
ICSoC 2005 Demonstration
Session

Proceedings

Schahram Dustdar (ed.)
dustdar@infosys.tuwien.ac.at

TUV-1841-2005-34 December 7, 2005

Technical University of Vienna

Information Systems Institute

Distributed Systems Group

This Technical Report contains the demonstration papers for the Interna-

tional Conference on Service Oriented Computing - ICSOC 2005, 13 - 15

December, 2005, Amsterdam. We received in total 20 demo submissions.

We selected seven to be presented in the demonstration session, which are

contained in this Technical Report and five demonstrations were selected

to be included in the Springer LNCS conference proceedings (B. Benatal-

lah, F. Casati, and P. Traverso (Eds.) ICSOC 2005, LNCS 3826, pp. 478

- 507). The presented systems demonstrate the blend of scientific research

and practical value Service-oriented Computing (SoC) delivers. Further-

more, it increasingly becomes evident that SoC research can benefit from

experiences gained from design, development, and large-scale deployment

of service-oriented systems.

Keywords: ICSoC 2005, demo, proceedings

c©2005, Distributed Systems Group, Technical University of Vienna

Argentinierstr. 8/184-1

A-1040 Vienna, Austria

phone: +43 1 58801-18402

fax: +43 1 58801-18491

URL: http://www.infosys.tuwien.ac.at/

Web Services based interorganisational architectural framework for B2B

marketplaces

Dr. Jai Ganesh

Akash Saurav Das

Abhishek Malay Chatterjee

Ambar Verma

Mohit Chawla

Akhil Marwah

Infosys Technologies Ltd.

{jai_ganesh01; akash_das; Abhishek_Chatterjee; Ambar_Verma; Mohit_Chawla;

Akhil_Marwah}@infosys.com

ICSoC 2005 - Demonstration Session

1

1. Introduction

This demo is a solution based on Web services and Service Oriented Architecture involving

interorganizational information systems in the context of B2B marketplaces. B2B marketplaces involve

disparate interorganisational interconnections with multiple customers as well as partners. As the number

of customers and partners increases, managing the dynamics of interorganisational commerce becomes

complex. The key requirements of the IT architecture supporting a B2B marketplace are:

Ability to integrate with buyer and seller systems

Ability to integrate smoothly with other partners (e.g. credit card firms, courier companies etc.)

Ability to configure/reconfigure services

Ability to match the information of the participants in a transaction

Given the nature of the scenario and the number of stakeholders involved (e.g. the B2B marketplace,

sellers, buyers, credit card companies, courier companies etc.), a Web services based service-oriented

architecture would be the ideal solution to the problem. Due to the loosely coupled-nature of Web

services, the B2B marketplace does not need to have hardwired connections with the buyers, sellers,

credit card companies or logistics service providers. This allows the B2B marketplace to have access to

more services, offering more options to its customers. This would not only address the current needs but

would also address the future needs when the B2B marketplace may be needed to make fast business

connections with partners without going through the conventional pattern of making large scale changes

to the system. Web services would enable the B2B marketplace to isolate the business logic from

integration. Most conventional integration solutions embed part of the business logic in the integration

layer thereby requiring considerable efforts in making modifications. Web services address the key

requirements of the scenario listed above. Based on open standards like XML and SOAP, they define a

means by which the services of the B2B marketplaces and their partners can be published, discovered and

invoked.

1.1 Scope

In this demo, we demonstrate the workings of a private marketplace, which interacts with buyers and

sellers as well as different third party service providers like payment services, authentication services, and

logistic services. The following lists the high level overview of the B2B marketplace:

ICSoC 2005 - Demonstration Session

2

1. The implementation is purely for private marketplace for business to business transactions

(includes auction engine, which conducts forward as well as reverse auctions, e-Catalog, which

allows users to search for items on sale)

2. The Web services such as Authentication service (third party authentication mechanisms come

into play to send to authenticate buyers and sellers as well as rating their previous transactions),

Payment service (third party payment mechanisms come into play to send, execute and settle

orders that have been agreed to in the marketplace), Logistics service (includes services such as

logistics services offered in association with logistics service providers aimed to facilitate easy

movement of equipment and other assets transacted through the marketplace).

3. We demonstrate a Web services based interoperability between the systems of the B2B

marketplace with those of the payment service providers

4. The third party services and are implemented in different technologies to showcase

interoperability.

2. Use Cases

The Actor Catalog as well as the Use cases are given below

2.1 Actor Catalog

No. Actor Activities performed

1. Buyer Enrolls in to the system

Enquires his/her account history

Modify personal data

Does buy operations

Receives reports from system

2. Supplier Enrolls in to the system

Enquires his/her account history

Modify personal data

Does sell operations

Receives reports from system

3. Disposer Enrolls in to the system

Enquires his/her account history

Modify personal data

Does sell operations

Receives reports from system

4. Administrator Accounts maintenance

User Management

Receives reports

Performs backup

ICSoC 2005 - Demonstration Session

3

5. Registry Lists buyer and seller services

Modifies listings

Allows for search

6. 3rd Party service provider

(Banks)
Enrolls in to the system

Offers payment services

7. 3rd Party service provider

(Logistics)
Enrolls in to the system

Offers logistics services

8. 3rd Party service provider

(Verification and

Validation)

Enrolls in to the system

Offers verification and validation services

9. 3rd Party service provider

(Content)
Enrolls in to the system

Offers content services

10. Forward auction system Allows the Seller to create an online auction.

Buyers can then bid on the item in the auction

Buyers can search for items

Seller can close the auction

11. Reverse auction system Allows the Buyer to create an online auction.

Sellers can then bid on the item in the auction

Sellers can search for items

Buyer can close the auction

12. Item maintenance Adds items

Removes items

Modifies items

2.2 Use Cases

Given below is the list of Use cases being demonstrated in the demo:

1. Use Case: Create Forward Auction

2. Use Case: Create Reverse Auction

3. Use Case: Close Forward Auction

4. Use Case: Close Reverse Auction

5. Use Case: Buyer search for auction Item

6. Use Case: Seller search for prospective buyers

7. Use Case: Sell item through a forward auction

8. Use Case: Buy item through a reverse auction

9. Use Case: Update Participant Information

10. Use Case: Rollback Transactions

2.3 Use-Case Realization

Figure 1 given below show how the software actually works by giving a few selected use-case

realizations.

ICSoC 2005 - Demonstration Session

4

Figure 1: Sample Use case realisations

Supplier

Buyer

RegistryB2B

<<Actor>>

Semantic Matcher

<<Actor>>

Administrator

Logistics

<<Actor>>

Verification

<<Actor>>

Banks

<<Actor>>

Disposer

Marketplace

<<Actor>>

1
n

1
n

SupplyItems

1

n

1

1

FindAllServices 1

1 SelectsServices

1

1
ManagesB2B

11

ArrangesLogistics

1

1

SecurityServices

n

1

PaymentServices

1

n

DisposeItems

BuyItems

n

1

1

1

1

n

n

11

1

1 1

1

11

1

3. Architectural Goals and Constraints

The objective of this PoC is to showcase the usability of web services technology in B2B Marketplace

scenarios. The key feature which had an impact on architecture is the interoperability across multiple

technologies. Service-oriented development is used throughout this PoC and hence this PoC has Reusable

Assets (components, web services and design patterns).

3.1 Logical View of the Architecture

In Figure 2, we describe the functional decomposition of the entire application based on a logical

ordering of the application’s requirements. The aspects of the application with similar functionality are

aggregated into a subsystem and then subsystems organized to depict the dependencies between

subsystems. We also depict the decomposition into the key classes and interfaces. The notation used for

the Logical View is UML2.0.

Figure 2: Logical view of the Architecture

ICSoC 2005 - Demonstration Session

5

Figures 3 & 4 depict the Package hierarchy as well as the Sub-system overviews.

Figure 3: Package Hierarchy

Figure 4: Marketplace Subsystem Overview

ICSoC 2005 - Demonstration Session

6

marketplace

logistics

payment

db

authentication

ICSoC 2005 - Demonstration Session

7

Executable Choreography Framework
Thomas Cottenier, Tzilla Elrad

Illinois Institute of Technology

{cotttho, elrad}@iit.edu

Abstract
The Executable Choreography Framework (ECF) introduces a language to specify executable choreographies

and a platform extension to enable the deployment of executable choreographies on application servers.

The Executable Choreography Language (ECL) is a XML-based language to define refinements on the

default control flow of service invocation and execution. ECL rules specify a set of actions to be performed

when a message of interest is intercepted in the container. The ECF platform extension is a container level

component that intercepts incoming SOAP messages before they are dispatched to a service provider.

Likewise, outgoing messages are intercepted after serialization, before they flow out of the container.

The demonstration will introduce the languages constructs of the ECL, and illustrate the capabilities of the

platform extension through an adaptive choreography application, a mobile agent application, and a

distributed aspect application.

First, the ECF enables choreographies to be deployed in a competitive time frame, and dynamically adapted

to meet changing requirements. Second, the ECF enables the implementation of mobile agents in Web

Service environments, because ECL rules are platform independent and deployable on demand. Finally, the

ECF enables distributed Aspect-Oriented Programming (AOP). A distributed aspect captures events that

occur at the interface of remote services, and has the ability to inject behavior at those locations. In Web

Service environments, distributed AOP is ideally suited to implement middleware-level services such as

those provided by the Composite Application Framework (WS-CAF) specification.

The ECF is available for download at http://ww.iit.edu/~concur/ecf

1. Introduction
A service Choreography specification describes the global message exchanges between the services that

participate in a composite service application. On the other hand, a service Orchestration specification

defines the control flow of a local business process and the message it exchanges with its partners and the

local services.

A composite service application that does not have a single center of control cannot be directly

implemented with an orchestration language such as BPEL [12]. Several orchestration specifications need

to be defined. The role of a Choreography specification is to coordinate the actions of the orchestration

engines. Typically, a global contract is agreed on between the partners of the service composition. The

contract is specified in a language such as the Choreography Description Language (WS-CDL) [11].

