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The Infrastructure-as-a-Service (IaaS) model of cloud computing is a promising approach towards build-
ing elastically scaling systems. Unfortunately, building such applications today is a complex, repetitive and
error-prone endeavor, as IaaS does not provide any abstraction on top of naked virtual machines. Hence,
all functionality related to elasticity needs to be implemented anew for each application. In this paper, we
present JCLOUDSCALE, a Java-based middleware that supports building elastic applications on top of a
public or private IaaS cloud. JCLOUDSCALE allows to easily bring applications to the cloud, with minimal
changes to the application code. We discuss the general architecture of the middleware as well as its tech-
nical features, and evaluate our system with regard to both, user acceptance (based on a user study) and
performance overhead. Our results indicate that JCLOUDSCALE indeed allowed many participants to build
TaaS applications more efficiently, comparable to the convenience features provided by industrial Platform-
as-a-Service (PaaS) solutions. However, unlike PaaS, using JCLOUDSCALE does not lead to a loss of control
and vendor lock-in for the developer.

Categories and Subject Descriptors: D.2.2.c [Software Engineering]: Distributed/Internet based software
engineering tools and techniques; D.2.0.c [Software Engineering]l: Software Engineering for Internet
projects

General Terms: Languages, Experimentation, Performance

Additional Key Words and Phrases: Cloud Computing, Middleware, Programming, JCloudScale

1. INTRODUCTION

In recent years, the cloud computing paradigm [Buyya et al. 2009;|/Grossman 2009] has
provoked a significant push towards more flexible provisioning of IT resources, includ-
ing computing power, storage and networking capabilities. Besides economic factors
(e.g., pay-as-you-go pricing), the core driver behind this cloud computing hype is the
idea of elastic computing. Elastic applications are able to increase and decrease their
resource usage based on current application load, for instance by adding and remov-
ing computing nodes. Optimally, elastic applications are cost and energy efficient (by
virtue of operating close to optimal resource utilization levels), while still providing
the expected level of application performance.

The research leading to these results has received funding from the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement no. 610802 (CloudWave) and no. 318201
(SIMPLI-CITY).

Author’s addresses: R. Zabolotnyi, W. Hummer, S. Dustdar, Institute of Information Systems 184/1, Dis-
tributed Systems Group, Vienna University of Technology, Argentinierstrasse 8, A-1040 Wien, Austria. P.
Leitner: s.e.a.l. - software evolution & architecture lab, University of Zurich, Binzmiihlestrasse 14, 8050
Zurich, Switzerland.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© YYYY ACM 1539-9087/YYYY/01-ARTA $15.00

DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.




A:2

Elastic applications are typically built using either the IaaS (Infrastructure-as-a-
Service) or the PaaS (Platform-as-a-Service) paradigm [Armbrust et al. 2010]. In IaaS,
users rent virtual machines from the cloud provider, and retain full control (e.g., ad-
ministrator rights). In PaaS, the level of abstraction is higher, as the cloud provider
is responsible for managing virtual resources. In theory, this allows for more efficient
cloud application development, as less boilerplate code (e.g., for creating and destroy-
ing virtual machines, monitoring and load balancing, or application code distribution)
is required. However, practice has shown that today’s PaaS offerings (e.g., Windows
Azure, Google’ AppEngine, or Amazon’s Elastic Beanstalk) come with significant dis-
advantages, which render this option infeasible for many developers. These problems
include: (1) strong vendor lock-in [Lawton 2008; Dillon et al. 2010], as one is typically
required to program against a proprietary API; (2) limited control over the elasticity
behavior or the application (e.g., developers have very little influence on when to scale
up and down); (3) no root access to the virtual servers running the actual application
code; and (4) little support for building applications that do not follow the basic archi-
tectural patterns assumed by the PaaS offering [Jayaram 2013 (e.g., Apache Tomcat
based web applications). All in all, developers are often forced to fall back to IaaS
for many use cases, despite the significant advantages that the PaaS model would
promise.

In this paper, we introduce JCLOUDSCALE, a Java-based middleware that eases the
task of building elastic applications. Similar to PaaS, JCLOUDSCALE takes over virtual
machine management, application monitoring, load balancing, and code distribution.
However, given that JCLOUDSCALRE is a client-side middleware instead of a complete
hosting environment, developers retain full control over the behavior of their appli-
cation. Furthermore, JCLOUDSCALE supports a wide range of different applications.
JCLOUDSCALE applications run on top of any IaaS cloud, making JCLOUDSCALE a vi-
able solution to implement applications for private or hybrid cloud settings [[Sotomayor
et al. 2009;/Abraham et al. 2010]. In summary, we claim that the JCLOUDSCALE model
is a promising compromise between IaaS and PaaS, combining many advantages of
both worlds.

The main contributions of this paper are two-fold. Firstly, we describe the the
JCLOUDSCALE middleware in detail. This contribution is in extension of our ini-
tial work in [Leitner et al. 2012[]. Secondly, we conducted a user study to evaluate
JCLOUDSCALE in comparison to both, existing IaaS (OpenStack and Amazon EC2)
and PaaS (Amazon Elastic Beanstalk) systems. We address runtime performance im-
pact of JCLOUDSCALE, as well as development productivity and user acceptance. Our
study results suggest that JCLOUDSCALE increases developer productivity in compar-
ison to pure IaaS solutions, comparable to Elastic Beanstalk. Unlike Elastic Beanstalk,
JCLOUDSCALE is more flexible, does not lead to vendor lock-in, and can also be used in
a private or hybrid cloud environment. However, our results also show that there still
are technical issues in the current JCLOUDSCALE prototype that need to be addressed.
Further, our results show that, in its current version, JCLOUDSCALE indeed impacts
performance in a small but noticable manner. JCLOUDSCALE is already available as
open source project from GitHub.

