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ABSTRACT
The emerging Web of Things (WoT) will comprise billions of Web-
enabled objects (or “things”) where such objects can sense, com-
municate, compute and potentially actuate. WoT is essentially the
embodiment of the evolution from systems linking digital docu-
ments to systems relating digital information to real-world physical
items. It is widely understood that significant technical challenges
exist in developing applications in the WoT environment. In this
paper, we report our practical experience in the design and devel-
opment of a smart home system in a WoT environment. Our system
provides a layered framework for managing and sharing the infor-
mation produced by physical things as well as the residents. We
particularly focus on a research prototype named WITS, that helps
the elderly live independently and safely in their own homes, with
minimal support from the decreasing number of individuals in the
working-age population. WITS enables device-free, unobtrusive
monitoring of elderly people in a real-world, inhabituated home
environment, by leveraging WoT technologies in building context-
aware, personalized services.

1. INTRODUCTION
Worldwide, the population in developed (and also developing)

countries is aging due to increasing life expectancy and low birth
rate. With recent developments in cheap sensor and networking
technologies, it has become possible to develop a wide range of
valuable applications such as the remote health monitoring and in-
tervention. These applications offer the potential to enhance the
quality of life for the elderly, afford them a greater sense of security,
and facilitate independent living 3,18,25. For example, as depicted in
the following scenario, by monitoring the daily routines of a person
with dementia, an assistant service can track how completely and
consistently the daily routines are performed, and determine when
the resident needs assistance.
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SCENARIO 1. Thomas is a 77-year-old frail man lives alone in
a small apartment. He is making a cup of tea and his kitchen knows
it. Tiny sensors monitor his every move and track each tea-making
step. If he pauses for too long, a nearby computer reminds him
about what to do next. Later that day, Thomas’s daughter accesses
a secure website and scans a check-list, which was created from
the computer in her fatherâĂŹs apartment. She finds that her fa-
ther took his medicine on schedule, ate normally, and continued to
manage his daily activities on his own. This puts her mind at ease.

There are much significant research efforts on building an intel-
ligent ambient environment, i.e., smart homes, such as House_n in
MIT 11, CASAS 21, Adaptive House 19 facilitated the study of smart
home technologies in more depth and in contexts that closely re-
semble real world, domestic spaces. All these efforts focus on peo-
ple’s direct interaction with the technologies. The recently emerg-
ing Web of Things (WoT) will bring the opportunity to push such
an ambient intelligence to move forward quickly 9. WoT provides
the necessary infrastructure to transparently and seamlessly glue
heterogeneous resources together by accessing sensors and actu-
ators using standardized across different protocols, platforms and
locations. Achieving ambient intelligent context-recognition sys-
tem calls for a new opportunistic activity recognition paradigm in
which, it can successfully infer what a person is doing or attempt-
ing to do by adapting to available sensor data. Most of existing
ambient intelligence either heavily on people’s involvement such
as wearing battery-powered sensors, which might not be practical
in real-world situations (e.g., people may forget to wear sensors), or
lacking a synthetic method of deploying ubiquitous available sen-
sor data. Recognizing and understanding the activities performed
by people is a fundamental research topic in this area. To date,
significant research work has been done in different ways. Com-
puter vision related human activity recognition and tracking is one
of main directions, but unfortunately, such solutions demand high
computational cost for machine interpretation. In addition, the per-
formance of such vision-based approaches depends strongly on the
lighting conditions (e.g., hard to monitor sleep postures at night),
angles (e.g., there exist some places not be covered by camera),
and cameras are generally considered to be intrusive to people’s
privacy.

With the growing maturity of sensor, radio-frequency identifi-
cation (RFID), and wireless sensor network technologies, activ-
ity recognition and tracking based on inertial, unobtrusive sensor
readings has become a popular research area in the last few years.
Inertial sensors are the most frequently used wearable sensors for
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human activity recognition 4,8,11,27. Although sensor-based activity
recognition can better address issues such as privacy than conven-
tional computer vision-based approaches, most work from sensor-
based activity recognition require people to wear the inertial sen-
sors and RFID tags. The main drawbacks of such solutions is
that they need users’ cooperation and maintenance (e.g., battery
change). As a result, these approaches are not always practical,
particularly for monitoring elderly persons with cognitive disabili-
ties.

In this paper, we present a case study by enabling the smart home
monitoring system with the support of the Web of Things plat-
form. Our system monitors the daily human behaviors and object
use, helps the elderly residents be aware of their surroundings and
make better decisions. In the system, sensing activities are exposed
as services and resources for higher level service composition and
mashup via a dedicated Web-based interface.