Second, BPEL orchestration specifications can be generated from the CDL contract, and executed.

Figures A,1 and A.2 of the annex illustrate a composite web service application for finding the directions

between two locations (this example is derived from an application described in [1]). Fig. A.1 describes 4

business processes that are executed on BPEL engines of different domains. A1 and A2 are the endpoints

of AddressBook services that return the address of a location based on a location name; A3 is the endpoint

of a RoadMap service that returns directions from one location to another, given their addresses.

In the example of Fig A.1., BPEL engines act as wrappers around the services exposed by the domain.

Control flow logic and data mappings are executed before and after the local services are invoked. Each

business process is exposed with a new composite service endpoint, BPEL0, BPEL1, BPEL2 and BPEL3.

The identity of the services is thereby modified. While BPEL0 exposes a semantically meaningful

composite service, the composite services exposed by BPEL1, BPEL2 and BPEL3 have no meaningful

semantics, outside the context of the FindRoute composite activity. These endpoints are therefore very

unlikely to be published and discovered.

Choreographies implemented with orchestration engines introduce a service identity problem. Services that

participate in composite applications will be attributed several identities (URI’s), each of them coupled to a

very specific activity context.

The Executable Choreography Framework (ECF) [5][6][7] aims at providing a more flexible way to

specify, implement and deploy distributed workflows.

ICSoC 2005 - Demonstration Session

8

2. Choreographies with the Executable Choreography Framework
2.1. Executable Choreography Language

Fig. 1. ECL Rule

The ECF enables the default flow of control of a service

invocation to be refined in a context-sensitive way.

Refinements are applied non-invasively – without having

to manually modify the workflow of the target service.

Given a choreography description, either provided as an

activity diagram or a CDL specification, the ECF partitions

the distributed workflow into ECL (Executable

Choreography Language) rules. An ECL rule is similar to

Event-Condition-Action (ECA) rule used in active

databases [2]. It is composed of an activity context

declaration, an event pattern, a set of conditions and an

action:

1. CONTEXT: An Activity Context declaration uniquely identifies the rule. At runtime, the context

encapsulates information that relates to a distributed activity. Activity contexts are propagated

transparently from node to node, along the interactions of an activity.

2. EVENT: An Event expression defines when the rule should be applied. The ECF recognizes two types

of events: sending a message and receiving a message. An event expression defines a pattern on the

signature (PortType, Operation, Parameter types) of the messages to be intercepted.

3. CONDITION: The condition clauses identify the activities for which the refinement of the control flow

should be applied. Interactions of an activity are discriminated based on their activity context

information. Condition clauses take the form: CONTEXT(<Activity-Context-Identifier>)

4. MODIFIER: A modifier specifies when the rule behavior should be applied. The rule actions can

execute either Before, Around (Instead) or After the events captured by the event pattern.

5. ACTION: The ECF takes control over the thread of execution of the service invocation or execution.

The actions authorized by the ECF are:

- Compound Action: Actions can be composed into compound actions, using the sequence, fork,

join, decision and merge control flow operators.

- Accept Request/Response Action: wait for a request or a response message from a remote service.

- Send Request/Response Message Action: send a service request or response.

- Invoke Service Action: invoke the functionality of a local service

- Set Timer Action, Reset Timer Action and Accept Time Event Action: timing actions allow ECL

rules to define timeouts and handle faults.

- Data Mapping Action: The SOAP messages intercepted by the ECF can be transformed according

to a XSL specification. SOAP messages can be aggregated and data consolidated.

2.2. Executable Choreography Platform Extension
ECF actions have unambiguous implementations in standard Application Servers. ECF-enabled platforms

can interpret ECL rules, and deploy the corresponding control flow logic accordingly, in the language of

the platform. The ECF platform extension implements 3 distinct functionalities: message interception,

transparent activity context propagation and dynamic rule deployment.

2.2.1. Message Interception
Incoming SOAP messages are intercepted before they are dispatched to a service provider. Likewise,

outgoing messages are intercepted after serialization, before they flow out of the container. When a

message matches the event pattern of an ECL rule within its activity context, the ECF platform extension

takes control over the thread of the service request or response, and injects the rule behavior, before, after

or instead of the intercepted event.

2.2.2. Activity Context Propagation
The ECF provides transparent context propagation within a distributed activity. Activity contexts are

piggybacked in the headers of the intercepted messages. The ECF platform extension ensures that contexts

are propagated from node to node, along the interactions of a same distributed activity. Context propagation

helps managing the life-cycle of distributed activities. The ECF concept of activity context is derived from

ICSoC 2005 - Demonstration Session

9

the Composite Application Framework (WS-CAF) specification [13]. WS-CAF is a standard to implement

context-passing, coordination and transaction management in web-service based composite applications.

As opposed the WS-CAF, the ECF propagates context transparently.

2.2.3. Dynamic Deployment
Given a choreography description, the ECF partitions the distributed workflow into ECL rules. These rules

can be deployed on remote containers on-demand. ECF-enabled platforms expose a choreography

deployment Web Service, whose endpoint is published into a choreography repository

ECF platform extensions for Axis [14] and the Globus toolkit [16] are available for download at

http://ww.iit.edu/~concur/ecf. Their implementation is java based, and uses the Aspectwerkz [15] Aspect-

Oriented framework to non-invasively integrate the extension with the target containers.

2.3. Executable Choreographies
Fig. 1.B. of the annex illustrates an ECF specification for the FindRoute activity. First, the client defines a

context identifier for the FindRoute activity, ‘client.FindRouteActivity’. At runtime, this context carries the

callback endpoint of the client. The ECL rule deployed on the domain of A0 exposes the endpoint of the

composite service. The rule reacts on reception of a ‘FindRouteRequest’ message, within the context of a

‘client.FindRouteActivity’ activity. On the domains of A1 and A2, the rules intercept the response

messages of the AdressBook services, perform data mappings, and redirect the response to the RoadMap

web service. The RoadMap activity aggregates those responses, invokes the local RoadMap service, and

sends the reply back, directly to the client. The callback endpoint of the client is fetched from the activity

context, which propagated from the client request, to the domains of A0, A1, A2 and A3.

ECF rules do not modify the identity of the services involved in the choreography. ECL rules expose new

endpoints implicitly, through the activity context. By comparing Fig A.1 and Fig 2.A, we can tell that some

of the complexity of the orchestration logic has migrated from the endpoint of the composite service on the

domain of A0, to the domain of A3, where responses are aggregated and are routed back to the client. The

ECF choreography implementation is more decentralized.

3. Mobile Agents with ECF
Mobile agents are straightforward to implement with ECL rules. ECL rules conform to a XML Schema and

can be interpreted by ECF-enabled containers. Agent behavior can therefore be specified in a platform

independent way, which is a fundamental requirement for implementing agents in web service

environments.

A mobile agent typically performs a series of invocations of local services according to some control flow

logic and aggregates the result data. Once it performed its local operations, it migrates to another host,

along with its control flow logic and data.

In the ECF, an agent is composed of one or more ECL rules, and an itinerary description. A mobile ECL

rule deploys itself on a target host by invoking the target Dynamic Deployment service. The data of the

agent is propagated automatically through its activity context.

The ECF is the only platform the authors are aware of, that enables mobile agent on web services (other

proposals [8][9][10] are platform dependent).

4. Distributed Aspect-Oriented Programming with ECF
The ECF provides the basic building blocks for a distributed Aspect-Oriented Programming platform for

Web-Service environments. Aspect-Oriented Software Development [3][4] is a new software development

paradigm that targets the encapsulation of crosscutting concerns. Crosscutting concerns are concerns that

can not be cleanly encapsulated in the modularity units of the language, because they follow different

composition rules. In the Web Service context, the implementations of many of the middleware-level

services such as transaction management or security are tightly coupled to the implementation of specific

applications. These concerns are hard to cleanly modularize into separate Web Services, because they

affect composite applications at many locations of their workflow specification.

Within the ECF, an aspect is composed of ECL rules that intercept distributed Activities, as opposed to

Send or Receive actions. An activity is spawned on one host, and may terminate on another host. An ECF

choreography Aspect can inject behavior before, around or after an Activity. Distributed AOP is ideally

ICSoC 2005 - Demonstration Session

10

suited to implement Middleware-level services such as those provided by the Composite Application

Framework (WS-CAF) specification.

5. Conclusions
The Executable Choreography Framework (ECF) introduces a language to specify executable

choreographies and a platform extension to enable the deployment of Executable Choreographies on

Application Servers. The Executable choreography language was presented, and the architecture of the

ECF platform extension discussed. The demonstration will introduce the languages constructs of the ECL,

and illustrate the capabilities of the framework through an adaptive choreography, a mobile agent

application, and a distribute aspect application.

Acknowledgement
This work is partially supported by CISE NSF grant No. 0137743.

References
[1] Chafle, G., Chandra, S., Mann, V., Nanda, M. G.: Decentralized Orchestration of Composite Web Services.

Proceedings of the Thirteenth International World Wide Web Conference, New York, NY, USA, ACM Press

(2004)

[2] Norman W. Paton, Oscar Diaz, Active Database Systems, ACM Computing Surveys, New York, NY, USA, ACM

Press (1999)

[3] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., Loingtier, J.-M., Irwin, J.:Aspect-oriented

programming. Proceedings of the European Conference on Object-Oriented Programming, Springer-Verlag (1997)

[4] Filman, R., Friedman, D.: Aspect-oriented Programming is Quantification and Obliviousness. Workshop on

Advanced Separation of Concerns, OOPSLA 2000 (2000)

[5] Cottenier T., Elrad T, Prunicki, A.: Contextual Aspect-Sensitive Services, formal demonstration presented at the

4th International conference on Aspect-Oriented Software Development (AOSD’05), Chicago, USA (2005)

[6] Cottenier, T., Elrad, T.: Dynamic and Decentralized Service Composition with Contextual Aspect-Sensitive

Services, First International Conference on Web Information Systems and Technologies, Miami, USA (2005)

[7] Cottenier, T., Elrad, T.: Validation of Aspect-Oriented Adaptations to Components. Ninth International Workshop

on Component-Oriented Programming as part of ECOOP’04, Oslo, Norway (2004)

[8] Zakaria Maamar, Quan Z. Sheng, and Boualem Benatallah. Interleaving web services composition and execution

using software agents and delegation. In AAMAS’2003 Workshop on Web Services and Agent-based Engineering

(2003)

[9] Amir Padovitz, Shonali Krishnaswamy, and Seng Wai Loke. Toward efficient and smart selection of web service.