The rest of this paper is structured as follows. In Section [2| we describe the basic
JCLOUDSCALE architecture, which we follow up with an in-depth discussion of specific
elasticity-related features in Section|3| Section [4]|gives an implementation overview of
the middleware. This implementation forms the basis for the empirical evaluation in
Section [5] Section [6] surveys related work, and, finally, Section [7] concludes the paper
with an outlook on open issues.
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2. THE CLOUDSCALE MIDDLEWARE
In the following, we introduce the main notions and features of JCLOUDSCALE.

2.1. Basic Notions

JCLOUDSCALE is a Java-based middleware for building elastic IaaS applications. The
ultimate aim of JCLOUDSCALE is to facilitate developers to implement cloud appli-
cations (in the following referred to as target applications) as local, multi-threaded
applications, without even being aware of the cloud deployment. That is, the target
application is not aware of the underlying physical distribution, and does not need to
care about technicalities of elasticity, such as program code distribution, virtual ma-
chine instantiation and destruction, performance monitoring, and load balancing. This
is achieved with a declarative programming model (implemented via Java annotations)
combined with bytecode modification. To the developer, JCLOUDSCALE appears as an
additional library (e.g., a Maven dependency) plus a post-compilation build step. This
puts JCLOUDSCALE in stark contrast to most industrial PaaS solutions, which re-
quire applications to be built specifically for these platforms. Such PaaS applications
are usually not executable outside of the targeted PaaS environment.
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Fig. 1. Basic Interaction with Cloud Objects

The primary entities of JCLOUDSCALE are cloud objects (COs). COs are object in-
stances which execute in the cloud. COs are deployed to, and executed by, so-called
cloud hosts (CHs). CHs are virtual machines acquired from the IaaS cloud, which run
a JCLOUDSCALE server component. They accept COs to host and execute on client
request. The program code responsible for managing virtual machines, dispatching re-
quests to virtual machines, class loading, and monitoring is injected into the target
application as a post-compilation build step via bytecode modification. Optimally, COs
are highly cohesive and loosely coupled to the rest of the target application, as, after
cloud deployment, every further interaction with the CO constitutes a remote invoca-
tion over the network.

Fig. [1] illustrates the basic operation of JCLOUDSCALE in an interaction diagram.
The grey boxes indicate code that is injected. Hence, these steps are transparent to the
application developer.

Fig. 2| shows a high-level deployment view of a JCLOUDSCALE application. The
grey box in the target application JVM again indicates injected components. Note
that CHs are conceptually “thin” components, i.e., most of the actual JCLOUDSCALE
business logics is running on client side. CHs consist mainly of a small server compo-
nent that accepts requests from clients, a code cache used for classloading, and sand
boxes for executing COs. As JCLOUDSCALE currently does not explicitly target multi-
tenancy [Bezemer et al. 2010]], these sand boxes are currently implemented in a light-
weight way via custom Java classloaders. On client-side, the JCLOUDSCALE middle-
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Fig. 2. System Deployment View

ware collects and aggregates monitoring data, and maintains a list of CHs and COs.
Further, the client-side middleware is responsible for scaling up and down based on
user-defined policies (see Section [3.1).

1 @CloudObject

2 public class MyCO {

3

4 @CloudGlobal

5 private static String myCoName;
6

7 @DataSource (name = ”couchdb”)

8 private DataStore datastore;

9

10 @EventSink

11 private EventSink eventsink;

12

13 public MyResult myMethod(@ByValueParameter MyParameters params) {
14 .

15 }

6}

Listing 1. Declaring COs in Target Applications

2.2. Interacting with Cloud Objects

Application developers declare COs in their application code via simple Java annota-
tions (see Listing[I|for a minimal example). As is the case for any object in Java, the tar-
get application can fundamentally interact with COs in two different ways: invoking
CO methods, and getting or setting CO member fields. In both cases, JCLOUDSCALE
intercepts the operation, executes the requested operation on the CH, and returns the
result (if any) back to the target application. In the meantime, the target application
is blocked (more concretely, the target application remains in an “idle wait” state while
it is waiting for the CH response). Fundamentally, JCLOUDSCALE aims to preserve
the functional semantics of the target application after bytecode modification. That is,
every method call or field operation behaves functionally identical to a regular Java
program.
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One exception to this rule are CO-defining classes that contain static fields and
methods. Operations on those are by default not intercepted by JCLOUDSCALE, as
they potentially lead to a problem that we refer to as JVM-local updates: if code exe-
cuting on a CH (for instance a CO instance method) changes the value of a static field,
only the copy in this CH’s JVM will be changed. Other COs, or the target application
JVM, are not aware of the change. Hence, in this case, the value of the static field is
tainted, and the execution semantics of the application changes after JCLOUDSCALE
bytecode injection. To prevent this problem and preserve standard Java language se-
mantics, static fields can be annotated with the @CloudGlobal annotation (see List-
ing[1} line 4-5). Changes to such static fields are maintained in the target application
JVM, and all CH JVMs are operating on the target application JVM copy via callback.
Note that this behavior is not default for performance reasons, as synchronizing static
field values is expensive, and only required if JVM-local updates are possible.

2.3. Remote Classloading

Whenever a CH has to execute a CO method, JCLOUDSCALE has to ensure that all
necessary resources (i.e., program code and other files, for instance configuration files)
are available on that CH. In order to ensure freshness of the available code and to
retrieve missing files, we intercept the default class loading mechanism of Java and
verify that the code available to the CH is the same as the one referenced by the client.
If this is not the case, the correct version of the code is fetched dynamically from the
target application. In order to improve performance, CHs additionally maintain a code
cache, which is a high-speed storage of recently used code. This mechanism allows
JCLOUDSCALE to load missing or modified code efficiently and seamlessly for the ap-
plication only whenever it is necessary, thus simplifying application development and
maintenance. We discuss this process in more detail in [Zabolotnyi et al. 2013].

3. SUPPORTING CLOUD ELASTIC APPLICATIONS

So far, we have discussed how JCLOUDSCALE transparently enables remoting in cloud
applications. We now explain how JCLOUDSCALE enables elastic applications.