The innovations of our system against the existing works (dis-
cussed in Section 2) are as the following:

• We develop a device-free dictionary-based learning approach
to uncover structural information between hybrid sensor sig-
nals of different activities. The dictionaries are learned by an
unsupervised sparse coding algorithm. Compared to the ex-
isting activity recognition approaches, our dictionary-based
approach achieves more compact representation of the activ-
ities while preserve richer information, thereby underpinning
an efficient and robust recognition of human activities.

• We propose a bilinear SVM based localization algorithm, in
which sensor signal and time stamps are formed as a two
dimensional matrix. The localization is developed to detect
people presence to assist context-aware activity recognition,
such as if a person is detected to fall, we can identify where
he falls, e.g., in toilet or bathroom etc. The proposed method
shows more robust results compared with sliding window
based algorithms

• We embed our proposed activity recognition system into the
Web of Things framework 16. Our system leverages the flexi-
bility of WoT, and provides necessary infrastructure to trans-
parently access sensors, processors, and actuators using stan-
dardized protocols regardless of hardware, operating systems,
and platforms.

• We further develop a graphical Web-based mashup interface
allowing users to set up a series of higher level rules via
a Web browser without programming efforts by integrating
the inferred contextual information e.g., people’s location
and postures along with object usages detected. In this way,
many enchanting applications of ambient intelligence, e.g.,
fall detection and alarm, can be easily realized in a user-
friendly way.

The remainder of the paper is organized as follows. We first
overview the related work in Section 2. The proposed system and
technical details are described in Section 3. In Section 4, we report
the experimental results. Finally, Section 5 wraps up the entire
paper and highlights some future research directions.

2. RELATED WORK
In this section, we review some representative work closely re-

lated to our work.

2.1 Web of Things Middleware
With billions of things interconnected and present over the Web,

there are significant challenges in developing WoT applications,
due to their unique and inherent characteristics. The SENSEI project1

proposes an architectural framework that focuses on addressing
scalability issues in wireless sensor and actuator networks. The
SemSorGrid4Env2 develops a service-oriented architecture and a
middleware that assists developers to build large-scale semantic-
based sensor network applications. Both projects, however, deal
with the connectivity issues WoT: how to connect heterogeneous
things to the Web rather than how to describe and model things.
The recent research and development activities at CSIRO 24 offer
some interesting experience in applying WoT in a number of ap-
plication domains such as smart farming. An ontology-enabled ar-
chitecture has been developed where the sensor observations are
published as linked data cube for long-term data analysis and shar-
ing at the national scale. The system does not provide sufficiently
suitable integrated abstractions for things.

The University of Washington researchers develop a WoT appli-
cation, which unfortunately only focuses on managing the collected
RFID data 28. Paraimpu3 provides a social platform for people to
connect, compose, and share things. It is unclear on how this plat-
form is realized. In Hyperpipe project4, things are represented as
Web services and connected using pipes so that users can easily
compose. However, things are mostly resource-constrained and the
traditional SOA standards like SOAP and BPEL may not be appli-
cable. Many research projects are actively solving these challenges
and one notable effort is IoT6 project5, which focuses on the inves-
tigation of IPv6 and related standards (e.g., 6LoWPAN, CoAP) to
overcome current fragmentation of the WoT.

Existing WoT middleware falls into two categories in general.
The first category allows users to add as many sensors as they de-
sire, and then gives users tools (e.g., simple App) to view the raw
data collected. These systems usually have limited functionalities
when interfacing with other applications or interpreting the data.
The second category limits the user on the type and the number
of sensors that they can utilize, but enables the user i) to interpret
the collected data since possible use cases can be determined and
programmed in a-priori, and ii) to interface with many third party
applications, usually through certain cloud storage services. In our
framework, data collected from sensors not only can be monitored
in real-time, but also can be automatically converted into actionable
information by our data interpreter based on trigger values or con-
ditions preset by the user. This gives contextual information about
the physical devices and enables WoT applications to be developed
by accessing those high-level contexts, independent of low level
physical properties of the sensors or devices.

2.2 Human Activity Recognition
The goal of activity recognition is to detect human physical ac-

tivities from the data collected from various sensors. There are
generally two main ways for activity recognition: i) to instrument
people, where sensors and RFID tags are attached to people, and ii)
to instrument the environment, where sensors are deployed inside
the environment.

Wearable sensors such as accelerometers and gyros are com-
monly used for recognizing activities 2,17. For example, the authors

1http://www.sensei-project.eu/
2http://www.semsorgrid4env.eu/
3https://www.paraimpu.com/
4http://geoweb.crs4.it/doku.php?id=hyperpipes
5http://www.iot6.eu/



in 12 design a network of three-axis accelerometers distributed over
a user’s body. The user’s activities can then be inferred by learn-
ing the data provided by these accelerometers about the orientation
and movement of the corresponding body parts. However, such ap-
proaches have obvious disadvantages including discomfort of wires
attached to the body as well as the irritability that comes from wear-
ing sensors for a long duration. Recently, researchers are exploring
smart phones equipped with accelerometers and gyroscopes to rec-
ognize activities and gesture patterns 14,15. In a very recent work,
Krishnan et al. propose an activity inference approach based on
motion sensors installed in a home environment 13. An extensive
sensor-based activity recognition survey can be found at 6.