In AAMAS’2003 Workshop on Web Services and Agent-based Engineering (2003).

[10] Fuyuki Ishikawa, Nobukazu Yoshioka, Yasuyuki Tahara, and Shinichi Honiden, Toward Synthesis of Web

Services and Mobile Agents, AAMAS'2004 Workshop on Web Services and Agent-based Engineering (2004)

[11] Web Services Choreography Description Language (WS-CDL) Version 1.0, W3C Working Draft 17,

http://www.w3.org/TR/ws-cdl-10/ (2004)

[12] Business Process Execution Language for Web Services, BEA Systems, IBM, Microsoft, SAP AG and Siebel

Systems http://www-128.ibm.com/developerworks/library/ws-bpel

[13] Web Services Composite Application Framework (WS-CAF). Arjuna Technologies Ltd., Fujitsu Limited, IONA

Technologies Ltd., Oracle Corporation, and Sun Microsystems, Inc,

http://developers.sun.com/techtopics/webservices/wscaf/primer.pdf (2003)

[14] Apache, Axis homepage http://ws.apache.org/axis (2000)

[15] Aspectwerkz homepage http://aspectwerkz.codehaus.org/ (2004)

[16] The Globus Toolkit homepage, http://www.globus.org/toolkit/ (2002)

ICSoC 2005 - Demonstration Session

11

Annex

Fig.A.1. Implementation of a choreography with 4 BPEL engines

Fig.A.2. Implementation of a choreography with the ECF

ICSoC 2005 - Demonstration Session

12

Demonstrating FLAVOUR: Friendly Location-aware conference Assistant

with priVacy Observant architectURe

Kavitha Muthukrishnan,Nirvana Meratnia,Georgi Koprinkov,Maria Lijding and Paul Havinga

University of Twente, Fac. of Computer Science,

P.O.Box 217, 7500AE Enschede, The Netherlands

{k.muthukrishnan,n.meratnia,g.t.koprinkov,m.e.m.lijding,p.j.m.havinga}@ewi.utwente.nl

Abstract. In this paper, we describe an implementation of FLAVOUR (Friendly Location-aware conference As-

sistant with priVacy Observant architectURe), in which people/infrastructure resources act as individual service

providers offering their location as a service. By subscribing to this service, in the one hand, conference participants

can be aware of each others whereabouts as well as being able to chat. On the other hand, conference organizers

can notify interested attendants about special events such as cancellation of a track or change in the presentation

rooms. The presented architecture uses existing WLAN infrastructure for cost efficiency, and uniquely incorporates

the location information as a service into Jini service discovery platform. Location itself is determined with high

accuracy by using a calibration free technique.

1 Motivation

We all have occasionally experienced being alone in a foreign territory. Naturally, it had come to our mind it would

have been nice if we were accompanied by a trustworthy native person who knows a great deal about the area, places

worth visiting, and how to find our way and our interest points, etc. As unrealistic as it may sound, that is exactly

what this research aims at, i.e., building a mobile guide to (temporarily) be your best friend when you are attending a

conference.

Equipped with 650 individual wireless network access points, with each point having a range of about 100 meters,

in June 2003, University of Twente (UT) announced the launch of its wireless campus. In short, spread over 140-

hectare campus, UT offers its staff, students, as well as its visitors, i.e., anyone with a desktop, laptop, handheld or

wireless fidelity (Wi-Fi) devices to wirelessly access the university’s network and the internet from everywhere on the

campus [5]. Availability of such an infrastructure and the fact that SVGOpen 2005 conference was scheduled to be

held at UT, were two strong driving forces towards building a user-friendly conference assistant, in which location

proves to be one of the key components.

There are numerous location-aware applications, being employed in various environments and used by diverse user

groups, which are developed using WLAN infrastructure. There are several great challenges that these applications

face. Four of them are as follows:

– Localization: Despite of offering many advantages such as providing economical solution, higher coverage, and

scalability, Wi-Fi based localization techniques in general suffer from high calibration effort. The calibration needs

enormous amount of manual labor and should be performed repeatedly. As a rule of thumb, there is a trade-off

between the amount of effort put on reducing the calibration and the accuracy obtained. For instance, Ekahau

positioning system [6] offers an accuracy of about 1 m, while it requires quite a lot of calibration effort. On the

other hand Place lab [7] does not involve much calibration, and the reported accuracy ranges from 13 to 20 m.

– Heterogenity: End-users may utilize various personal devices on which different platforms run. Hence supporting

interoperability between various devices and platforms is mandatory and by no means is an easy task.

– Privacy: It is very easy to create and implement big-brother scenarios that track users movements and allow to

deduce patterns of behavior. Careful definition of privacy policies and a proper architecture design can reduce or

even eliminate this risk.

– Infrastructure: Since applications are often built on top of already existing infrastructures, requirements of the

applications may not always be met. In other words, to be (better) operational, applications may require add-on to

the existing infrastructure.

ICSoC 2005 - Demonstration Session

13

To address the above challenges, we developed a research prototype called FLAVOUR (Friendly Location-aware

conference Assistant with priVacy Observant architectURe).

2 Features of FLAVOUR

The important features of FLAVOUR are:

– Offering location as a service: In FLAVOUR each conference participant/infrastructure resource acts as an indi-

vidual service provider. This means that, location of each individual is published as a service to which interested

participants may subscribe.
– Providing multiple services: Both pull and push services are provided by FLAVOUR. Examples of the former

include (i) finding fellow attendants, and (ii) locating and using resources available in the infrastructure such as

printers, copiers, coffee machines etc. Being notified about important events by conference organizers (iii), and

communication with other contacts, i.e., colleagues, friends etc.(iv) are examples of the latter.
– Accuracy: Compared to existing WLAN-based localization techniques, which rely on huge calibration phase,

localization method used in FLAVOUR offers an accuracy of 6 m in average with zero calibration effort.
– Highly dynamic interface: Since FLAVOUR utilizes Scalable Vector Graphics(SVG), panning, zooming and

other functionalities at the user interface are performed very fast. Also due to having SVG viewer on the client

side, rendering of the SVG map can be done quickly .
– Privacy: FLAVOUR does not have tracking functionality. Users can be aware of each others location only if they

have proper privileges. FLAVOUR gives users the freedom to choose whom and for how long can access their

location information.
– Availability of services in off-line mode: Due to the limitation in battery, user devices are not always on. An

important feature of FLAVOUR is to be able to provide its services even if the user device is switched off. In

this case people can be aware of the location that the off-line user was last seen and the user himself can receive

off-line messages once he is online.
– Platform support: At the moment, FLAVOUR runs on both Windows and Linux platform.

3 Service-oriented Architecture

Figure 1 represents 3- tier FLAVOUR architecture, which consists of client side, surrogate host and server side. Both

surrogate host and server side reside on Jini infrastructure. The following building blocks are the key components in

the implementation of FLAVOUR:

– Device Location Service (DLS): It consists of spotting functionality, which scans for near-by access points when-

ever the client requests its location.
– Device Agent Service (DAS): The copy of DLS instantiated in the surrogate host together with the mapping

service form the DAS. Mapping service itself is responsible for overlaying location coordinates on the footprint

map.
– Reggie: It registers all the available services so that they can be used through Jini infrastructure.
– User Device Manager Service (UDMS): When the DAS needs to know the location of other buddies, a request

is sent from the client to UDMS which is residing on the server side. To offer/take back its own location, DAS

registers/de-registers its location information to/from this service.
– Access Point Information Service (APIS): It is a database providing the location of the access points in the area

of interests.
– Location Manager Service (LMS): The estimation of the actual location is accomplished by LMS. Although

LMS resides on the server side, it does not keep any record of the estimated location. In this way user privacy is

maintained. Only in a special case, i.e., when the user is off-line, a record of the location where the user was last

seen is kept.
– Buddy List Service (BLS): It contains the list of buddies subscribed to a location service provided by a particular

user. In addition it is responsible for re-directing all the authorization requests as well as storing messages when

the user is off-line.
– User Announcement Service (UAS): It is the Jini representation of a client in the surrogate host, which only

exists when the device is on. UAS basically facilitates communication between BLS and the client.

2

ICSoC 2005 - Demonstration Session

14

Device Location Service

Device Agent

Service

(DAS)

Mapping Service

1. Pushing the data to DAS

Reggie

Jini Reg. Federation

Service (RS)

User Device

Manager Service

(UDMS)

Location Manager

Service (LMS)

Buddy List

Service (BLS)

Client Side
Surrogate host

Server Side

Access Point

Information Service

(APIS)

2. Pushing the data requesting

AP information

3. AP data

4. Location

coordinates overlaid in

Map by Mapping

service

5. Viewed on client

device by SVG viewer

User Announcement

Service (UAS)

Communication

Registers all Jini service to

access this service

User Announcement Service

Registers / De-registers
Requests other location

Fig. 1. Architecture of FLAVOUR

4 Demonstration

Our demonstration consists of three major parts. First, we present locating individual conference participants as well as

available resources in the infrastructure. Second, we show how individual users can be aware of each others location.

Last, we illustrate the massaging capability of the system both from the organizers point of view and participants.

Various snapshots of FLAVOUR can be seen in Figure 2.