3.1. Autonomic Elasticity via Complex Event Processing

One central advantage of JCLOUDSCALE is that it allows for building elastic applica-
tions by mapping requests to a dynamic pool of CHs. This encompasses three related
tasks: (1) performance monitoring, (2) CH provisioning and de-provisioning, and (3)
CO-to-CH scheduling and CO migration. One design goal of JCLOUDSCALE is to ab-
stract from technicalities of these tasks, but still grant developers low-level control
over the elasticity behavior.

An overview over the JCLOUDSCALE components related to elasticity, and their in-
teractions, is given in Fig.[3] Conceptually, our system implements the well-established
autonomic computing control loop of monitoring-analysis-planning-execution [Kephart
and Chess 2003] (MAPE). The base data of monitoring is provided using event mes-
sages. All components in a JCLOUDSCALE system (COs, CHs, as well as the middle-
ware itself) trigger a variety of predefined lifecycle and status events, indicating, for
instance, that a new CO has been deployed or that the execution of a CO method has
failed. Additionally, JCLOUDSCALE makes it easy for applications to trigger custom
(application-specific) events. Finally, events may also be produced by external event
sources, such as an external monitoring framework. All these events form a consoli-
dated stream of monitoring events in a message queue, by which they are forwarded
into a complex event processing (CEP) engine [|[Luckham 2002] for analysis. CEP is
the process of merging a large number of low-level events into high-level knowledge,
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Fig. 3. Autonomic Elasticity

e.g., many atomic execution time events can be merged into meaningful performance
indicators for the system in total.

Developers steer the scaling behavior by defining a scaling policy, which implements
the planning part of this MAPE loop. This policy is invoked whenever a new CO needs
to be scheduled. Possible decisions of the scaling policy are the provisioning of new
CHs, migrating existing COs between CHs, and scheduling the new CO to a (new
or existing) CH. The policy is also responsible for deciding whether to de-provision
an existing CH at the end of each billing time unit. Additionally, developers can de-
fine any number of monitoring metrics. Metrics are simple 3-tuples <name, type, cep-
statement>. CEP-statements are defined over the stream of monitoring events. An
example, which defines a metric AvgEngineSetupTime of type java.lang.Double as the
average duration value of all EngineSetupEvents received in a 10 second batch, is
given in Listing 2]

1 MonitoringMetric metric =

2 new MonitoringMetric ();

3 metric.setName(”AvgEngineSetupTime” );
4 metric.setType(Double. class);

5 metric.setEpl(

6 ”select avg(duration)

7 from EngineSetupEvent.win

8 :time_batch(10 sec)”

9 );

10 EventCorrelationEngine. getInstance ()
11 .registerMetric(metric);

Listing 2. Defining Monitoring Metrics via CEP

Monitoring metrics range from very simple and domain-independent (e.g., calculat-
ing the average CPU utilization of all CHs) to rather application-specific ones, such as
the example given in Listing [2l Whenever the CEP-statement is triggered, the CEP
engine writes a new value to an in-memory monitoring repository. Scaling policies
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have access to this repository, and make use of its content in their decisions. In com-
bination with monitoring metrics, scaling policies are a well-suited tool for developers
to specify how the application should react to changes in its work load. Hence, so-
phisticated scaling policies that minimize cloud infrastructure costs or that maximize
utilization [Genaud and Gossa 2011]] are easy to integrate. As part of the JCLOUD-
SCALE release, we provide a small number of default policies that users can integrate
out of the box, but expect users to write their own policy for non-trivial applications.
This has proven necessary as, generally, no generic scaling policy is able to cover the
needs of all applications.

Finally, the cloud manager component, which can be seen as the heart of the
JCLOUDSCALE client-side middleware and the executor of the MAPE loop, enacts the
decisions of the policy by invoking the respective functions of the IaaS API and the CH
remote interfaces (e.g., provisioning of new CHs, de-provisioning of existing ones, as
well as the deployment or migration of COs).

,,,,,, [ L

i i i
! Object Event | | HostEvent !
i i

Iy o — A

’ Failed Event

’ Started Event ’ Ended Event

Object Created D Object
Event Event ’ CPU Utilization ’ RAM Utilization
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Fig. 4. Monitoring Event Hierarchy

Fig. |4 depicts the type hierarchy of all predefined events in JCLOUDSCALE. Dashed
classes denote abstract events, which are not triggered directly, but serve as classi-
fications for groups of related events. All events further contain a varying number
of event properties, which form the core information of the event. For instance, for
ExecutionFailedEvent, the properties contain the CO, the invoked method, and the
actual error. Developers and external event sources can extend this event hierarchy
by inheriting from CustomEvent, and writing these custom events into a special event
sink (injected by the middleware, see Listing[I). This process is described in more de-
tail in [Leitner et al. 2012].

3.2. Deploying to the Cloud

As all code that interacts with the IaaS cloud is injected, the JCLOUDSCALE program-
ming model naturally decouples Java applications from the cloud environment that
they are physically deployed to. This allows developers to re-deploy the same applica-
tion to a different cloud simply by changing the respective parts of the JCLOUDSCALE
configuration. JCLOUDSCALE currently contains three separate cloud backends, sup-
porting OpenStack-based private clouds, the Amazon EC2 public cloud, and a special
local environment. The local environment does not use an actual cloud at all, but sim-
ulates CHs by starting new JVMs on the same physical machine as the target appli-
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cation. Support for more IaaS clouds, for instance Microsoft Azure’s virtual machine

cloud, is an ongoing activity.
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Fig. 5. Supported Deployment Environments

It is also possible to combine different environments, enabling hybrid cloud applica-
tions. In this case, the scaling policy is responsible for deciding which CO to execute
on which cloud. Fig. 5| illustrates the different types of environments supported by
JCLOUDSCALE.

Implement Implement
Target Scaling

Application

Policy etc.