Apart from sensors, RFID has been increasingly explored in the
area of human activity recognition. Some research efforts propose
to realize human activity recognition by combining passive RFID
tags with traditional sensors (e.g., accelerometers). In this way,
daily activities are inferred from the traces of object usage via vari-
ous classification algorithms such as Hidden Markov Model, boost-
ing and Bayesian networks 4,23. Other efforts dedicate to exploit
the potential of using “pure” RFID techniques for activity recog-
nition 30,32. For example, Wang et al. 26 use RFID radio patterns to
extract both spatial and temporal features, which are in turn used
to characterize various activities. However, such solutions require
people to carry RFID tags or even readers (e.g., wearing a bracelet).

Recently, there have emerged research efforts focusing on ex-
ploring device-free activity recognition. Such approaches require
one or more radio transmitters, but people are free from carrying
any receiver or transmitter. Most device-free approaches concen-
trate on analyzing and learning distribution of radio signal strength
or radio links. For instance, Youssef et al. 33 propose to pinpoint
people’s locations by analyzing the moving average and variance
of wireless signal strength. Zhang et al. 34 develop a sensing ap-
proach using an RFID tag array. However, most of these efforts
focus on localization and tracking. There are not much work on
study device-free activity recognition. To our knowledge, the work
by Hong et al. 10 is the only such effort, which proposes a solution
on device-free activity recognition by using a sensor array.

3. SYSTEM DESIGN
In this section, we first overview the architecture of our system,

followed by the descriptions of the key components.

3.1 An Overview
Our proposed system, Web-based Internet of Things Smart (WITS)

home 6, consists of a hybrid pervasive sensor networks deployed in
the house, and an intelligent in-home monitoring system running
over the Web of Things framework. Our WITS system enables the
seamless information access, exchange, and manipulation between
the digital and physical worlds. As depicted in Figure 1, the sys-
tem provides a layered framework for managing and sharing the
information produced by physical things. It is developed using the
Microsoft .NET framework and SQL Server 2012. Physical things
and inferred location and activity events are mapped to correspond-
ing virtual resources, which can be aggregated and visualized via
a range of software components. We also adopt a rule-based ap-
proach to aggregate individual things for building context-aware,
personalized new value-added services. We implement the proto-
type in a real-world, inhabited home environment, where residents
can access, control, and compose physical resources in a variety of
contexts.

WITS provides a basic online-storage service for end users, with

6www.linayao.com/wits

Figure 1: Overview of the WITS system

which any user can sync their data to the cloud, which includes
Event Logs, Rules, and Visual Device Settings. Such information
will be the basis of other online services, for example, user can ac-
cess and manage their home online from a Web browser. WITS sys-
tem offers a Web interface that allows remote management through
cloud services. WITS systems also has an advanced data analytics
service, which can perform recommendations to end users such as
rules, device settings based on the analytics of user activity logs,
device events and rules.

The system provides two ways to percept the physical objects
and human activities.

• Object use detection. For identifying the status of physical
objects (e.g., in use/not in use), the first is to use the radio fre-
quency identification (RFID) technology, where physical ob-
jects are attached with RFID tags and interrogated by RFID
readers. The second is to attach sensors with objects 31.

• Human activity detection. To realize the device-free activ-
ity detection, we propose that the environment itself should
be augmented with a variety of sensors, such as RFID read-
ers, passive RFID tags and a set of motion sensors mounted
in different rooms. The installed locations are arbitrarily as
long as the mounted sensors can create a signal field covering
the house area. It is noted that the optimal configuration of
mixed sensors are not our target in this work. Figure 2 shows
our sensor deployment in part of the kitchen area.

The raw data captured by RFID readers and sensors are contin-
uously transferred to a local server to be processed further. In the
following, we will focus on introducing the key system modules of
WITS and their technical details.

3.2 Data Collection and Pre-Processing



Figure 2: Deployment of sensing units inside the kitchen area of a house

The system provides two ways to identify physical objects and
connect them to the Web. The first one is to use the RFID technol-
ogy, where the physical objects are attached with RFID tags and
interrogated by RFID readers. The second one is to combine sen-
sors with objects to transfer the raw data. The raw data captured
by readers and sensors will be further processed. In particular,
the component of Data Collection takes care of i) managing RFID
tags and sensors associated with physical things, ii) collecting raw
RFID and sensor data, while the component of Data Pre-Processing
processes the collected raw data and provides a universal API for
higher level programs to retrieve the status of things. Due to inher-
ent characteristics of RFID and sensor data (e.g., volatile) 22, this
layer contains several software components for filtering and clean-
ing the collected raw data, and adapting such data for high-level
applications. This task greatly benefits from our extensive experi-
ence in a large RFID research project 29.