5 Conclusion

In this paper, we presented FLAVOUR, a privacy-sensitive, location-aware service architecture for conference envi-

ronment. FLAVOUR uniquely incorporates location information into the Jini service discovery platform to provide

conference participants with service sharing based on their location. It also facilitates the availability of location

information even when the user is off-line. The location is determined with high accuracy by using a calibration-

free localization technique. Another advantage of the presented architecture is cost-efficiency because it uses existing

WLAN infrastructure.

On-going work includes enhancing the accuracy of localization technique. Not to end up with a big-brother sce-

nario, we plan to incorporate more privacy policies in the future. Last but not the least, we also aim at extending

FLAVOUR to encompass campus-wide services.

6 Acknowledgements

This work is part of the Smart Surroundings project, funded by the Ministry of Economic Affairs of the Netherlands

under the contract no. 03060.

Authors would like to thank Department of Information Technology, Library & Education (ITBE) of University

of Twente and Drs. Barend Köbben from ITC, respectively, for manual mapping of the access points and providing

enormous help in respect to geo-database.

3

ICSoC 2005 - Demonstration Session

15

Console

MAC_adres XGEOMETRY YGEOMETRY Pow er (mWRel_locatio

000b5fbcc0e0 255325.5515 473356.627 50 b003

000b5fd7f214 255344.4594 473378.771 50 1007

000b5fd010b5 255369.158 473364.35 20 1023

000b5fd7f236 255387.4312 473353.585 50 1035

000b5fe24568 255407.0187 473342.084 20 1051

000b5fbcc0cc 255373.1074 473386.805 20 P104

Console

Point of Interests (POI)

Location of the user

Floor 3

Fig. 2. Snap shots of FLAVOUR prototype

References

1. Hegde, S.: Potential of SVG for a cartographic interface to a route optimization model for the transport of hazardous material.

Master thesis. ITC. 2004

2. http://www.w3.org/TR/SVG/intro.html

3. Kavitha Muthukrishnan, Nirvana Meratnia and Maria Lijding: FLAVOUR- Friendly Location- aware conference Aid with pri-

Vacy Observant architectURe, CTIT Technical report TR-CTIT-05-28, June 2005, 16 pp.

4. Sun Microsystems, http://www.sun.com/jini, Technical White Paper, December ,1999.

5. http://www.newscientist.com/article.ns?id=dn3834

6. http://www.ekahau.com

7. Anthony LaMarca and Yatin Chawathe and Sunny Consolvo and Jeffrey Hightower and Ian Smith and James Scott and Tim

Sohn and James Howard and Jeff Hughes and Fred Potter and Jason Tabert and Pauline Powledge and Gaetano Borriello and Bill

Schilit, Place Lab: Device Positioning Using Radio Beacons in the Wild, Proceedings of Pervasive’05,Munich, Germany.

4

ICSoC 2005 - Demonstration Session

16

A Service Architecture for Intellectual Work on Mobile

Devices

Nadya Belov and Ilya Braude and Werner Krandick

Department of Computer Science

Drexel University, Philadelphia PA 19104, USA

1 Introduction

Recent proliferation of cell phone and mobile computing technologies has yielded an

opportunity to design software systems intended to facilitate collaboration and team-

work among geographically dispersed users. On-the-go collaboration on portable com-

puters, however, cannot be facilitated with traditional Computer Mediated Collabora-

tive Systems (CMCS)s [1] typically deployed on desktop computers. In the last couple

of years, several architectures and software systems have been designed with the mo-

bile platform in mind. The Wireless Internet Collaborative System (WICS) is one such

CMCS. The design of WICS depicts an example of an architecture tailored especially

to the mobile platform [2]. The WICS is furthermore designed especially for intellec-

tual teamwork on-the-go. The architecture of the WICS integrates a dynamic services

component intended as an on-the-go, plug-and-play feature where each user will be able

to choose any number of available services depending on their needs. The application of

services in the mobile computing domain has been previously outlined by Dustdar and

Gall [3]. Dustdar and Gall introduce a peer-to-peer architecture with similar goals to

the client/server architecture of WICS, namely to allow participants to collaborate with

each other on multiple platforms, including the mobile platform. This paper sets to out-

line the service-oriented architecture of WICS and presents its unique functionalities

and benefits in the on-the-go collaboration on the mobile platform.

2 WICS Architecture

2.1 Client & Server

The WICSis an ad-hoc, dynamic, and portable collaborative system designed to pro-

vide a means of collaboration in the intellectual domain between two or more users.

The WICS is cross-platform and lightweight in its footprint; its small bandwidth re-

quirements allow for the utilization of networking services of cell phone providers.

The WICS application suite is built on top of the Java platform. It utilizes both the

Java 2 Standard Edition (J2SE) and the Java 2 Micro Edition (J2ME) platforms. J2ME

is build to run on mobile devices such as mobile phones and PDAs. The Java abstraction

layer allows us to port the system to various architectures easily.

The WICS network design mostly resembles a traditional client-server architecture.

However, it integrates a service architecture that provides users with access to function-

alities not available in the core set of system features. WICS clients are able to utilize

ICSoC 2005 - Demonstration Session

17

these services using a ServiceManager. Figure 1 shows a high level diagram of the

WICS architecture.

Services

. . .

Clients

Server

Internet

Fig. 1. WICS Network Architecture

2.2 Services

The WICS furthermore supports interaction with outside services via its service archi-

tecture. Because the message protocol utilized in WICS is easily parsed and readable,

many outside applications can be extended with a façade to work with WICS as ser-

vices. In turn, these services can also greatly extend the functionality of the system.

Services that make up the dynamic service architecture of WICS are run completely

independent of the WICS system. They are published to the clients through a directory

on the WICS server. When a service starts, it notifies the WICS server of its name and

capabilities. Clients are then able to take advantage of the services that are advertised

by the server to augment their own capabilities. However, as shown in Figure 2, once a

client is aware of a service, the communication is performed directly between the client

and the service, not through the WICS server.

Services can greatly accelerate the user’s task [4]. For example, a LATEXservice can

assist a user by rendering high quality math formulas. Other services can provide ready-

made diagrams, factor formulas, solve equations, graph functions, and provide other

useful tools which increase a user’s productivity while on-the-go. Each client keeps an

individual service manager, as some services may be available to some clients and not

to others. For example, if a client is able to render its own LATEX formula or plot its own

graph, it will not need the functionality of those services.

3 Future Directions

Future developments of the WICS include the development of services designed to

monitor and maintain user preferences which will facilitate Affective Computing [5].

ICSoC 2005 - Demonstration Session

18

. . .

Clients

ServiceServer

announce

advertise

communicate

Fig. 2. WICS Services Architecture

Furthermore, an allocation service responsible for discovery and coordination of func-

tional services (i.e. graph rendering service) based on user requests and need specifica-

tion will be integrated into the WICSservice architecture.

4 Demo Proposal

The authors propose to demonstrate the WICS and the benefits it creates in integrating

a service architecture with a traditional client-server application for the mobile domain.

The demonstration will consist of a collaborative session between two or more partici-

pants. They will be provided with a mathematical problem and asked to solve it using

the system running on the Treo 600 Smartphones. All of the participants will have to

start the system on their own device, log in and join or create a session. After the com-

pletion of the login process, each of the participants will use the service coordinator

to request access to a set of services based on the nature of their assignment. Once all

of the participants have been granted access to a set of available services which meet

the criteria they specified, they will work as a team to solve the assigned problem. The

participants will have available to them all of the features of the system as described in

§ 2.

The authors chose to demonstrate the WICS capabilities in the domain of math-

ematics. However, it is important to mention that system is designed to facilitate in-

tellectual teamwork in any domain. Mathematics is a universal language, rich in its

expressive power. That very same richness tests the usability of a system such as WICS

where bandwidth and screen real-estate are limited.

4.1 Hardware Requirements

In order to successfully demonstrate the WICS, the authors will require access to a

projector, a power supply and an Internet connection.

References

1. Belov, N.: Facilitating intellectual teamwork on mobile devices. Master’s thesis, Drexel

University, 3141 Chestnut Street, Philadelphia PA 19104 (2005)

ICSoC 2005 - Demonstration Session

19

2. Belov, N., Braude, I., Krandick, W., Shaffer, J.: Wireless internet collaboration system on

smartphones. In Castro, J., Teniente, E., eds.: Workshop on Ubiquitous Mobile Information

and Collaboration Systems (UMICS), 17th International Conference on Advanced Informa-

tion Systems Engineering (CAiSE 2005). Volume II. Faculdade de Engenharia da Universi-

dade do Porto (2005) ISBN 972-752-077-4.

3. Dustdar, S., Gall, H.: Architectural concerns in distributed and mobile collaborative systems.

J. Syst. Archit. 49 (2003) 457–473

4. Belov, N., Shaffer, J.: Mixed-initiative approach to collaboration in the mathematical domain.

In: Proceedings of the Twentieth National Conference on Artificial Intelligence, AAAI Press

(2005)

5. Picard, R.W.: Affective Computing. MIT Press (1997)

ICSoC 2005 - Demonstration Session

20

Achieving Flexibility in Securities Processing &

Settlement using Service Oriented Architecture

Dr. Sriram Anand & Naveen Kulkarni,

Web Services Center of Excellence

Infosys Technologies, Ltd

Electronics City

Bangalore, India 560 100

Sriram_anand@infosys.com

Abstract
This paper discusses the applicability of SOA in the area of equity trading and

settlement. The lifecycle of a security is quite complex and there are multiple complex

steps that are necessary. In most cases, the end user is completely unaware of the

number of activities that take place downstream of a trade being placed. Most

brokerages and financial service providers have a variety of technologies in place for

handling and settling an equity trade. A large chunk of functionality usually resides on

legacy systems. These systems are responsible for trade settlement, billing,

confirmations, accounting etc. Changes predicated by business model changes or new

rules and regulations such as compliance laws require significant changes to legacy

systems. Because of the nature of the technologies associated with legacy systems, it

is usually a fairly involved activity to make changes to these systems. Apart from this,

large financial service organizations have a variety of technologies. Integrating a

number of technologies with legacy systems requires tightly coupled, point to point

integration that is brittle and difficult to change as well as maintain. In this paper, we

present a demo that illustrates the usage of service oriented architecture to increase

flexibility with legacy systems. We have demonstrated an approach of achieving

flexibility by integrating legacy systems to other web applications using web services.