Test In Local
Environment

Test In Cloud
Environment

Fig. 6. Conceptual Development Process

3.3. Development Process

As JCLOUDSCALE makes it easy to switch between different cloud environments,
the middleware supports a streamlined development process for elastic applications,
as sketched in Fig. [6] The developer typically starts by building her application as
a local, multi-threaded Java application using common software engineering tools
and methodologies. Once the target application logic is implemented and tested, she
adds the necessary JCLOUDSCALE annotations, as well as scaling policies, monitor-
ing metric definitions, and JCLOUDSCALE configuration as required. Now she enables
JCLOUDSCALE code injection by adding the necessary post-compilation steps to the
application build process. Via configuration, the developer specifies a deployment in
the local environment first. This allows her to conveniently test and debug the ap-
plication on her development machine, including tuning and customizing the scaling
policy. Finally, once she is satisfied with how the application behaves, she changes the
configuration to an actual cloud environment, and deploys and tests the application in
a physically distributed fashion.
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We argue that this process significantly lessens the pain that developers experience
when building applications for IaaS clouds, as it reduces the error-prone and time-
consuming testing of applications on an actual cloud. However, of course this process is
idealized. Practical usage shows that developers will have to go back to a previous step
in the process on occasion. For instance, after testing the scaling behavior in the local
environment, the developer may want to slightly adapt the target application to better
support physical distribution. Still, we have found that the conceptual separation of
target application development and implementation of the scaling behavior is well-
received by developers in practice.

4. IMPLEMENTATION

We have implemented JCLOUDSCALE as a Java-based middleware under an Apache
Licence 2.0. The current stable version is available from GitHubl This web site also
contains documentation and sample applications to get users started with JCLOUD-
SCALE.
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Fig. 7. Implementation Overview

Our implementation integrates a plethora of existing technologies, which is sum-
marized in Fig. [7l JCLOUDSCALE uses aspect-oriented programming [Kiczales and
Hilsdale 2001]] (via Aspectd) to inject remoting and cloud management code into tar-
get applications. Typically, this is done as a post-compilation step in the build process.
Dynamic proxying is implemented by means of the CGLib code generation library. For
event processing, the well-established Esper CEP engine is used. The client-side mid-
dleware interacts with CHs via a JMS-compatible message queue (currently Apache
ActiveMQ). Furthermore, COs and the target application itself can read from and write
to a shared data store (for example Apache CouchDB). CHs themselves are simple
Ubuntu 12.10 Linux hosts running Java and a small JCLOUDSCALE operating sys-
tem service, which receives CO requests and executes them. Currently, we have built
CH base images for OpenStack and Amazon EC2, which are linked from the Google
Code web site, and which can be used out of the box with the stable version 0.4.0 of
JCLOUDSCALE (the current version at the time of writing). We will also provide im-
ages for future stable versions, once they become available.

Thttps:/github.com/xLeitix/jcloudscale
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5. VALIDATION

As part of our validation of the JCLOUDSCALE framework, we aim at answering the
following three research questions:

— RQ1: Does using JCLOUDSCALE instead of established tooling lead to more efficient
development of cloud solutions, e.g., in terms of solution size or development time?
—RQ2: How does JCLOUDSCALE compare with established tooling in terms of ease-of-

use, debugging, and other more “soft” quality dimensions?
— RQ3: What runtime overhead does JCLOUDSCALE impose at execution time?

In order to answer RQ1 and RQ2, we conducted a multi-month user study. RQ3
is addressed via numerical overhead measurements on a simple example application,
with and without JCLOUDSCALE.

5.1. User Study

In order to evaluate RQ1 and RQ2, we conducted an user study with 14 participants to
assess the developers’ experience with JCLOUDSCALE as compared to using standard
tools.

5.1.1. Study Setup and Methodology. We conducted our study with, in total, 14 male mas-
ter students of computer science at TU Vienna (participants PO1 — P14), and based on
two different non-trivial implementation tasks. The first task was to develop a parallel
computing implementation of a genetic algorithm (T1). The second task required the
participants to implement a service that executes JUnit test cases on demand (T2). For
both tasks, an elastic solution was asked for, which was able to react to changes in load
dynamically and automatically by scaling up and down in the cloud. Both T1 and T2
required roughly a developer week of effort (assuming that the respective participant
did not have any particular prior experience with the used technologies).

The study ran in two phases. In Phase (1), we compared using JCLOUDSCALE on top
of OpenStack with programming directly via the OpenStack API, without any specific
middleware support. This phase reflected a typical private cloud [Dillon et al. 2010
use case of JCLOUDSCALE. In Phase (2), we compare JCLOUDSCALE on top of Amazon
EC2 with using Amazon Elastic Beanstalk. This reflects a common public cloud usage
of the framework. In both study phases, we asked participating developers to build so-
lutions for both tasks using JCLOUDSCALE and the respective comparison technology,
and compare the developer experience based on quantitative and qualitative factors.
We had 9 participating developers in Phase (1), and 5 participants in Phase (2). One
participant in Phase (2) only completed one of the two tasks.

Table |. Study Participant Overview

D Phase Java Exp. | Cloud Exp. | JCS/OS | OS | JCS/EC2 | Beanstalk
P01 | Phase (1) + + T1 T2 - -
P02 | Phase (1) + + T1 T2 - -
P03 | Phase (1) ~ ~ T2 T1 - -
P04 | Phase (1) - - T1 T2 - -
P05 | Phase (1) ~ - T2 T1 - -
P06 | Phase (1) + - T2 T1 - -
P07 | Phase (1) + + T2 T1 - -
P08 | Phase (1) + ~ T2 T1 — -
P09 | Phase (1) + ~ T2 T1 - -
P10 | Phase (2) + + — — T2 T1
P11 | Phase (2) + ~ - - T1 T2
P12 | Phase (2) + - - - T1 T2
P13 | Phase (2) + ~ - - T2 T1
P14 | Phase (2) + + — — T2 —
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Phase (1) of the study lasted two months. We initially presented JCLOUDSCALE and
the comparison technologies to the participants, and randomly assigned which of the
tools each participant should be using for T1. Participants then had one month of time
to submit a working solution to the task along with a short report, after which they
could start working on T2 with the remaining technology. Similar to T1, participants
were given one month of time to submit a solution and a short report. Based on the
lessons leared from Phase (1), we slightly clarified and improved the task descriptions
and gave pariticpants more time (1.5 months per task) for Phase (2). Other than that,
Phase (2) was executed identically to Phase (1).

