
Specifying Flexible Human Behavior
in Interaction-Intensive Process Environments

Christoph Dorn1, Schahram Dustdar1, and Leon J. Osterweil2

1 Distributed Systems Group, Vienna University of Technology
{dorn,dustdar}@dsg.tuwien.ac.at

2 Department of Computer Science, University of Massachusetts Amherst
ljo@cs.umass.edu

Abstract. Fast changing business environments characterized by unpredictable
variations call for flexible process-aware systems. The BPM community addressed
this challenge through various approaches but little focus has been on how to
specify (respectively constrain) flexible human involvement: how human pro-
cess participants may collaborate on a task, how they may obtain a joint decision
that drives the process, or how they may communicate out-of-band for clarifying
task-vital information. Experience has shown that pure process languages are not
necessarily the most appropriate technique for specifying such flexible behavior.
Hence selecting appropriate modeling languages and strategies needs thorough
investigation. To this end, this paper juxtaposes the capabilities of representa-
tive human-centric specification languages hADL and Little-JIL and demonstrate
their joint applicability for modeling interaction-intensive processes.

1 Introduction

Over the past 15 years, process flexibility [15] has been consistently identified as a key
aspect for addressing the challenges arising from fast changing business requirements
and unpredictable runtime situations. Existing research approaches predominately ad-
dress flexibility at the process, artifact, and resource level. Little focus has been given to
flexible human involvement. Flexible human involvement gains particular importance
in interaction-intensive environments. Typical processes occur frequently in the health-
care domain or when jointly creating knowledge. These environments exhibit close col-
laboration among participants, ad-hoc communication, and dynamic decision making
while maintaining regions of rigid control-flow constraints. Traditional approaches to
process and workflow specification assume a single executing entity per task or activity.
Any communication among participants remains implicit, respectively remains outside
the specification’s scope. CSCW and groupware approaches, on the other hand, offer
extensive flexibility but lack sophisticated process support.

We propose a middle ground between these two “extreme” ends of the human inter-
action spectrum. Specifically, we suggest refining process tasks with human interaction
patterns and vice versa. For example, a health-care process could specify that a partic-
ular flow-decision may be discussed in a chat room with the head-nurse as moderator.
In the opposite direction, authors working on a joint report (i.e., a shared artifact pat-
tern) may incorporate a process specifying steps to safeguard report quality, intellec-
tual property protection, and data anonymity. Experience has shown that pure process

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 366–373, 2014.
c© Springer International Publishing Switzerland 2014



Specifying Flexible Human Behavior in Interaction-Intensive Process Environments 367

languages are not necessarily the most appropriate technique for specifying human in-
teraction patterns. Imagine modeling collection, filtering, distribution, and floor control
in a chat room merely in terms of task sequences. Utilizing only process modeling el-
ements quickly becomes tedious, while from a process point of view only the decision
outcome (made by the chat room participants) is ultimately of true relevance. Hence
interaction-intensive processes require dedicated specification of user behavior beyond
current process-centric approaches.

In this paper we consider two mechanisms: (a) the process-centric language Little-
JIL [7], and (b) the structure-centric human Architecture Description Language (hADL)
[9] (Sec. 3). Along these lines, we attempt to obtain better insights into jointly utilizing
Little-JIL and hADL. Although there is strong support for using either language inde-
pendently [14,10,9] our hypothesis is that applying both languages in combination will
provide more intuitive results in interaction-intensive environments (Sec. 4).

2 Related Work

Work on process flexibility typically focus on adding, removing, replacing process frag-
ments, extending loops, and reconfiguring control dependencies on the process type
level and process instance level [16]. Schonenberg et al. [15] provide a taxonomy
whereby they distinguish among flexibility by design, by deviation, by underspecifi-
cation, and by change. FLOWer [1] and similar case-based approaches (often denoted
as activity-based or ad-hoc work-flows [11]) excel at undoing, repeating, skipping, and
including activities. Our work is highly complementary as we specifically focus on the
process participants’ collaboration flexibility which none of these approaches appro-
priately address. Further investigations into applying our approach to for example case
management or business artifacts are highly appealing.