Example Overview
As enterprises reach architectural maturity with complex IT portfolios to support

business, the usage of SOA, leads to the partitioning of such functionalities as a set of

services. Business agility is associated with the responsiveness of the IT organization

which primarily is based on the reusability of the services.

The example system under consideration is an equity order recording and processing

system that places the order recorded on to a particular exchange during the trading

time period. In this case, an organization that has a brokerage line of business has

been considered along with a basic banking business unit. This system has constituent

systems that have been developed in various technologies as illustrated below.

ICSoC 2005 - Demonstration Session

21

Figure 1 : High level IT landscape

The components of this system are as follows:

Web Applications, these could be built using J2EE or Microsoft based technologies

o Equity order management system: Used to capture orders from users and

traders

o Exotics order management system: Used to capture orders from users and

traders

o Banking system: Suite of applications for handling basic banking functions.

Legacy Applications:

 These applications run on a platform such as the IBM Mainframe z/series

platform and typically contain the following modules:

o Pricing Calculations

o Funds Transfer

o Trade Fulfillment

o Custodial Services

o Billing

o G/L

o Confirmations and Statements

o File Handling

o Batch Jobs Execution

It is assumed that the communication between the web applications and the legacy

systems is achieved through the usage of files transferred using a proprietary format.

The use cases that are used for the demo have been illustrated below. In the example, the high level IT system supporting the Order management and

execution has been shown in the figure 1. It could be understood that the business

applications has been scattered across various applications built or acquired over time.

Some of the applications maintained by Settlement department run on different

technologies like Pricing, Account management run on host machines where as the

order management on the open systems. The following are workflows captured

through the interactions with the business analyst while interviewing and also through

the documents supplied

ICSoC 2005 - Demonstration Session

22

Order Creation

Order Execution

ICSoC 2005 - Demonstration Session

23

Pain Points
The issues associated with legacy systems along with a heterogeneous IT portfolio are

as follows:

o Unstructured Legacy Programs: Typically legacy programs have evolved

without any coherent strategy resulting in redundancy and lack of clarity

o Proprietary Integration Techniques: Typically, it is difficult to integrate legacy

programs with other applications. Proprietary techniques are developed, but

they are brittle and require specialized knowledge.

o Batch Cycle: Legacy programs usually run on a batch cycle and do not

provide online functionality

Thus, these systems lead to difficulty in achieving agility due to the tight coupling and

closed architecture.

Advantages of the SOA based approach
The demo attempts to showcase the benefits of SOA for improved integration of

legacy systems. SOA will also be used to integrate heterogeneous systems so as to

minimize maintenance cost and provide a consistent interface to all collaborating

systems.

The target architecture consists of service interfaces to legacy systems that are

enabled using tools such as Neonsys Shadow. These tools will perform the mapping

between web services and mainframe technologies. A web service based interface will

be presented to collaborative systems that will be insulated from the complexities of

the legacy system. This provides a non intrusive mechanism for the integration of

legacy systems. The target architecture that will be used for the demo is illustrated

below:

Data

Services

Legacy

Service1

Legacy

Service2

Target Architecture

Exposed
Services

Exposed

Services

Exposed

Services

Legacy

Platform

Business

Applications

(J2EE)

Business

Applications

(.NET)

O ther

Business

Applications

Data

Data

S
O
A

F
a
b
r
i
c

Technology Landscape
The table below illustrates the typical technology choices that may be present in

financial services organizations for securities processing and settlement processes.

Application Modules Platform Architectu Communication Networ Dependencies

ICSoC 2005 - Demonstration Session

24

Demo: Sub System view
The Equity order trading system consists of the following sub system:

Order management system (OMS)

Market data system

Transaction processing system (TPS)

Depository Trust clearance (DTC)

Custodian

Risk Analysis system

Settlement system

re / Protocol k

OMS
(Order
Management
System)

Trader UI Console,
OrderManager,
TraderManager,
SecurityManager,
RulesValidator,
Authenticator

Windows
2000, JRE

Java, Swing,
EJB, JNI,
Oracle

RMI, JDBC,
Customer fixed
length messaging,
FIX

TCPIP,
VPN

OES, Linked
tightly with
Market Data
system using
bridges

OES
(Order
Execution
System)

OrderExecution,
LineTranslator,
FIXGateway

Windows
2000, JRE

Java, EJB,
Oracle

RMI, Custom Fixed
length Message,
FIX

TCPIP External link to
the FIX Session
on Exchange,
Linked to the
TPS through
queue and to
DTC through
FTP. Messaging
is custom define.

MarketData RTLQuote
(Realtime quote),
DLDQuote
(Delayed quote),
MKTNews
(Market News),
MKTAnalysis
(Market Analysis)

Windows
2000
Advance
Server

C++,
Packaged
solution

DCOM TCPIP,
VPN

External link to
the Market data
provider

TPS (Trade
Processing
System)

TRDRVW
(Trade Review),
TRDALLO
(Trade Allocation),
TRDDITL
(Trade Details),
RVCCONF
(Receive
Confirmation)

IBM
z/Series

CICS, JCL,
Cobol, DB2,
RACF

FTP, MQ, SQL LU 6.2

DTC
(Depository
Trust
Clearance)

DTCTRDR
(Trade Recorder),
GENCONF
(Generate
Confirmations),
GENSETI
(Generate Settlement
instructions)

IBM
z/Series

JCL, Cobol,
DB2

FTP, SQL LU 6.2

Custodian CSTRTRD
(Receive Trade
Details), INTMTCH
(Matching of Trade
details and
confirmations),
RSKANLY
(Risk Analysis)

IBM
z/Series

JCL, Cobol,
DB2

FTP, MQ, SQL LU 6.2 Risk analysis is
linked to the
market data
system through
MQ

The figure shown below is a shown below gives a brief snapshot on different

protocols used for communicating between the applications/system. Such an analysis

of the identified resources is very essential during the planning for services as their

might have been a significant investment towards setting up such medium, where the

services are expected to reuse these medium of communication, for instance, the usage

of IBM MQSeries between Market-data and Risk Analysis. Various other analysis can

be done during this stage such as understanding the cluttering of the business

functionalities and its re-factoring possibilities for instance order status update being

done in both OMS and TPS, comparisons on moving from older technologies to newer

ones due to lack of availability of skilled engineers, for instance using CICS based

transactions for Allocation of order in TPS. This also helps in identifying the liaison

between the external partners which the services have to continue using, for instance

use of DCOM for market feed and FTP for the core banking.

ICSoC 2005 - Demonstration Session

25

Core banking system

The following diagram shows the collaboration of the various sub systems in

order to achieve the pre and post trading of equity orders.

OMS DTC

TPS

Custodian

Risk Analysis
System

?

Settlement
System

Core
Banking
System

Settlement Instructions

Confirmation

Trade
 Info

Cash
positionAuthorize

 movement

Move
Securities

 Position
Analysis

Allocation
Info

Transfer
funds

Market
data

System

Realtime
Quote

Market Analysis

Market
Data

The above diagram indicates the various sub-systems that take part in the equity

order execution workflow. The figure also provides the information exchange

between them.

The Order management system (OMS) being one of the sub systems of the equity

order trading system is responsible for providing the trade information to the other

sub systems as shown in the figure above. The OMS is used by the sales traders

and execution traders. The OMS provides modules that will allow the sales

traders to create orders and capture the same. It validates the orders captured to

check for the few basic rules like order size, tick size, price etc using security and

limits management modules. Orders created are broken or combined by the

execution trader based on the convenience or on the basis of rules defined. It

handles all the working orders and provides the facility for the execution trader to

route such orders to any of the other active execution traders. OMS also handles

the interactions with the exchange and eventually books the trade.

Implementation Model View
In this section, the overall architectural components used for the model have been

illustrated. The following components have been developed for the purpose of the

demo.

ICSoC 2005 - Demonstration Session

26

Order Management/Execution

Modules

Order
Creation

Trader Workstation

Order
Manager

Intel Pentium 2 family-based desktop
Windows 2000/NT/XP
Java2 Runtime Environment (JRE)

Intel Xeon family-based server
Windows 2000 Advance server
Application server: WebLogic
Java2 Runtime Environment

RMI-IIOP

Execution
Engine

Line
Translator

FTP

Order Server

Order Processing and settlement

IBM Mainframe
z/OS, CICS Transaction server 2.3
DB2

New Order
Data

Order/Market data

store
Intel Pentium family-based
Server
Windows 2000 server
Oracle/SQL server/mysql

JDBC

JDBC

Order
Processor

Broker
Manager
Customer
Manager

Order and
Customer

History, Rules
Allocations

Authentication
Rules and
Validation

Login

Security
Data

Security
Manager

Customer
Data

Exchng
Data

Market
Data

Intel Xeon family-based server
Windows 2000 Advance server

Market data Server

JNI

java
swing

java C++
JCL-

Cobol-
DB2

CICS-
Cobol-
DB2

Search
Security

Order
Routing

Order
Splitting

Order
Basketing

Data
Module

Trader
Data

Trader
View

Technologies

Portfolio

O M S

Custodian

Internal Match

Confirmation
SIDB

DTC

Settelement
Instructions

Settlement

Fund
Secutrity
Transfer

Core Banking

Funds
Transaction

Fund View

Portfolio View

Confirmation
View

Trade
Confirmation

JCL-Cobol-
DB2

Batch Jobs

ExchangeFIX

TPS

Trade review

Trade
Allocation

Outbox

Based on this technology landscape for the demo, the actual deployment model with

the servers used is as illustrated below.