Table |I| summarizes the relevant background for each participant of the study. To
preserve anonymity, we classify the self-reported background of participants related
to their Java or cloud experience into three groups: relevant work experience (+), some
experience (~), or close to no experience (-). The last four columns indicate whether
the participant submitted solutions for JCLOUDSCALE running on top of OpenStack,
OpenStack directly, JCLOUDSCALE running on top of EC2, or AWS Elastic Beanstalk,
as well as which task the participant solved using these (combinations of) technologies.

For the OpenStack-related implementations, we used a private cloud system hosted
at TU Vienna. This OpenStack instance consists of 12 dedicated Dell blade servers
with 2 Intel Xeon E5620 CPUs (2.4 GHz Quad Cores) each, and 32 GByte RAM, run-
ning on OpenStack Folsom (release 2012.2.4). For the study, each participant was al-
loted a quota of up to 8 very small instances (1 virtual CPU, and 512 MByte of RAM),
which they could use to implement and test their solutions. For the AWS-related im-
plementations, participants were assigned an AWS account with sufficient credit to
cover their implementation and testing with no particular limitations.

Table Il. Solutions Sizes (in Lines of Code)

Phase (1) Phase (2)
e{CS/OS ~ oS zICS/EC2 B~eanstalk
A oA B oB C oo D oD

T1

Business Logics | 200 | 176 | 552 | 215 | 388 152 825 947
Cloud Management | 100 | 112 | 180 86 163 24 676 742
Other Code | 170 | 157 | 286 | 226 | 1590 | 1203 | 897 | 1127

Entire Application | 400 | 416 | 1050 | 434 | 2141 | 1331 | 2790 | 2660

T2

Business Logics | 450 | 292 | 375 | 669 | 800 434 208 280
Cloud Management 100 48 250 364 118 745 223 38
Other Code | 325 | 213 | 300 | 297 | 140 | 2240 | 1290 | 972

Entire Application | 1025 | 461 | 1500 | 901 | 1000 | 3328 | 2184 | 968

5.1.2. Comparison of Development Efforts (RQ1). RQ1 asked whether JCLOUDSCALE
makes it easier and faster to build elastic IaaS applications. To this end, we asked
participants to report on the size of their solutions (in lines of code, without comments
and blank lines). The results are summarized in Table [IIL A — D represent the me-
dian size of solutions, while o4 — op indicate standard deviations. It can be seen that
using JCLOUDSCALE indeed generally reduces the total source code size of applica-
tions. Going into the study, we expected JCLOUDSCALE to mostly reduce the amount
of code necessary for interacting with the cloud. However, our results indicate that us-
ing JCLOUDSCALE also often reduced the amount of code of the application business
logics, as well as assorted other code (e.g., data structures). When investigating these
results, we found that participants considered many of the tasks that JCLOUDSCALE
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takes over as “business logics” when building the elastic application on top of Open-
Stack or Elastic Beanstalk. To give one example, many participants counted code re-
lated to performance monitoring towards “business logics”. Note that, due to the open
nature of our study tasks, the standard deviations are all rather large (i.e., solutions
using all technologies varied widely in size). It needs to be noted that the large differ-
ence in T1 sizes (for JCLOUDSCALE on top of OpenStack and EC2) between Phase (1)
and Phase (2) solutions can be explained by clarifications in the task descriptions. In
Phase (1), some formulations in the tasks led to much simpler implementations, while
our requirements were formulated much more unambigiously in Phase (2), leading to
more complex (and larger) submissions. Hence, we caution the reader to not compare
results from Phase (1) with those from Phase (2).

Table Ill. Time Spent (in Full Hours)

Phase (1) Phase (2)
JCS/0S (015 JCS/EC2 | Beanstalk

A oA B oB C oc D op
T1
Tool Learning | 7 2 12 5 28 18 16 1
Coding | 4 10 | 30 | 17 42 25 54 23
Bug Fixing | 7 7 18 | 12 14 8 20 14
Other Activities | 13 9 14 | 14 5 0 6 6
Entire Application | 31 | 25 | 76 | 33 | 127 | 25 | 121 36
T2

Tool Learning | 8 6 2 1 15 10 23 18
Coding | 30 | 11 | 25 | 17 36 5 30 14

Bug Fixing | 10 | 11 | 10 7 16 16 5 0

Other Activities 7 4 11 | 10 5 0 9 9
Entire Application | 62 | 13 | 46 | 17 | 125 | 40 | 102 13

However, looking at lines of code alone is not sufficient to validate our hypothesis
that JCLOUDSCALE improves developer productivity, as it would be possible that the
JCLOUDSCALE solutions, while being more compact, are also more complicated (and,
hence, take longer to implement). That is why we also asked participants to report
on the time they spent working on their solutions. The results are compiled in Ta-
ble We have classified work hours into a number of different activities: initially
learning the technology, coding, testing and bug fixing, and other activities (e.g., build-
ing OpenStack cloud images). Our results indicate that the initial learning curve for
JCLOUDSCALE is lower than for working with OpenStack directly. However, in com-
parison with Elastic Beanstalk, some participants reported equal or even more com-
plexity of JCLOUDSCALE, mainly because of the limited tutorial and help information
about JCLOUDSCALE available in Internet. For coding JCLOUDSCALE appeared to be
much faster tool for participants who had at least some prior experience with cloud
computing.