Recently, the BPM community started exploring the convergence of BPM technol-
ogy and social media. Brambilla et al. present design patterns for integrating of social
network features in BPMN [6]. A social network user may engage in task-centric ac-
tions such as voting, commenting, reading a message, or joining a task. Böhringer uti-
lizes tagging, activity streams, and micro-blogging for merging ad-hoc activities into
case management [5]. Dengler et al. utilize collaborative software such as Wikis and
social networks for coordinating process activities [8]. At best, contemporary Social
BPM approaches model collaboration as individual social network user actions; neither
the actual collaborative activities nor their structure are explicitly specified. Our work,
in contrast, focuses on modeling the actual collaboration among users (well beyond
workflow coordinated tasks) in detail. We, thereby, treat the workflow and collaboration
structure as equal models.

Also the software engineering community identified the need for combining pro-
cess technology and collaboration support. Paulo Barthelmess provides an in-depth re-
view of approaches to collaboration and coordination support [3]. Languages and tools
primarily target coordination and collaboration via file-centric development artifacts
and tasks. Serendipity [12] utilizes events, filters, and actions as the main coordina-
tion means among participants. SPADE [2] supports the integration and invocation of
collaboration tools, but remains unaware what collaboration type and structure such ex-
ternal tools implement. Oz [4] builds upon a rule-based language for specifying which



368 C. Dorn, S. Dustdar, and L.J. Osterweil

users are allocated as task executors. Overall, modeling collaboration structures is crude
and imprecise, often requiring tedious composition from low-level events. Any tightly
integrated collaboration tools provide limited, fixed set of a/synchronous mechanisms
that remain outside the process specification’s modeling scope. Independent of research
domain, we can claim that no process specification approach makes the distinction
among collaboration connector and human component, nor provides dedicated decision
support (e.g., voting) or information streams (e.g., subscriptions).

3 Specifying Human Flexible Behavior

The overall process specification needs to balance analyzability and flexibility. Orthog-
onal, the specification needs to differentiate between the three types of human involve-
ment: communication, coordination, and work (co-)execution.

The human Architecture Description Language (hADL) [9] describes according
to what structure humans interact to achieve a common (sub)goal such as discussing
and subsequently jointly deciding upon resource usage (Fig. 2). hADL distinguishes be-
tween HumanComponents (light green rectangles) and CollaborationConnectors (dark
green rectangles) to emphasize the difference between the primary collaborating users
(e.g., a decision maker) and non-essential, replaceable users that coordinate the collab-
oration (e.g., a discussion moderator). A CollaborationConnector is thus responsible for
the efficient and effective interaction among HumanComponents. Users typically em-
ploy diverse means of interaction that range from emails, to chat rooms, shared wiki
pages, and Q&A forums, to vote collection. These means implement vastly different
interaction semantics: a message is sent and received, a shared artifact can be edited,
a vote can be cast. CollaborationObjects (rounded rectangles) abstract from concrete
interaction tools and capture the semantic differences in subtypes; e.g., Message (yel-
low), Stream (light orange), or SharedArtifact (dark orange). HumanActions (tool icon)
specify what capabilities a component or connector requires to fulfill his/her role, e.g.,
read a discussion thread or cast a vote. Complementary, a CollaborationObject sig-
nals its offered capabilities in the form of ObjectActions (gear-wheel icon). Both action
types distinguish further between Create, Read, Update, and Delete (CRUD) privileges.
Ultimately, Links connect ObjectActions and HumanActions to wire up HumanCom-
ponents, CollaborationConnectors, and CollaborationObjects into a collaboration struc-
ture. The Pattern provides a container for complex, hierarchical CollaborationObjects
and interaction patterns composed from the elementary hADL elements. Element types,
action CRUD privileges, as well as link cardinalities have no graphical representation
and are edited as textual properties. The main motivation for hADL as a dedicated lan-
guage is the separation between (i) CollaborationConnector and HumanComponent as
well as (ii) the distinct CollaborationObjects. Languages such as UML are too vague
to unambiguously model these differences. Even with extensions, they might tempt de-
signers into modeling hADL aspects with non-hADL elements or contradict hADL’s
constraints and thus jeopardize rigorous analysis.