The event generater layer is responsible for generating events
based on the collected information (e.g., refrigerator door opens),
which can be directly used by high-level applications or further pro-
cessed by other modules (e.g., event dispatcher). This layer focuses
on event processing that automatically extracts and aggregates lo-
calization, activity and object use events based on the data feeds
from the data pre-processing layer in a pipelined fashion. The tech-
nical details on localization, activity recognition, and object usage
detection will be discussed later respectively.

3.3 Object Usage Detection
The object usage detection layer focuses on the event process-

ing that automatically extracts and aggregates things usage events
based on the data feeds from the pre-processing layer in a pipelined
fashion. The pipeline consists of three main phases: the event de-
tection, the contextual information retrieval, and the event aggrega-
tion.

The event detector captures and decides whether a physical thing
is in-use. In our design, there are two ways to detect usage events
of things: sensor-based approach for detecting state changes and
RFID-based approach for detecting mobility. In the sensor-based
detection, the usage of an object is reflected by changes of the ob-
ject’s status, e.g., the status of a microwave oven moves from ideal
to in-use. In the RFID-based detection, the movement of an object
indicates that the object is being used. For example, if a coffee mug
is moving, it is likely that the mug is being used.

The event aggregator indexes and stores all the events and ser-
vices, together with their related information in a database, which
can be mined for various purposes (e.g., finding hidden correlations
among things, recommendation). A list of elements is constructed,

storing the identifiers of objects, their types and values, as well as
the calculated contextual information. In this way, applications can
focus on the functionalities without worrying about operations such
as connecting to the database, opening connections, querying with
specified languages and handling the results (normally they are raw
data and inconvenient to access). End users also can access and
query data through the provided user interface.

Figure 3: The activities can be recognized by analyzing the
corresponding signal strength fluctuation of hybrid sensor net-
work

3.4 Activity Monitoring
Our system for human activity recognition (see Figure 3) con-

sists of three main stages:

• Processing the raw signal streaming data from various sen-
sor inputs into individual segments, and then extracting low-
level statistical features from each segment,

• Learning the overcomplete dictionary for each activity using
the extracted features, and

• Given a new signal streaming data, finding the dictionary
from the learned activity dictionaries that best approximates
the testing sample.

Although signal strength variation of hybrid sensors reflects the un-
certainty and non-linear distributed patterns, we still can observe
some interesting characteristics. More specifically, we discover
that the variations of signal strength reflect different patterns, which
can be exploited to distinguish different activities in different loca-
tions. Figure 4 shows the distinctive fluctuation patterns of signal
strength collected from different activities, and different rooms, re-
spectively.
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Figure 4: Different signal strength distribution patterns of (a)
sitting, (b) falling in the living room, and presenting in (c) the
living room, and (d) the master room

As shown in Figure 4, the signal fluctuations induced from res-
ident activities (e.g., walking around), collected from two testing
rooms, are significantly distinguishable. We propose a sparse rep-
resentation based approach to recognize human activity by investi-
gating signal fluctuations. We learn one single dictionary for each
activity, which is formed by a set of basis vectors learned by solv-
ing a sparse optimization problem. Each basis vector can effec-
tively capture part of key structural information of given training
data from each activity.

There are several advantages in learning activity dictionaries.
Firstly, the dictionary for each activity is learned from a collection
of training samples via solving `1 optimization problem 5, which
represents structural information of signal strength data in a more
compact and informative way. Secondly, the dictionary learning
and training process of each activity is independent from other ac-
tivities, which makes an activity recognition system flexible and
scalable, as no change is needed on the existing activity dictio-
naries when a new activity is added. Finally, each dictionary can
be trained and learned by using only very small training samples,
which can effectively relax the heavy workload on labeling and an-
notating training data in the activity recognition, as required by the
most existing approaches.

Assuming we have K types of activities, and we construct K
dictionaries (one dictionary for each activity). After that, a new
signal strength vector is measure by using the coefficients of K
dictionaries. We propose to compare the largest absolute value of
coefficients of different dictionary for given new signal, larger of
which indicates that the new testing signal sample fits better to the
specific corresponding dictionary than others.