Due to the high standard deviations, looking at this quantitative data alone remains
inconclusive. Hence, we also analyzed qualitative feedback by the participants in their
reports. Multiple developers have reported that they felt more productive when using
JCLOUDSCALE. For instance, PO1 has stated that “the coolest thing about JCLOUD-
SCALE is the reduction of development effort necessary, to host applications in the cloud
(...) [there] are a lot of thing you do not have to care about in detail.” P03 also concluded
that using JCLOUDSCALE “went a lot smoother than [using OpenStack directly]”. PO7
also seemed to share this sentiment and stated that “/After resolving initial problems]
the rest of the project was without big problems and I was able to be very productive
in coding the solution.” In comparison to Elastic Beanstalk, participants indicate that
core idea behind JCLOUDSCALE is easier to grasp for starting cloud developers than
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the one behind modern PaaS systems. For example, P13 indicated that “the [ JCLOUD-
SCALE ] API is easier to understand and more intuitive to use. Also it fits more into
a Java-like programming model, instead of the weird request based approach of the
amazon API”. However, some participants noted that the fact that Elastic Beanstalk
is based on common technology also appeals to them. For instance, P10 specified that
“[Tn case of Elastic Beanstalk,] Well-known technology is the basis for everything (Tom-
cat /Servlet)”. Hence, the participant argued that this allows developers who are al-
ready familiar with these platforms to be productive sooner.

Summarizing our study results regarding RQ1, we conclude that JCLOUDSCALE
indeed seems to allow for higher developer productivity than working directly on top
of an IaaS API, such as the one of OpenStack. In comparison to AWS Elastic Beanstalk,
our results do not clearly indicate more or less productivity with JCLOUDSCALE.

5.1.3. Comparisong of Developer-Perceived Quality (RQ2). In order to answer RQ2, we
were interested in the participant’s subjective evaluation of the used technologies.
Hence, we asked them to rate the technologies along a number of dimensions from
1 (very good) to 5 (insufficient). We report on the dimensions “simplicity” (how easy is
it to use the tool?), “debugging” (how easy is testing and debugging the application?),
“development process” (does the technology imply an awkward development process?),
and “stability” (how often do unexpected errors occur?). A summary of our results is

shown in Table

Table IV. Subjective Ratings (lower is better)

Phase (1) Phase (2)
JCS on OpenStack | OpenStack | JCS on EC2 | Elastic Beanstalk
A oA B o | C oc D op
T1
Simplicity | 3 06 3 12 | 2 0 2 14
Debugging | 3 1.5 3 1 4 0 3.5 0.7
Development Process | 4 1.7 3.5 0.5 2 14 3 0
Stability | 2 1.4 2 0.8 2 1.4 1.5 0.7
Overall | 3 0.6 3 0.8 2 0 2 14
T2
Simplicity | 2 0.4 3 14 2 1.5 3 14
Debugging | 2 0.7 4 14 4 0 4 0
Development Process | 2 0.6 3 14 2 0 2.5 0.7
Stability | 2 1.5 1 0 3 0.5 2.5 0.7
Overall | 2 0.4 3 0 3 0.5 3 14

Overall, participants rated all used technologies similarly. However, JCLOUDSCALE
was rated worse than the comparison technologies mainly in terms of “stability”. This
is not a surprise, as JCLOUDSCALE still is a research prototype in a relatively early
development stage. Participants indeed mentioned multiple stability-related issues in
their reports (e.g., P10 mentions that “When deploying many cloud objects to one host
there were behaviors which were hard to reason about”). Further, some technical imple-
mentation decisions in JCLOUDSCALE were not appreciated by our study participants.
To give an example, P11 noted that “I is confusing in the configuration that the field
AMI-ID actually expects the AMI-Name, not the ID”. In contrast, JCLOUDSCALE has
generally been rated slightly better in terms of simplicity and ease-of use, especially
for T2. For example, participant P09 claimed that “JCLOUDSCALE is the clear win-
ner in ease of use. If you quickly want to just throw some Objects in the cloud, it’s the
clear choice.”. Similarly, P12 reported “/JCLOUDSCALE is/ programmer friendly. All
procedure is more low level and as a programmer there are more things to tune and
adjust.”. In terms of debugging features, all used technologies were not rated overly
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well. JCLOUDSCALE was generally perceived slightly better (due to its local develop-
ment environment), but realistically all compared systems are currently deemed too
hard to debug if something goes wrong. Finally, in terms of the associated develop-
ment process, JCLOUDSCALE is generally valued highly, with the exception of T1 and
JCLOUDSCALE on Openstack. We assume that this is a statistical artifact, as the de-
velopment process of JCLOUDSCALE is judged well in all other cases. Concretely P01
stated that with JCLOUDSCALE, “You are able to get application into the cloud really
fast. You are not forced to take care about a lot of cloud-specific issues”.

Independently of the subjective ratings, multiple participants stated that they val-
ued the flexibility that the JCLOUDSCALE concept brought over Elastic Beanstalk.
Particularly, P11 noted that “/JCLOUDSCALE provides] more flexibility. The developer
can decide when to deploy hosts, on which host an object gets deployed, when to destroy
a host, etc”. Additionally, participants favored the monitoring event engine of JCLOUD-
SCALE for performance tracking over the respective features of the PaaS system. For
example, P12 specified as an JCLOUDSCALE advantage that “programmatic usage of
different events with a powerful event correlation framework [is] in combination with
listeners extremely powerful.”.

Concluding our discussion regarding RQ2, we note that JCLOUDSCALE indeed has
some way to go before it is ready for industrial usage. The general concepts of the tool
are valued by developers, but currently, technical issues and lack of documentation
and technical support make it hard for developers to fully appreciate the power of the
JCLOUDSCALE model. One aspect that needs more work is how developers define the
scaling behavior of their application. Both tasks in our study required the participants
to define non-trivial scaling policies, e.g., in order to optimally schedule genetic algo-
rithm executions to cloud resources, which most participants felt unable to do with the
current API provided by JCLOUDSCALE. Overall, in comparison to working directly
on OpenStack, many participants preferred JCLOUDSCALE, but compared to a ma-
ture PaaS platform, AWS Elastic Beanstalk still seems slightly preferrable to many.
However, it should be noted that JCLOUDSCALE still opens up use cases for which
using Beanstalk is not an option, for instance for deploying applications in a private
or hybrid cloud [Leitner et al. 2013].