Little-JIL [7] is a visual language, depicting processes as hierarchies of steps (Fig. 1).
An edge between a parent and child steps carries specifications of the arguments be-
ing passed between the two and an optional annotation specifying the number of child



Specifying Flexible Human Behavior in Interaction-Intensive Process Environments 369

step instances. Little-JIL incorporates four different step execution sequencing specifi-
cations: sequential (→), which specifies that substeps are to executed sequentially from
left to right; parallel (=), which specifies fork-and-join for its substeps; choice (—� ),
which specifies that only one of the step’s substeps is to be executed, with the choice
being made by the parent step; and try (−→× ), which specifies that the step’s substeps are
to be executed in left-to-right order until one of them succeeds by failing to throw an
exception. Exception handling is a particularly strong and important feature of Little-
JIL. Exceptions may be thrown by a step’s prerequisite check or postrequisite check or
by the execution agent. Every step can contain one or more exception handlers, each of
which may itself be an entire step hierarchy. A step’s interface specification incorpo-
rates information about whether any arguments are an input, an output, or both, and the
types of resources needed in order to perform the task associated with that step. One
resource is always designated as the steps agent, namely the resource responsible for
the performance of the step, may it be human(s), software, or hardware. This allows for
linking Little-JIL steps to hADLs model elements, in a way that allows the two specifi-
cations to be orthogonal. Expressive, extensible, orthogonal resource specification and
management [14] is thus one of the main reasons for choosing Little-JIL over workflow
languages such as BPEL or YAWL. The way in which Little-JIL supports implementa-
tion of abstraction, based upon semantics rigorously defined using finite state machines,
also facilitates clear specification of both activities and communication, as well as their
relations to each other. These give the use of Little-JIL important advantages over other
languages such as BPEL, BPMN, and YAWL.

Little-JIL vs. hADL
We analyze the spectrum between rigor and flexibility for multiple aspects as hADL
and Little-JIL differ in their focus on where they enable precision, respectively under-
specification.

Control flow describes the order relation among multiple actions, specifically in-
teraction, coordination, and work execution steps. hADL assumes no single, dedicated
control flow that determines the order of all human actions in a collaboration pattern.
Instead, hADL enables specification of object lifecycle actions (CRUD) and who may
trigger them. In contrast, Little-JIL offers primitives for rigorously determining the
sequence and trigger conditions of steps.

Concurrency dependencies describe the active, simultaneous involvement of multi-
ple users in the system. hADL assumes user behavior concurrent by default, only action
sequences determined by an object’s lifecycle imply order (i.e., first create, then read).
Hence, actions such as multiple users reading a (shared) message or updating a shared
artifact are expected to occur in no particular order with no synchronization mecha-
nism involved. Little-JIL provides the “parallel step” primitive for marking a set of sub-
steps explicitly as concurrently executable. Instantiating multiple identical substeps is
achieved by annotation a step’s edge with a fixed integer, a predicate, or a specification
based upon the number of available resources.

Temporal, Cardinal, and Structural constraints provide additional refinement
primitives that govern acceptable behaviors. hADL focuses primarily on minimal and
maximal interaction cardinality, e.g., whether one or many users may update an artifact,
the minimal number of reviewers of a report object, whether a user may create a single



370 C. Dorn, S. Dustdar, and L.J. Osterweil

or multiple task request objects. Little-JIL provides cardinality constraints for specify-
ing the lower and upper bounds for repeatedly executing a particular step. Temporal
constraints determine the maximum duration a step may take for completion. Resource
constraints allow the precise selection of agents (filtered by properties), for example,
expressing that the same agent must (or may not) execute a particular set of steps.