Let Ok = {ok
1 ,o

k
2 , ...,o

k
i } be the training sample from activ-

ity class Ck, to learn and encode the information of the testing
samples belonging to a particular activity class, we first construct
an overcomplete dictionary Dk for each class Ck. Recall the set
of training samples from kth activity as Ok = {ok

1 ,o
k
2 , ...,o

k
N},

where ok
i ∈ Rm, m is the feature dimensions. We intend to find

a dictionary matrix Dk ∈ Rm×K having K(K > m) vectors
{dk

1 , ...,d
k
K}, over which Ok has a sparse representation Xk =

{xk
1 , ...,x

k
N}, where xk

i ∈ RK . In this case, the original training
matrix Ok can be represented as a linear combination of no more

than τk0 (τk0 << K) dictionary vectors. The optimization problem
can be formalized as:

min
Dk,Xk

||Ok −DkXk||22, s.t. ||xk
i ||0 ≤ τko (1)

We adopt the K-SVD algorithm 1 to solve this problem, which per-
forms two steps iteratively until converged. The first stage is the
sparse coding stage, Dk is kept fixed and the coefficient matrix
Xk is computed by orthogonal matching pursuit algorithm, and
then the dictionary Dk is updated sequentially allowing the rele-
vant coefficients to be unique to K-SVD and resulting in a faster
convergence.

As mentioned above, one advantage of having class-specific dic-
tionaries is that each class is modeled independently from the oth-
ers and hence the painful repetition of the training process can be
avoided when a new type of activity is added to the system. After
profiling the dictionary for each activity, for a given query feature
vector of signal samples o∗, The activity label is associated with
the training samples have the largest absolute value of coefficients
of Xk:

lo∗ = l(max
i
|X|ki ) (2)

Our proposed activity classification is summarized in Algorithm 1.

Algorithm 1: Activity Classification
Input: Sensor samples S = S1, ...,SK , where K is the

number of activity classes;
Querying signal samples S∗ = {s∗1, ..., s∗I}
Output: Activity label l∗ = {l∗1 , ..., l∗I} of S∗

1 Extracting Nk feature vectors of signal samples from each
activity class Ck using the proposed feature representation;

2 Constructing K activity-specific dictionaries
D = {D1, ...,DK} ;

3 for i = 1: I do
4 Transform S∗ to features O∗ ;
5 Computing sparse representation x∗i of s∗i using K

dictionaries D ;
6 Output activity label by lo∗ = l(maxk |X|ik) ;
7 end

3.5 Localization
Localization is critical to track and locate people in indoor envi-

ronments. Monitoring the movements of an elderly person inside
the home is specially important to spot abnormal behaviors, e.g.,
staying in the toilet over 30 minutes. Such contextual information is
also important for the system to perform commonsense reasoning.
For example, when an old person is detected lying down, an alarm
should be produced if his current location is a place other than the
bedroom (e.g., the kitchen). Our system can provide coarse-grain
location support, e.g., positioning which room a person presents.
Different from traditional work using one dimensional signal val-
ues as feature vector and then classifying the signal streams using
sliding windows, we propose a two dimensional feature matrix by
coupling time dimension with signal feature vector, which shows
more robust results.

We decompose the continuous signal stream collected from each
room into every 30 seconds interval. Since the common sampling
rate is 0.5 seconds in this work, it turns out to be 60 time frames
in each time interval. Therefore, each interval is formed as signal-
vs-time Ok ∈ Rmk×t, where mk is the dimension of features ex-
tracted from hybrid sensors in each room k, and t is the number



Figure 5: Rule composer interface. For example, for editing a
rule like “send an alarm when a person stays in the toilet for
over 30 minutes”. A user needs only to drag the person, toilet
and clock icons to the Conditions subpanel, the alarm icon to
the Actions subpanel and performs some simple adjustments
(e.g., adjust the clock slider to set the time period).

of samples during each 30 seconds time window (t = 60). As a
result, each feature matrix contains the signal values in every 30
seconds. The coupling feature matrix is more informative and ro-
bust than one-dimensional feature vector. Since our objective is to
identify whether a person presents in the room, our room-level lo-
calization problem can be formulated as: given N sample features
{Xi, yi}Ni=1 where yi ∈ {−1,+1} of the ith sample, indicating
whether the person is in a room or not.

Let O ∈ Rm×n be the coupling feature matrices every 30 sec-
onds. To identify whether a person presents, we adopt the bilinear
classifier, which can be formulated as:

ŷ = tr(WTO) + b

= tr(WT
nWmO) + b

= tr(WT
mOWn) + b

(3)

where W ∈ Rm×n = WmWT
n , Wm ∈ Rm×d, Wn ∈ Rn×d,

and d ≤ minm,n. We can solve this problem under the maxi-
mum margin framework by measuring the margin of the bilinear
classifier in Equation 3 by the matrix trace norm, e.g., sum of sin-
gular values for minimizing the matrix rank, which results in the
following optimization problem:

min
W,b

1

2
tr(WTW) + C

N∑
i=1

max
(
0, 1− yi{tr(WTOi) + b}

)
(4)

Equation 4 is convex and can be solved using coordinate descent
along with SVM solver 20.

