The copy operation
itself is modeled as a connector. Its primary roles are the variable from where
data is copied from and the variable where data is copied to.

The two control flow activities, while and switch are modeled as connectors.
The while connector links an evaluation component to a component that shall
be executed. Since the latter component can be a composite component again,
it is possible to nest arbitrary complex components with while. The evaluation
component is linked by using the return values of this component.

The switch connector connects multiple evaluation components to compo-
nents that shall be executed. Again it is possible to use composite components
to use complex activities.

wait is implemented as a component that has a property that stores the
duration expression. The termination of a business process is implemented by a
terminate event that is sent to the outmost composite component.

Currently, we do not support BPEL4WS fault handling. However, it seems
to be reasonable to model BPEL4WS scopes with composite components and
the corresponding faultHandlers and compensationHandlers similar to the
switch construct. Futhermore, we currently do not support the pick construct.

4.3 Generating BPEL4WS files

The Component Workbench uses XML as storage format for component compo-
sitions. We use this storage format to generate BPEL4WS files out of component



XII

compositions. For each of the activites described in section 4.2 the correspond-
ing XML elements are generated. The necessary information to fill XML element
and attribute data is either extracted from component properties, or connector
role bindings. As described in [16] message types used in Web services can be
designed with a wizard. The corresponding WSDL port types can be generated,
too. In the same sense, partner links and its types are generated from the CWB
components.

In future releases of our tool we want to support re-import of generated
BPEL4WS files and also allow the import of BPEL4WS files built with other
tools. This will lead to several problems, since we currently do not support all
BPEL4WS constructs.

4.4 Testing of Enactments

The Component Workbench supports testing of workflows by modeling test cases
with the Component Workbench. For testing workflows we allow to connect
monitor components to specific points in the workflow. These points comprise
the connectors’ roles and ingoing events or outgoing methods of components. The
monitor components stop the complete control flow and delegate the control to
specific test components. For each test case a set of test components has to
be specified and configured with appropriate value sets to test for. The test
components can be configured to compare state of components, connectors, and
variables with predefined values. If the comparison fails an error has occured in
the test case.

Once, a test case has been defined it can either be used interactively, or it is
possible to create a Java test class being used with the JUnit testing framework.
This test class uses VCF internally and contains all information necessary to cre-
ate an environment for activating Web services. For each pair of test components
and corresponding comparison values a method in the test class is created. The
comparisons that are modeled with the CWB are mapped to calls to JUnit as-
sertion methods. JUnit supports automated testing of workflows and simplifies
regression testing.

4.5 Monitoring of Workflows

In addition to testing of workflows the monitor components can also delegate
the flow of control to components that implement monitoring of workflows or
performance measurements. We currently do not provide full-fledged components
for monitoring the workflow. However, we provide a component that supports
tracing of the activation of particular components or connectors.

5 Conclusions

Service oriented Computing is an emerging paradigm for distributed computing.
As such it is of paramount importance to provide means for combined service



XIII

and component composition. To summarize the contribution of this paper: we
present the underlying framework as well as a prototype implementation of a
workflow-based composition and testing system for services. Furthermore, we
showed how compositions can be workflow-supported as well as visually created
by a workflow-based language such as BPEL4WS. Finally we demonstrated how
(semi)automatic and interactive testing (e.g. performance) of those combined
services and components can be accomplished.

References

1. W3C: WSDL Web Service Description Language. (2001)
2. W3C: SOAP - Simple Object Access Protocol. (2001)
3. OASIS: ebXML - White Paper - Enabling Electronic Business with ebXML. (2000)

http://www.ebxml.org/white papers/whitepaper.htm.
4. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow pat-

terns. In: Distribute and Parallel Databases, Kluwer Academic Publishers (2003)
to appear.

5. Benatallah, B., Dumas, M., Fauvet, M.C., Abhi, F.: Towards patterns of web ser-
vice composition. Technical report, University of New South Wales (2001) UNSW-
CSE-TR-0111.

6. Pilioura, T., Tsalgatidou, A.: E-services: Current technology and open issues. In:
Proceedings of the 2nd Workshop on Techologies for E-Services (TES’01), Springer
(2001)

7. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven
web services composition. In: Proceedings of the 12th International World Wide
Web Conference 2003 (WWW), ACM (2003)

8. Oberleitner, J., Gschwind, T., Jazayeri, M.: The Vienna Component Framework:
Enabling composition across component models. In: Proceedings of the 25th In-
ternational Conference on Software Engineering (ICSE), IEEE Press (2003)

9. DeMichiel, L.G., Yal cinalp, L.Ü., Krishnan, S.: Enterprise JavaBeans Specification,
Version 2.0. Sun Microsystems. (2001)

10. Henning, M., Vinoski, S.: Advanced CORBA Programming with C++. Addison
Wesley Longman, Inc. (1999)

11. Kirtland, M.: Designing Component-Based Applications. Microsoft Press (1999)
12. Oberleitner, J., Gschwind, T.: Component distributed components with the com-

ponent workbench. In: Proceedings of the 3rd International Workshop on Software
Engineering in Middleware 2002 (SEM), LNCS 2596, Springer (2003)

13. Oasis: Business Process Execution Language for Web Services Specification. (2003)
http://www-106.ibm.cm/developerworks/library/ws-bpel/.

14. IBM: Web services Flow Language (WSFL). (2002) http://www-
3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf.

15. Microsoft: XLANG Specification. (2002) http://www.gotdotnet.com/team/xml wsspecs/xlang-
c/default.htm.

16. Oberleitner, J., Dustdar, S.: Constructing web services out of generic component
compositions. Technical report, Vienna University of Technology, Distributed Sys-
tems Group (2003) accepted for publication at ICWS-2003 Europe.