5.2. Runtime Overhead Measurements (RQ3)

Finally, we investigated whether the improved convenience of JCLOUDSCALE is paid
for with significantly reduced application performance. Therefore, the main goal of
these experiments was to compare the performance of the same application built on
top of JCLOUDSCALE and using IaaS platform (OpenStack or EC2) directly.

5.2.1. Experiment Setup. To achieve this, we built a simple sample application (in-
spired by T2 from the user study) on top of Amazon EC2 and our private OpenStack
cloud. The application JSTAAS (“JavaScript Testing-as-a-Service”) provides testing of
JavaScript applications as a cloud service. Clients register with the service, which trig-
gers JSTAAS to periodically launch this client’s registered test suites. Results of test
runs are stored in a database, which can be queried by the client. Tests vary widely in
the load that they generate on the servers, and clients are billed according to this load.

Secondly, we also implemented the same application using JCLOUDSCALE. As the
main goal was to calculate the overhead introduced by the JCLOUDSCALE, we de-
signed both implementations to have the same behavior and reuse as much business
logics code as possible. In addition, to simplify our setup, focus on execution perfor-
mance evaluation and to avoid major platform-dependent side effects, we limited our-

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:15

<-Pure Openstack
48 JCloudScale on Openstack

w

IS

N

Test Run Time (minutes)
w

[

o

6 8 10 12 14 16 18 20
Cloud Hosts Used by System

Fig. 8. Execution on OpenStack Platform

selves to a scenario, where the number of available cloud hosts is static. The source
code of both applications is available onlineﬂ

All four solutions (directly on OpenStack, directly on EC2, and using JCLOUDSCALE
on both, OpenStack and EC2) follow a simple master-slave pattern: a single node (the
master) receives tests through a SOAP-based Web Service and schedules them over the
set of available worker nodes. all solutions were tested with a test setup that consisted
of 40 identical parallelizable long-running test suites scheduled evenly over the set of
available cloud machines. Each test suite consisted of a set of dummy JavaScript tests
calculating Fibonacci numbers. During the evaluation, we measured the total time of
an entire invocation of the service (i.e., how long a test request takes end-to-end, in-
cluding scheduling, data transmission, result collection, etc.). A single experiment run
consisted of 10 identical invocations of the testing web service, each time with a differ-
ent number of CHs (ranging from 2 to 20 CHs). To eliminate the influence of other par-
allel cloud activity, experiment runs for both versions of evaluation application were
running interchangeably for each number of CHs. To discard accidental results, such
experiment runs were repeated 10 times for each version of evaluation application.

5.2.2. Experiment Results. Figure[8and Figure[9show the median total execution time
for different numbers of hosts. In general, both applications show similar behavior in
each environment, meaning that both approaches are feasible and have similar par-
allelizing capabilities with minor overhead difference. In both environments, there is
an overhead of JCLOUDSCALE that is proportional to the amount of used CHs and
approximately equal to 2 — 3 seconds per introduced host for multiple minutes evalua-
tion application. This overhead may be significant for performance-critical production
applications, but we believe that it is a reasonable price to pay in the current develop-
ment stage of the JCLOUDSCALE middleware. However, detailed investigation (and,
subsequently, reduction) of the overhead introduced by JCLOUDSCALE is planned for
future releases of the system.

Another important issue that is visible from Figure [8| and Figure [9]is the cloud per-
formance stability and predictability. With an increasing number of hosts, the total
execution time is expected to monotonously decrease, up to a limit when the over-
head of parallelization is larger than the gain of having more processors available.
This indeed happens in case of Amazon EC2. However, starting with 10 used hosts in
OpenStack, the overall application execution time remains almost constant or event
increases. In our case, this is mainly caused by the limited size of our private cloud.

2http://www.infosys.tuwien.ac.at/staff/phdschool/rstzab/papers/TOIT14/
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In our system, starting with 10 hosts, physical machines start to get overutilized, and
virtual machines start to compete for resources (e.g., CPU or disk 10).

5.3. Threats to Validity

The major thread to (internal) validity, which the results relating to RQ1 and RQ2
face, are that the small sample size of 14 study participants, along with relatively
open problem statements, does not allow us to establish statistical signifiance. How-
ever, due to the reports we received from participants, as well as due to comparing
the solutions themselves, we are convinced that our results that JCLOUDSCALE lets
developers build cloud applications more efficiently was not a coincidence. Further,
our participants were aware that JCLOUDSCALE is our own system. Hence, there is a
chance that our participants gave their reports a more positive spin, so as to do us a
favor. However, given that all reports contained both negative aspects of all evaluated
frameworks, we are confident that most participants reported truethfully. In terms of
external validity, it is possible that the two example projects we chose for our study
are not representative of real-world applications. However, we argue that this is un-
likely, as the projects have specifically been chosen based on real-life examples that
the authors of this paper are aware of or had to build themselves in the past. Another
thread to external validity is that the participants of our study are all students at
TU Vienna. While most of them have some practical real-life experience in application
development, none can be considered senior developers.

In terms of RQ3, the major thread to external validity is that the application we
used to measure overhead on is necessarily simplified, and not guaranteed to be repre-
sentative of real JCLOUDSCALE applications. Real applications, such as the ones built
in our user study, are hard to replicate in exactly the same way on different systems,
hence comparative measurements amongst such systems are always unfair. To mini-
mize this risk, we have taken care to preserve what we consider core features of cloud
applications even in the simplified measurement application.