3.6 High-Level Service/Resource Composition
The WITS system offers a rule-based reasoning for high level

service (or resources) composition, by developing a Web-based rule
editing interface. The interface is used to set up a set of rules.
A rule consists of two parts: a condition and an action. A con-
dition is a composition of a set of simple boolean expressions.
An action is simply a set of settings of devices. For example,

Figure 6: 3D scene of the real-world on the Web browser: the
microwave oven will be in a highlighted status (yellow) while it
is being used; a steam is shown on the kettle icon when the real
kettle in the kitchen is boiling water.

Toilet.Occupying=true & Duration>= 30mins, an ac-
tion, SendAlert, will be triggered, to send an alert to correspond-
ing agent (e.g. a caregiver). By combining simple boolean expres-
sions together, the application can setup a complex rule to make
devices “smarter”.

The rule engine can aggregate the inferred contextual informa-
tion (location information, object usage events and inferred per-
son’s activity etc) for building context-aware, personalized new
value-added services without any programming efforts. It consists
of three main components: the rule composer, the condition eval-
uator, and the action executor. The rule composer is a Web-based
application implementing a user-friendly GUI for rule creation and
action setup, in a drag-and-drop fashion. The condition evaluator
is a software that receives the string expressions of rules from the
rule composer. It analyzes and annotates the string statement based
on a state machine. The string expression is then translated to a list
of annotated objects. The action executor is implemented based on
the shunting-yard algorithm. It first compiles each part of the in-
put sequence into a .NET Expression object. Then, it combines all
such objects together into a complex Expression Tree, which will
be compiled into a Lambda Expression. This Lambda expression
object will be stored in memory when the system is running. It
can be invoked when a device status changes or time elapses. If
the Lambda expression returns true, a corresponding action will be
called.

3.7 Real-time 3D Web Presence
This layer sits on the top of the framework and provides the ac-

cess to the management of things of interest (for example, connec-
tion, monitoring, control, mashup, and visualization). The Web-
based interface (Web UI) offers a 3D scene in a Web browser. We
particularly adopt the Web Graphics Library (WebGL) in HTML5
to enable 3D scene recreation. The 3D models are stored as Digital
Asset Exchange (DAE) files, and imported and rendered by using
three.js7 with plugins. Things are visualized and managed by de-
vice plugins. Each visualized thing is considered as a device plugin,
which contains one or more 3D model or animation settings. For
instance, the kettle will show steam when it is boiling water. We use
the ShaderParticleEngine plugin8 for three.js to create the steam ef-
fect for the kettle (see Figure 6). Each device plug-in also provides
a serial of APIs (i.e., Web APIs), to communicate with the service

7http://threejs.org
8https://github.com/squarefeet/ShaderParticleEngine



Table 1: WoT Middleware Comparison
Categories Prototypes Functionality Interface Implementation

S P RM RE CAR SN MSS M W RDL API PL
Smart Energy Webnergy – – – – – – – • • JSON/XML REST Java
Tagging Objects EPCIS Web Adapter – – – – – – – – • JSON/XML REST –

IoT/WoT Middleware

Zetta – – • – – – • – • – REST –
Kaa IoT Platform – – • – – – • – – – – –
w3c/web of things • • – • – – – • • JSON/TDL/LD REST –
ThngSpeak – – • – • – – – • – REST –
EVRYTHNG • • • – – • • – • JSON REST –
OpenIoT • • • – – – • – • SSN Specification – –

SmartHomes

openHAB – – – • – – • – – – – –
Eclipse Smart Home – – • – – – • • • – – Java
OpenDomo • • • • – – • – – – – –
FreeDomotic • • • • – – – – – – – –
Calaos – – • – – – – • • – – –
MisterHouse – – – • – – – – • – – Perl
Wosh – • • – – – • – • XML SOA C++
IoTivity • • – – – – • • • JSON REST –
RaZberry – – – – – – – • • JSON – JavaScript
The Things System • • • • – – • – • JSON – node.js
PrivateEyePi • • • • – – • • • – – Python
IoTSyS – – • – – – • – • – – Java
House_n – – – • • – • – – – – –
CASAS – – – • • – • – • – – –

Hybrid project WITS • • • • • • • • • JSON REST C#/Java
S: Security (authentication, https etc) P: Privacy (access control etc.) RM: Real-time Monitoring RE: Rule Engine CAR: Complex Activity Reasoning
MSS: Multi-source Support SN: Social Network (Twitter etc.) M: Mobile interface W: Web interface RDL: Resource Description Language PL: Program-
ming Language API:application programming interface •: Function enabled –: Not Available/Not Applicable

layer for status changes of the corresponding things, and to reflect
such changes on the Web browser. All the control and data flow
can be manipulated through this lightweight Web interface, which
also provides an administrative portal for things management and
activity reasoning (e.g., connecting and disconnecting things, and
viewing event logs).