ICSoC 2005 - Demonstration Session

27

Demo Deliverables
The demo will showcase the following to illustrate the benefits of using SOA to

integrate legacy systems in the securities settlement process. First, the demo will

illustrate the as-is situation where modification of a business process requires

significant change to systems in a variety of technologies, apart from legacy systems.

Subsequently, the demo will showcase the target system using SOA. The demo will

illustrate the ease of making changes to legacy systems and the mitigation of risk to

collaborating systems.

Conclusions
In this demo, we have demonstrated a typical equity order processing and settlement

environment. We have made the case for SOA based integration of various systems

along with web service based enablement of legacy systems. We have illustrated the

flexibility provided by web service based enablement that will lead to enterprise

agility and reduced ongoing costs.

ICSoC 2005 - Demonstration Session

28

ConWeScprototype - Context-based

Semantic Web Services Composition

S. Sattanathan1, N. C. Narendra2, and Z. Maamar3

1National Institute of Technology Karnataka Surathkal, India, Ss_nitk@yahoo.co.in
2IBM Software Labs India Bangalore, India, narendra@in.ibm.com

3Zayed University, U.A.E, zakaria.maamar@zu.ac.ae

1 Background

A Web service is an accessible application that other applications and humans can discover and trigger to

satisfy multiple needs (e.g., travel booking). One of the strengths of Web services is their capacity to be

composed into high-level business processes known as composite services [1]. Currently, Web services

composition is only achieved at the level of message interactions. This is by far not sufficient, as compo-

sition requires to be achieved too at the level of message semantics. The need for a common semantics is

intensified when Web services, which originate from different providers, take part in the same composi-

tion. To tackle the information disparity challenge, Web services have to agree on the information they will

exchange by binding to the appropriate ontology.

Besides the information disparity challenge, further challenges still hinder Web services composition

like which businesses have the capacity to provision Web services, when and where the provisioning of Web

services occurs, and how Web services from independent providers coordinate their activities, so conflicts

are avoided. To face some of these challenges, we recommended considering the context of the composition

and execution of Web services [3]. From a Web services perspective, we defined context as a set of common

meta-data about the current execution status of a Web service and its capability of collaborating with peers,

possibly enacted by distinct providers.

ConWeSc, standing for Context-based semantic Web Services composition, is a research prototype

developed as a proof-of-concept of the feasibility of the outcomes of the project on ontologies for contexts

of Web services [3]. The objective of this project is to develop a language similar to OWL-S for managing

contexts of Web services. This language known as OWL-C, standing for Ontology Web Language-based

Context Ontology, is built upon the following aspects:

- Web services of type instance are obtained out of Web services [2].

- Web services are subject to multiple constraints like maximum number of Web service instances to

make available for concurrent use, and strategy for selecting the ontology.

- Prior to participate in a composite service, a Web service assesses its ongoing participations. To per-

form this assessment, the three types of services, composite, Web, and instance, are each associated

with a context of type C-context, W-context, and I-context, respectively. Each type of context is

specially geared towards fulfilling the requirements of each type of service [2].

- Values of security contexts (ISec/WSec/CSec-contexts) are identified based on the information of

service contexts (I/W /C-contexts) [2].

ConWeSc focuses more on context definition, context consolidation at the Web service level, and con-

text reconciliation at the composite service level [3]. ConWeSc supports processing the three types of ser-

vice context (I/W /C-contexts) and three types of security context (ISec/WSec/CSec-contexts). I/ISec-

1

ICSoC 2005 - Demonstration Session

29

context has the fine-grained content, whereas C/CSec-context has the least grained-content. W/WSec-

context is in between the two contexts. Details on I/ISec-context update W/WSec-context, and details

on W/WSec-context update C/CSec-context. OWL-C statements are represented as a triple structure con-

sisting of subject, predicate, and object. Fig. 1 presents a typical OWL-C expression of W-context. Subject

is the resource from which the arc leaves. Predicate is the property that labels the arc. Finally, object is the

resource or literal pointed by the arc. In Fig. 1, W-context is the subject (i.e., resource), {status, time_av,

running, allowed, ID} are the predicates, and {Active, T=5, 1, 4, WS1} are the objects.

W -Context

Active

T=5
1

4

WS
1

#status

#tim
e_

av
#allow

ed

#ID

#
ru

n
n

in
g

Figure 1: Triple structure of W-context

2 Implementation of ConWeSc

ConWeSc comprises a set of plug-ins that runs on top of Eclipse (www.eclipse.org). Eclipse is a platform-

independent, open, and extensible workbench, and provides well-designed and well-documented extension

points for developers to build domain-specific applications. These plug-ins can be integrated into the work-

bench without the technical limitations imposed by most proprietary development environments.

The development of ConWeSc has called for four plug-ins: user interface, WS-execution platform, on-

tology repository, and help repository. Fig. 2 illustrates these plug-ins binding to Eclipse. The user-interface

plug-in extends the workbench in terms of perspective, wizards, views, and editor. The WS-execution plat-

form plug-in extends the workspace in terms of project nature (i.e., context based semantic Web services)

and builder (i.e., context assessment, validation, and reasoning). The ontology repository plug-in stores and

retrieves the context ontologies by extending them. Finally, the help repository plug-in provides the nec-

essary documentation for using ConWeSc (Section 3). We use the following software for the development

of ConWeSc: Eclipse PDE (Plug-in Development Environment) for developing the aforementioned plug-

ins, SWT (Standard Widget Toolkit), JFACE (User Interface tool kits) classes for developing user interfaces,

Jena (jena.sourceforge.net) for defining and processing context ontologies, and Mindswap’s OWL-S API

(www.mindswap.org/2004/owl-s/api) for processing OWL-S based ontologies.

Workbench

JFace

SWT

Platform runtime

Eclipse platform User

interface

WS-

execution

platform

Ontology

repository

Help

repository

Java

development

tool (JDT)

Plug-in

development

environment

(PDE)

Workspace

Help

Team

Debug

Figure 2: Architecture of ConWeSc

3 Steps of demonstrating ConWeSc

During the demonstration we aim at showing how context ontologies back Web services composition and

execution. We have created Book Finder and Book Payment Web services, as well as Book Purchase

ICSoC 2005 - Demonstration Session

30

composite service. Book Finder Web service identifies the details about a given book, and Book Payment

Web service performs payment related operations (e.g., credit card verification, account debiting). Finally

Book Purchase (noted Book Service in the various interfaces) composite service sequentially integrates

these two Web services.

For illustration needs, we have set the limit of Web service instances of Book Finder and Book Payment

to 3 and 1, respectively. When an instantiation request for either service is received after its respective

limit has been reached, ConWeSc displays an error message, and the Web service will not be instantiated.

ConWeSc also supports the ontology representation of W/WSec-, C/CSec-, and I/ISec-context using the

OWL-C formalism [3]. ConWeSc processes OWL-C files in the form of triples and displays results after

running consolidation and reconciliation operations.

3.1 Part A - Contexts of Services

How to consolidate contexts? Consolidation happens at the level of Web services [3]. Consolidation

means the combination of details that stem from a lower level (Web service instances) to a higher level

(Web services). Once the consolidation is completed, a Web service can determine for each of its Web

service instances the following: execution status, the actions it has performed, and the expected completion

execution-time, so the Web service can commit additional Web service instances as per other composite

services’ requests. Fig. 3-(a) presents the initial values of the W-context parameters of Book Finder. In

this figure, the focus is on InstanceRunning parameter (highlighted in green). After the acceptance of

two instantiation requests, the consolidated version of W-context shows two Web service instances under

execution (Fig. 3-(b)). When one of the instances successfully completes its execution, the number of

running instances drops to 1 (Fig. 3-(c)). InstanceAllowed parameter corresponds to the maximum number

of service instances that a Web service can concurrently deploy.

(a) (b) (c)

Figure 3: Consolidation of contexts

How to conciliate contexts? Reconciliation happens at the level of composite services, since the com-

ponent Web services of a composite service have multiple providers, and the definition of their respective

W-contexts (and obviously the definition of the I-contexts of their Web service instances) varies in terms

of structure and content (e.g., different numbers of arguments, different names of arguments) [3]. The trans-

fer of details from the I-contexts of the Web service instances to the C-context of a composite service is

featured by a reconciliation of these details before the C-context is updated

A part of the reconciliation as supported by ConWeSc is shown in Fig. 4. Fig. 4-(a,b) shows the initial

status of both the W-context of Book Finder and the C-context of Book Purchase after Book Finder accepts

the request of Book Purchase. PreviousWebService, CurrentWebService, and NextWebService parameters

are significant for the demonstration. It can be seen for instance that Book Purchase will sequentially

execute Book Finder and Book Payment. In Fig. 4-(b), Book Purchase is under execution whereas Book

Payment is expected to be initiated upon completion of this execution. Fig. 4-(d) presents the I-context of

Book Payment service instance (highlighted in green). This instance has a waiting status, i.e., waiting for

the completion of Book_Finder_Service_Instance_1. Once the execution of this instance is over (Fig. 4-

(c)), Book_Payment_Instance_1 will be changed to active (Fig. 4-(e)). The appropriate parameters of the

C-context of Book Purchase are also updated based on the execution success of its component (Fig. 4-(f)).

How to relate services to contexts? ConWeSc provides three different form-based editors for creating

C-, W-, and I-contexts using OWL-C. The generation of a C-context requires that the user inputs the re-

ICSoC 2005 - Demonstration Session

31

(b)(a)

(c) (d)

(e) (f)

Figure 4: Reconciliation of contexts

quired context-ontology parameter values in the appropriate text fields. If any context parameter is missing

then ConWeSc will raise an error message, so the user is alerted.