6. RELATED WORK

We now put the JCLOUDSCALE framework into context of the larger distributed and
cloud computing ecosystem. As the scope of JCLOUDSCALE is rather wide, there are a
plethora of existing tools, frameworks and middleware that are related to parts of the
functionality of our system. Based on the descriptions in Section [2[ and Section (3, we
consider the main dimensions to compare frameworks across are (1) to what extend
they transparently handle remoting and elasticity, (2) how easy it is to locally test and
debug applications, (3) whether the system restricts what kinds of applications can be
built (e.g., only Tomcat-based web applications), (4) whether the system handles cloud
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virtual machines for the user, and (5) whether the system is bound to one specific cloud
provider. Systems that are cloud provider independent typically also can be used in a
private cloud context. We provide a high-level comparison of various systems along
these axes in Table [} We have evaluated each system along each axis, and assigned
“yes” (fully supported), “no” (no real support), or “partial” (some support). All evalua-
tions are to the best of the knowledge of the authors of this paper, and based on tool
documentations or publications.

Firstly, JCLOUDSCALE can be compared to traditional distributed object middle-
ware [Wolfgang Emmerich 2000], such as Java RMI or EJB. These systems provide
transparent remoting features, comparable to JCLOUDSCALE, but clearly do not pro-
vide any support for cloud specifics, such as VM management. It can be argued that
EJB provides some amount of transparent elasticity, as EJB application containers
can be clustered. However, it is not easy to scale such clusters up and down. A recent
research work [Jayaram 2013] has introduced the idea of Elastic Remote Methods,
which extends Java RMI with cloud-specific features. This work is comparable in goals
to our contribution. However, the technical approach is quite different. Aneka [Vecchi-
ola et al. 2008; |Calheiros et al. 20121, a well-known .NET based cloud framework, is a
special case of a cloud computing middleware that also exhibits a number of character-
istics of a PaaS system. We argue that Aneka’s abstraction of remoting is not perfect,
as developers are still rather intimately aware of the distributed processing that is
going on. To the best of our knowledge, Aneka does not automatically scale systems,
and provides no local testing environment.

Secondly, as already argued in Section [5| many of JCLOUDSCALE’s features are
comparable to common PaaS systems (Google Appengine, Amazon Elastic Beanstalk,
or Heroku, to name just a few). All of these platforms provide transparent remoting
and elasticity, and take over virtual machine management from the user. However,
all of these systems also require a relatively specific application architecture (usually
a three-tiered web application), and usually tie the user tightly to one specific cloud
provider. Support for local testing is usually limited, although most providers nowa-
days have at least limited tooling or emulators available for download.

In addition to these commercial PaaS systems, there are also multiple platforms
coming out of a research setting. For instance, AppScale [Chohan et al. 2010; Krintz
2013]] is an open-source implementation of the Google Appengine model. AppScale can
also be deployed on any IaaS system, making it much more vendor-independent than
other PaaS platforms. This is similar to the ConPaaS open source platform [Pierre
et al. 2011} |[Pierre and Stratan 2012]], which originates from a European research
project of the same name. ConPaasS follows a more service-oriented style, treating ap-
plications as collections of loosely-coupled servies. This makes ConPaaS suited for a
wider variety of applications, however, it has to be said that ConPaaS still imposes
significant restrictions on the application that is to be hosted.

In scientific literature, there are also a number of PaaS systems which are more
geared towards data processing, e.g., BOOM [Alvaro et al. 2010], Esc [Satzger et al.
2011]l, or Granules [Pallickara et al. 2009]]. These systems are hard to compare with
our work, as they generally operate in an entirely different fashion as compared to
JCLOUDSCALE or the commercial PaaS operators. However, they typically only sup-
port a very restricted type of (data-driven) application model, and often do not actu-
ally interact with the cloud by themselves. This makes them necessary cloud provider
independent, but also means that developers need to implement the actual elasticity-
related features themselves.

Thirdly, we need to compare JCLOUDSCALE to a number of cloud computing re-
lated frameworks, which cover a part of the functionality provided by our middleware.
JClouds is a Java library that abstracts from the heterogenious APIs of different TaaS
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providers, and allows to decouple Java applications from the IaaS system that they op-
erate in. JCLOUDSCALE internally uses JClouds to interact with providers. However,
by itself, JClouds does not provide any actual elasticity. Docker is a container frame-
work geared towards bringing testability to cloud computing. Essentially, Docker has
similar goals to the local test environment of JCLOUDSCALE.

JCLOUDSCALE also has some relation to the various cloud deployment models and
systems that have recently been proposed in literature, e.g., Cafe [Mietzner et al.
2009, MADCAT [Inzinger et al. 2014], or OpenTOSCA [Binz et al. 2012; Binz et al.
2013]], which is an open source implementation of an upcoming OASIS standard. These
systems do not typically cover elasticity by themselves (although TOSCA has partial
support for auto-scaling groups), but they are usually independent of any concrete
cloud provider.

By design, JCLOUDSCALE supports most of the characteristics we discuss here.
However, especially in comparison to PaaS systems, developers of JCLOUDSCALE ap-
plications are not entirely shielded from issues of scalability. Further, as the user study
discussed in Section[5|has shown, the system still needs to improve how scaling policies
are written, so as to make building elastic systems easier for developers.

7. CONCLUSIONS

JCLOUDSCALE is a Java-based middleware that eases the development of elastic cloud
applications on top of an IaaS cloud. JCLOUDSCALE follows a declarative approach
based on Java annotations, which removes the need to actually adapt the business
logics of the target application to use the middleware. Hence, JCLOUDSCALE support
can easily be turned on and off for an application, leading to a flexible development
process that clearly separates the implementation of target application business logics
from implementing and tuning the scaling behavior.

We have introduced the core concepts behind JCLOUDSCALE, and presented an eval-
uation of the middleware based on an user study as well as using a simple case study
application. Our results indicate that JCLOUDSCALE is well received among initial
developers. Our results support our claim that the general JCLOUDSCALE model has
advantages to both, working directly on top of an IaaS API or on an industrial PaaS
systems. However, further study is required to strengthen these claims, as the limited
scale of our initial study was not sufficient to clear all doubts about the viability of the
system. Further, there are also technical and conceptual issues that require further
investigation. Most importantly, we have learned that implementing actually elastic
applications is still cumbersome for developers, as getting the scaling policy right is
not as easy as we had hoped.
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