4. EXPERIMENTS
This section is devoted to the validation study of our proposed

system. We will report two main studies: i) a solid comparison and
evaluation of our system with the existing WoT middlewares; and
ii) an extensive performance study of several main modules of the
WIITS prototype (i.e., activity recognition, localization).

The WITS system has been successfully deployed in the first au-
thor’s home. In particular, we attached RFID tags and sensors to
127 physical things (e.g., microwave oven, fridge, coffee mug, lap-
top, couch) in several different places in the house (e.g., bedroom,
bathroom, garage, kitchen) to capture the status of real-world phys-
ical objects as well as residents. In our implementation, things were
exposed on the Web using RESTful Web services, which can be ac-
cessed and discovered from a Web-based interface.

4.1 WoT Middleware Evaluation
Existing IoT middleware falls into two categories in general. The

first category allows users to add on as many sensors as they desire,
and then gives users some tools (simple App or Web browser) to
view the raw data that the sensors are collecting, but usually has
limited functionalities when it comes to interfacing with other ap-
plications or interpreting the data. The second category limits the
user on the type and the number of sensors that they can utilize,
but enables the user to interpret the collected data - since possible
use cases can be determined and programmed in a-priori - and to
interface with many third party applications, usually through some
cloud storage services. In order to leverage the advantages of scal-
ability and usability, in our proposed WITS, data collected from
sensors not only can be monitored in real-time, but also automat-
ically converted into actionable information by our running intel-

ligent event generator or conditions/rules pre-defined by the user.
This gives contextual information about the physical devices and
enables IoT applications to be developed by accessing those high-
level contexts independent of low level physical properties of the
sensors or devices.

In addition, we propose a benchmarking methodology to com-
pare the proposed system with the existing systems. To build the
foundation of the benchmarking methodology in terms of IoT/WoT
middleware and Smart Home projects, we analyze some of the re-
lated works in this area. The criteria from literature can fall within
different categories as follows:

• Compliance with standards includes HTTP, scripts or using
standard platforms (RFID EPCIS etc.)

• Versatility of the features supports for different features such
as what kind of user interfaces, whether using Rule engine
and scripting, or whether supports mobile access.

• Technology stack support enables versatility of the supported
technologies, interfaces and compatibility with other pack-
ages, such as what supported platforms, using REST or SOA,
what kind of developing language etc.

• Desirability of the outcome.This depends on the flexibility
of the application in smart home scenario. The following
criteria can be addressed in this regard 7:

– Allow for the organic evolution of routines and plans
– Easily construct new behaviors and modify existing be-

haviors
– Understand periodic changes, exceptions and improvi-

sation
– Design for breakdowns
– Account for multiple, overlapping and occasionally con-

flicting goals
– The home is more than a location
– Participate in the construction of family identity

The detailed comparison is shown in Table 1.
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Figure 7: (a) Activity recognition performance comparison on hybrid sensor networks (RFID+Sensor), compared with unitary
sensor network and unitary RFID network; (b) Low-level activity recognition performance consistency over 7 days evaluation; (c)
High-level activity reason accuracy over 7 days.

4.2 Activity Recognition Evaluation
To evaluate the performance of activity recognition, we carried

out the following two experiments. In the first experiment, we
compared the performance of set of proposed dictionary-based ap-
proaches with a few state-of-the-art methods. We conducted exten-
sive empirical study to determine the parameters of activity recog-
nition method, the optimal settings are: the top k features k =
30, the dictionary size d = 6, and the training/testing ratio of
data = 20%. All the experiments were conducted under person-
independent strategy, where we used the data from the subjects as
training examples to train our algorithm and models, and the data
from the left-out subject was used for testing.

Except comparing with other general methods of activity recog-
nition in smart homes, except predicting the activity by utilizing
largest absolute value of coefficients (Profile 2) in Section 3.4, we
also developed a set of other strategies to infer the activity by fully
exploiting the coefficient Xk.

• Reconstruction error (Profile 1): its reconstruction error for
the kth activity (k ∈ [1,K]) can be calculated as:

ek = ||o∗ −DkXk||2 (5)

Then the activity label of o∗ can be assigned using:

lo∗ = l(min
k
ek) (6)

• Maximal sum of coefficients (Profile 3): the activity label is
the top label with the maximal sum of coefficients of Xk:

lo∗ = l(max
∑
i

Xk
i ) (7)

• Concatate coefficients (Profile 4): we stack the learned coef-
ficients with original features together to obtain new feature
vectors, and then feed the enhanced features into SVM for
classification.