For example, if the input values {Book Purchase, Nil, Book Finder, Book Payment, Active, 20:30:45,

17/12/2004} are respectively associated with the parameters of C-contexts {Label, Previous Web Service,

Current Web Service, Next Web Service, Status, Begin Time, Date}, then the generated OWL-C description

of C-contexts is given in Fig. 5. The generated context file will have "owlc" as extension. Similarly, a user

can generate I-context and W-context descriptions based on OWL-C using the appropriate forms.

<?xml version="1.0" encoding="WINDOWS-1252"?>

<rdf:RDF

xmlns:CContext="http://www.nitk.ac.in/ sattanathan/OWLC/Context/CContext#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="http://defaultURI/CContext#">

<CContext:Date>17/12/2004</CContext:Date>

<CContext:NextWebService>Book Payment</CContext:NextWebService>

<CContext:Status>Active</CContext:Status>

<CContext:BeginTime>20:30:45</CContext:BeginTime>

<CContext:Label>Book Purchase</CContext:Label>

<CContext:CurrentWebService>Book Finder</CContext:CurrentWebService>

<CContext:PreviousWebService>Nil</CContext:PreviousWebService>

</rdf:Description>

</rdf:RDF>

Figure 5: OWL-C representation of C-context of Book Service

3.2 Part B - Security of Contexts of Services

How to secure contexts? Our model for securing the interactions between Web services features three

security contexts, i.e., ISec-context for Web service instance, WSec-context for Web service, and CSec-

context for composite service. These security contexts are defined along with the regular service contexts

(i.e., I/W /C-context). A security context exposes the security strategy that a service adopts. A security

context has a major role in highlighting the security strategy that a service adopts. Any change in this

ICSoC 2005 - Demonstration Session

32

strategy is automatically reflected in the security context so other peers are aware of the change and might

have to comply with it. The OWL-C representation of CSec-context is shown in Fig. 6.

<?xml version="1.0" encoding="WINDOWS-1252"?>

<rdf:RDF

xmlns:CsecContext="http://www.nitk.ac.in/ sattanathan/OWLC/Context/CsecContext#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="http://defaultURI/CContext#">

<rdf:Description rdf:about="http://www.csp.com/CsecContext#">

<CsecContext:Label>Book_Service</CsecContext:Label>

<CsecContext:Signature>Composite</CsecContext:Signature>

<CsecContext:SecurityMechanism>BlowFish</CsecContext:SecurityMechanism>

<CsecContext:SecurityOfPreviousWebServiceInstances>DES</CsecContext:SecurityOfPreviousWebServiceInstances>

<CsecContext:SecurityOfCurrentWebServiceInstances>AES</CsecContext:SecurityOfCurrentWebServiceInstances>

<CsecContext:SecurityOfNextWebServiceInstances>AES</CsecContext:SecurityOfNextWebServiceInstances>

<CsecContext:CorrectiveActions>None</CsecContext:CorrectiveActions>

</rdf:Description>

</rdf:RDF>

Figure 6: OWL-C representation of CSec-context of Book Service

How to consolidate security contexts? The following Fig. 7 shows the security context consolidation

of Book Finder Web Service Provider. In Fig. 7-(a) shows the initial security context argument values.

This context values are determined according to the values of service context (i.e., in this case W-Context),

Fig. 7-(b) shows the security context argument values after the successful completion of two service in-

stances (shown in SecurityStatusPerServiceInstance field). As per ConWeSc, SecurityStatusPerServiceIn-

stance can have either success or failure value. Fig. 7-(b) shows the successful case.

How to conciliate security contexts? Security context reconciliation happens at the level of com-

posite service, since the component Web services of a composite service have multiple providers, and

the definition of their respective WSec-contexts varies in terms of structure and content. The transfer of

details from the ISec-contexts of the Web service instances to the CSec-context of a composite service

is featured by a reconciliation of these details before the CSec-context is updated. Fig. 8-(a) shows the

initial security context values of Book Service Composite Service. Fig. 8-(b) shows the security con-

text values of Book_Finder_Service_Instance. Fig. 8-(c) shows the security context values of Book Pay-

ment Service Instance. Fig. 8-(d) shows the results of security context after the successful completion of

Book_Finder_Service_Instance_1.

4 Summary

In this paper, we overviewed ConWeSc, a research prototype that demonstrates Web services composition

and execution using a dedicated ontology for contexts of Web services. To back this demonstration, we

adopted a simple yet realistic example of online book purchase. Context formalization has several clear

advantages. For instance, this allows storing the context for further use since its meaning remains the same.

In addition, this enables communicating context with other systems. Ignoring the problem of context het-

(a) (b)

Figure 7: Security context consolidation of Book Finder (at the Web service-provider level)

ICSoC 2005 - Demonstration Session

33

(a) (b)

(c) (d)

Figure 8: Security context reconciliation of Book Service (at the composite service-provider level))

erogeneity of Web services has side-effects on the progress of their composition. Indeed, formal modeling

of context has been stressed by several works [4]. These side-effects are multiple like adopting the wrong

strategy for selecting a component Web service (e.g., favoring execution-cost criterion over reliability cri-

terion, instead of the opposite), delaying the triggering of some urgent component Web services, or poorly

assessing the exact execution status of a Web service.

Acknowledgments

The first author is supported by the Center for Advanced Studies (CAS) program of IBM Software Labs India. The first

author would also like to thank Prof. K. C. Shet of NITK, for supporting his doctoral work. The second author wishes

to thank his manager, K. Muralidharan, for his support. Other company (i.e., non-IBM), product and service names

may be trademarks or service marks of others.

References

[1] I. Budak Arpinar, B. Aleman-Meza, R. Zhang, and A. Maduko. Ontology-Driven Web Services Composition

Platform. In Proceedings of The IEEE International Conference on E-Commerce Technology (CEC’2004), San-

Diego, USA, 2004.

[2] Z. Maamar, S. Kouadri Mostéfaoui, and H. Yahyaoui. Towards an Agent-based and Context-oriented Approach for

Web Services Composition. IEEE Transactions on Knowledge and Data Engineering, 17(5), May 2005.

[3] Z. Maamar, N. C. Narendra, and S. Sattanathan. Towards an Ontology-based Approach for Specifying and Securing

Web Services. Information and SoftwareTechnology, Elsevier Science Publisher, 2005 (forthcoming).

[4] A. Shehzad, H. Q. Ngo, K. Anh Pham, and S. Y. Lee. Formal Modeling in Context Aware Systems. In Proceedings

of The 1st International Workshop on Modeling and Retrieval of Context (MRC’2004), Ulm, Germany, 2004.

ICSoC 2005 - Demonstration Session

34

The Gardens Point Service Language:

Overview and Implementation

Dominic Cooney, Marlon Dumas, and Paul Roe

Queensland University of Technology, Australia
{d.cooney, m.dumas, p.roe}@qut.edu.au

Abstract. Implementing web services that participate in long-running,
multi-lateral conversations is difficult because mainstream programming
languages are poor when it comes to manipulating XML data and han-
dling concurrent and interrelated interactions. We have designed a pro-
gramming language to deliberately address these problems. In this paper
we describe how to use this language to consume a popular web service,
and discuss the compiler and runtime system. We demonstrate the com-
piler, including the kinds of semantic checks it performs, the running
program, and the SOAP messages produced at runtime. The compiler
and sample program are available at http://www.serviceorientation.com.

1 Introduction

The need to integrate applications within and across organizations is increasingly
met with web services. Implementing simple request-response interactions be-
tween statically known participants using traditional middleware and program-
ming languages is reasonably straightforward, but implementing long-running
conversations amongst large and changing sets of participants is difficult. Aspects
of web services that provide serious implementation challenges include: prevalent
XML data, explicit boundaries, concurrent messages, and process awareness.

XML data: The data model of web services is XML InfoSet. InfoSet is an open
data representation with no notion of behavior. Object-oriented (OO) program-
ming prizes data encapsulation by marrying data and behavior. To address the
mismatch OO programming languages variously model InfoSet with objects,
map between objects and InfoSet, or support InfoSet directly via language ex-
tensions. In these solutions object models are indirect, mappings are incomplete,
and language extensions are redundant in their OO data model.

Explicit boundaries: Unlike components in a virtual machine, or processes in an
operating system, there is no supervising infrastructure between services. Since
implementation technologies vary, or because organizational boundaries entail
secrecy, the internal logic of other services may be completely opaque. Program-
ming languages with global models of interacting services, typically distributed
object models, are useful for abstractly modeling service oriented architectures,
but implementers are limited to purely local phenomena, such as messages, and
can not rely on a global view.

ICSoC 2005 - Demonstration Session

35

Concurrent messages: Messages link distributed nodes, all processing concur-
rently. For basic scalability web services must handle concurrent messages. Im-
plementers must be cautious of race conditions, deadlocks, and live-locks—all
problems that mainstream object-oriented languages make difficult to solve.

Process awareness: Web services often correspond to business functionality, and
so are likely to be part of long-running interactions driven by explicit process
models. They may engage in conversations with a dynamically changing set of
partners and a large number of events that may occur in many orders.

BPEL [1] addresses some of these problems, but it turns out that coding
complex multi-lateral interactions in BPEL, especially those that require partial
synchronization and one-to-many correlation can be cumbersome [2].

We addressed the above issues in the design of Gardens Point Service Lan-
guage (GPSL) [3, 4] with the following features:

– Embedded XQuery. XQuery is a functional language for querying and
synthesizing XML data [5], with a data model close to XML InfoSet. GPSL
supports the manipulation of XML data via embedded XQuery expressions.

– Services, contracts, and explicit message sending. GPSL has explicit
service and contract language elements. Lexical scoping ensures services rely
on purely local data. Services exchange data by explicitly sending messages.

– Join calculus-style concurrency [6]. GPSL simplifies forking, joining,
and concurrent operations with declarative rules. At a low level of abstraction
these rules facilitate the manipulation of concurrent messages; at a higher
level they support the modeling of complex processes with state machines.

The feature set of GPSL is unique, yet GPSL belongs to a small set of service-
oriented programming languages [7–10]. In this paper we focus on writing service
consumers, which is important for implementing services that aggregate other
services. We also present the compiler and runtime system.

2 GPSL by Example

GPSL is primarily for developing services, and an important aspect of imple-
menting a service is interacting with other services. In this example we describe
how to use GPSL to consume the Amazon queue service.1 The Amazon queue
service is a SOAP document/literal style service that supports inserting XML
data into a queue; reading from a queue, with time-outs; and managing queues.

First we declare an XQuery XML namespace for data used by the service:

declare namespace sqs =

’http://webservices.amazon.com/AWSSimpleQueueService/2005-01-01’;

Next we write the service contract. The Amazon queue service uses a pattern
where all operations have the same SOAP action and the behavior is controlled
by the data in the body of the message, so the contract declaration is simply:

1 http://webservices.amazon.com/AWSSimpleQueueService/

AWSSimpleQueueService.wsdl

ICSoC 2005 - Demonstration Session

36

declare interface SimpleQueueService {

declare operation SQSOp webmethod action = ’http://soap.amazon.com’

}

SimpleQueueService and SQSOp are identifiers we use to refer to the operation.
webmethod declares this operation as synchronous SOAP-over-HTTP. This piece
of metadata governs the behavior of the runtime system, but to the programmer
in-out SOAP operations via a pair of asynchronous messages and synchronous
webmethod operations appear uniformly as asynchronous operations.

Now we bind some constant values: the endpoint of the Amazon queue ser-
vice, and our subscriber ID, which we have to include in every message. We
could, of course, vary these with parameters if desired.

(: URI of the Amazon Simple Queue Service :)

let $sqs :=

’http://webservices.amazon.com/onca/soap?Service=AWSSimpleQueueService’ in

(: Amazon Web Services subscription ID :)

let $subscriptionID := ’...’ in

Performing an interaction, e.g. to create a queue, involves constructing a
request, sending it, and processing the response:

let $request := element sqs:CreateQueue {

element sqs:SubscriptionId { $subscriptionID },

element sqs:Request {

element sqs:CreateQueueRequest {

element sqs:QueueName { ’My queue’ },

element sqs:ReadLockTimeoutSeconds { 10 }

}

}

} in

def Ignore($response) { } in

$sqs: SQSOp($request, Ignore)

This sequence of element constructors produces XML like the following:

<sqs:CreateQueue xmlns:sqs=

"http://webservices.amazon.com/AWSSimpleQueueService/2005-01-01">

<sqs:SubscriptionId>...</sqs:SubscriptionId>

<sqs:Request>

<sqs:CreateQueueRequest>

<sqs:QueueName>My queue</sqs:QueueName>

...

The def construct is used to introduce a new internal label, Ignore, and an asso-
ciated block to execute when a message is produced on that label. In the above
example, sending a message to Ignore would do nothing—the block labelled with
Ignore is empty.

The line $sqs: SQSOp($request, Ignore) actually sends the message. The pre-
fix argument $sqs is the endpoint to send to. In this case $sqs is bound to the

ICSoC 2005 - Demonstration Session

37

endpoint of the Amazon queue service, but we could have bound $sqs to data
in a request received at runtime! This is how GPSL supports invoking services
dynamically.

SQSOp is the operation declared in the SimpleQueueService contract, which
provides the SOAP action and webmethod operation style. The fragment of XML
we just constructed in $request supplies the body of the SOAP message. Finally,
the Ignore argument supplies the label to process SOAP replies with. Because
SQSOp is declared as a webmethod, we must provide some way to handle replies.

This approach to message sending, though direct, is inconvenient if we need
to create more than one queue. The def construct is very convenient for small-
scale abstraction building:

def CreateQueue($queue-name, $timeout, create-reply) {

let $request := element sqs:CreateQueue {

element sqs:SubscriptionId { $subscriptionID },

element sqs:Request {

element sqs:CreateQueueRequest {

element sqs:QueueName { $queue-name },

element sqs:ReadLockTimeoutSeconds { $timeout }

}

}

} in

$sqs: SQSOp($request, create-reply)

} in

def Ignore($response) { } in

CreateQueue(’My queue’, 10, Ignore)

Usually the response contains useful data, and these defs can introduce nested
defs that extract data from the response and forward the distilled result to
create-reply:

def CreateQueue($queue-name, $timeout, create-reply) {

let $request := (: same as above :) in

def Unpack($response) {

let $queue-id := $response//QueueId/text() in

create-reply($queue-id)

} in

$sqs: SQSOp($request, Unpack)

} in

...

3 The GPSL Compiler

The GPSL compiler has a traditional parse, analyse, emit structure. The parser
must handle XQuery for expressions. For our prototype we found ignoring XQuery
direct constructors—the angle-brackets syntax for synthesizing XML which re-
quire special handling of whitespace—greatly simplifies parser development. Be-
cause syntactically simpler computed constructors can do the job of direct con-
structors, the expressive power of XQuery is unimpeded.

ICSoC 2005 - Demonstration Session

38

The analysis phase of the compiler is dominated by resolving identifiers and
reporting undeclared variables or on passing too few or too many parameters.
This phase includes a Hindley-Milner style type inferencer for labels. This is be-
cause we must prevent labels leaking into XML values. Syntax trivially prevents
labels appearing in XQuery expressions, because variables bound to XML values
are always prefixed with a $, whereas labels and variables bound to labels are
not. However sending a message on a label could pass a label where an XML
value was expected. The types from our inference let the compiler guarantee
statically that this does not happen.

If a label could escape into a larger XML value, we would have to track
the reference to that label in order to keep the closure it refers to alive; in
the worst case if a label escapes from the service we must set up the SOAP
messaging machinery to marshal messages into the closure. Of course, when the
programmer supplies a label as the reply-to parameter of an operation, that label
must be reified as an XML value.

The last semantic check of the analysis phase is that in, in-out and web-
method operations obey the convention of a parameter for the SOAP body and
a parameter for the reply channel (in the in-out and webmethod case.) These lead
to a limited set of types that are used to generate code that marshal between
SOAP messages and messages on internal labels. In principle, schema validation
of messages could be incorporated.

The code generator produces Microsoft Intermediate Language (MSIL), which
is similar to Java byte code although differs in many details. Most of the com-
plexity in the code generator is in creating closures and delivering messages on
internal labels. For each def we create a class with a method for each concur-
rency rule, a field for each captured variable, and a method and field for each
label. This field holds a queue of pending messages; the method takes a message
to that label, tests whether any rules are satisfied, and if so, calls the method
for the rule. We perform the rule testing on the caller thread and only spawn a
thread when a rule is satisfied, which avoids spawning many threads.

We do not compile XQuery expressions because implementing an XQuery
compiler is a daunting task. Instead we generate code to call an external XQuery
library at runtime. One critical criterion for the programming language imple-
menter integrating an XQuery implementation is how that XQuery implemen-
tation accepts external variables and provides results. GPSL requires access to
expression results as a sequence of XQuery data model values—which is dis-
tinctly different from an XML document—to behave consistently with XQuery
when those values that are used later in subsequent expressions. We use an in-
teroperability layer over the C API of Galax2, which has exactly the kind of
interface for providing external values and examining results that we want. Our
biggest complaint about Galax is that evaluating expressions must be serialized
because Galax is non-reentrant.

2 http://www.galaxquery.org

ICSoC 2005 - Demonstration Session

39

GPSL programs also depend on the Microsoft Web Services Extensions3

(WSE) for SOAP messaging. WSE has a low-level messaging interface which
is sufficient for GPSL’s needs, but it has major shortcomings too: WSE does not
support SOAP RPC/encoded, and we have to include some bookkeeping to make
SOAP over synchronous-HTTP work using this low-level messaging interface.

About the Demonstration We demonstrate an extended version of the pro-
gram outlined in Section 2, including the SOAP messages produced at runtime;
and the compiler, including the kinds of semantic checks described in Section 3.
The demonstration compiler and sample program are available online.4

References

1. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business pro-
cess execution language for web services. Technical Report Version 1.1, BEA Sys-
tems, International Business Machines Corporation, Microsoft Corporation, SAP
AG, Siebel Systems (2003)

2. Barros, A., Dumas, M., Hofstede, A.: Service interaction patterns. In: Pro-
ceedings of the 3rd International Conference on Business Process Manage-
ment, Nancy, France, Springer Verlag (2005) Extended version available at:
http://www.serviceinteraction.com.

3. Cooney, D., Dumas, M., Roe, P.: A programming language for web service develop-
ment. In Estivill-Castro, V., ed.: Proceedings of the 28th Australasian Computer
Science Conference, Newcastle, Australia, Australian Computer Society (2005)

4. Cooney, D., Dumas, M., Roe, P.: GPSL: A programming language for service
implementation. Submitted to ICSOC (2005)

5. Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D., Robie, J., Siméon, J.:
XQuery 1.0: An XML query language. W3C Working Draft (2005)

6. Fournet, C., Gonthier, G.: The reflexive chemical abstract machine and the join
calculus. In: Proceedings of the 23rd ACM Symposium on Principles of Program-
ming Languages (POPL). (1996) 372–385

7. Onose, N., Siméon, J.: XQuery at your web service. In: Proceedings of the 13th
International Conference on World Wide Web, New York, NY, USA, ACM Press
(2004) 603–611

8. Florescu, D., Grünhagen, A., Kossmann, D.: XL: A platform for Web services.
In: Conference on Innovative Data Systems Research (CIDR), Asilomar, CA, USA
(2003)

9. Cardelli, L., Davies, R.: Service combinators for web computing. Software Engi-
neering 25 (1999) 309–316

10. Kistler, T., Marais, H.: WebL – A programming language for the web. In: Proceed-
ings of the 7th International Conference on World Wide Web, Amsterdam, The
Netherlands, The Netherlands, Elsevier Science Publishers B. V. (1998) 259–270

3 http://msdn.microsoft.com/webservices/building/wse
4 http://www.serviceorientation.com

ICSoC 2005 - Demonstration Session

40