We evaluate our approach by examining the recognization accu-
racy in terms of low-level activities (inferred from signal fluctua-
tions), and high-level activities (inferred from low-level activities,
along with object usage and location information (Section 3.6)).
The detailed activities evaluated in this work is summarized in the
Table 2.

Figure 7 shows the results on the activity recognition accuracy.
From the figure, we can draw the following four key observations:

Table 2: Activities Used in Our Experiments
Recognizable ActivitiesIndex. Low-level Activities High-level Activities

1 Sitting Cooking
2 Standing Eating
3 Sitting to Standing Watching TV
4 Walking Reading magazine
5 Arm Movement Cleaning table
6 Kicking Vaccuming
7 Bending Bathing
8 Crouching Toileting
9 Falling Sleeping

• Our dictionary-based approach outperforms a set of state-of-
the-arts. Specially the one with making use of the largest ab-
solute value of coefficients performs the best result across all
the compared methods using RFID only, sensor only and hy-
brid RFID+sensor networks, as shown in Figure 7, the aver-
age accuracy reaches over 83% and shows good performance
of standard deviation as well.

• To test the consistency of the proposed approach, we also
continuously evaluated it over 7 days, we can observe the
recognization accuracy has some slight ups and downs, but
the overall performance is quite stable and consistent with
days (Figure 7 (b) and (c));

• We examined the positiveness of using hybrid RFID sensor
network, other than only one of them in single. The perfor-
mance using hybrid sensor sources is better in a full spectrum
of recognization approaches (Figure 7 (a));

• The average recognization accuracy of high level activities is
generally stable around 70% by adopting the generic Bayesian
inference (Figure 7 (c)).

Figure 8 shows a detailed example of a sequence of activities per-
formed by subjects. Our proposed method can identify these ac-
tivities successfully, only with some minor misclassification during
the activity transitions.

4.3 Localization Evaluation
In this experiment, we study the performance of localization of

our system of detecting person presents in room-level. We collect
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the signal data in terms of empty status (no one is in a room) and
person shows up in a room, respectively. Then, followed by person-
independent strategy to validate our presence detection approach.

From the results shown in Figure 9, we can see that bilinear clas-
sifier works better than the other methods in identifying whether a
person presents in a certain room, as the streaming signal data are
modeled as the confluence of a pair of signals and time interval,
signal-time matrix, which better retain and capture the dependency
of data factors compared with using one dimensional signal vector
with other linear classifiers. Figure ?? visualizes a subject traces
of moving between four testing rooms, which shows that our bilin-
ear method can perform good discriminative results with handling
switching rooms as well.

4.4 System Latency Analysis
We conclude this section with some brief discussions about la-

tency handling in our system. Fast detecting of posture changes is
critical, particularly for aged care applications. For example, for
the fall detection, we could send an alert to notify the care givers
as quickly as possible to offer medical assistance for the elderly
people after a fall happens. Our system has 4 ∼ 4.5 seconds recog-
nition latency, which results from three main reasons:

• Our system evaluates subject’s postures every 0.5 seconds
using the latest 2 seconds of signal stream. In other words,
if the current system time is at timestamp t, our system will
produce the predicted postures in the [t − 2, t − 1] seconds,
and [t − 1, t] seconds is used to backtrack check if the pre-
dicted label complies with predefined rules. For instance, as-
sume that the label is estimated as: lie in bed at [t− 2, t− 1]
interval, if the predicted label in interval [t− 1, t] is nobody,
our system will determine the predicted posture is still lie in
bed.

• Signal collector is programmed with a timer to poll the sig-
nal variations with a predefined order of transmission, which
takes around 1 second to complete a new measurement with
no workarounds.

• It should be noted that we integrated our system into a Web-
based interface, which sends AJAX requests to services for
the latest results and then looks up the database to retrieve
data for sending back to the Web interface with updating
DOM (document object model) element. Completing such
a querying process normally takes 300ms to 500ms.

5. CONCLUSION
In this paper, we have proposed the design and development of

a smart home system that leverages the emerging Web of Things

(WoT) for providing personalized, context-aware services to resi-
dents. Via seamless integration of digital world and the physical
world, our WoT-based system can efficiently manage things of in-
terest and access their corresponding services. In particular, the
system implements the device-free monitoring of elderly people
who live alone, in which both a person’s location and activities can
be monitored by learning signal strength fluctuations collected by
pure passive RFID tags in the WoT environment. We have con-
ducted extensive experiments to validate our proposed system. The
practical experience gained from this system is useful for building
future WoT applications.

Many challenges still exist in effective development of WoT ap-
plications. One such challenge is transaction handling. In WoT,
the digital and physical worlds co-exist and interact simultaneously.
Most things are resource-constrained, which are typically connected
to the Web using lightweight, stateless protocols such as CoAP. In
the future, we will focus on investigating novel ways for efficient
transaction processing in WoT applications.
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