Communication primitives describe the various means and their properties for es-
tablishing unstructured communication among participants. hADL employs the Col-
laborationObject element (and its subtypes such as Message, Artifact, or Stream) for
specifying the nature of communication and which communication role a particular
user plays. CollaborationObjects thus may describe synchronous one-to-one video com-
munication as well as asynchronous multiuser information exchange via a blackboard.
Little-JIL facilitates communication among agents only via explicit data passing
between steps.

Coordination primitives describe the available means for managing work depen-
dencies among participants. hADL distinguishes between work-centric HumanCompo-
nents and coordination-centric CollaborationConnectors. Little-JIL relies on the
process engine as the sole coordinator of human involvement (in contrast to hADL
where multiple CollaborationConnectors are not uncommon). The process description
serves as the sole coordination basis. Step output and resource availability determine
the flow through the process, however from a human participant’s point of view, there
is no distinction between coordinating steps and work executing steps.

Execution primitives outline the basic language elements for specifying human be-
havior. In hADL, a HumanComponent’s actions describes all capabilities required to
fulfill the collaborative work task. A HumanComponent thereby makes use of actions
made available by potentially multiple collaboration objects. Such an object may serve
as work input/output, but also for coordination or communication. Little-JIL unambigu-
ously specifies human work in the process’ step definitions. Step definitions precisely
define all required input data, and exactly what output is expected, respectively what
exceptions may occur. Exception handling is a significant aspect of a Little-JIL pro-
cess specification in contrast to hADL where exceptions have to be modeled as regular
collaboration objects.

4 A Hospital Patient Handling Use Case

We evaluate to what degree the above outlined capabilities of hADL and Little-JIL man-
ifest as synergies. We follow a simple strategy: a designer chooses the language(s) that
support specifying the kind of details about which she would like to reason upon and un-
derstand. Where control is desired, she tends towards process specification in Little-JIL.
Where flexibility and human initiative needs to be emphasized and understood, there she
opts for hADL. In this use case, we analyze the potential for human flexibility in an ex-
emplary emergency department (ED) process (see also [14]). Efficient and effective ED
processes rely on optimal resource allocation. This includes determining the optimal
number of personnel such as Physicians, Nurses, Triage Nurses, or Clerks, their activi-
ties, and constraints on the combination of activities and personnel. Typically, a hospital
determines a-priori the various thresholds which remain unchanged during operation.



Specifying Flexible Human Behavior in Interaction-Intensive Process Environments 371

Whether a threshold is adequate, however, is highly dependent on the dynamic chang-
ing ED context and highlights the potential benefit for ad-hoc involving actual humans
in the dynamic resource allocation decisions. We model the main ED process (Fig. 1) in
Little-JIL and the flexible collaboration structures (Fig. 2) in hADL. The EDProcessS-
cope step assumes registered patients need first placement in a bed. The NurseOverload-
Handler becomes active when available nurses are unable to carry out PutPatientInBed
and resource allocation rules yet keep triage nurses from substituting. In this situation,
how triage nurses may volunteer upon coordination with the ED supervisor is left for
specification in hADL. In case no triage nurse volunteers or the supervisor declines the
substitution, the AssignBedScope step executes a blocking PutPatientInBed step. If a
bed is unavailable, a nurse may initiate a swap or, upon failure, will simply wait for
a bed blocking. After successful bed placement and subsequent AssessAndTreatScope,
the EvalLoad step determines a switch from FinalAssessmentSame to FinalAssessment-
Diff strategy or vice versa in order to maintain short patient Length-of-Stay (LOS).
How the ad-hoc, collaborative decisions come about are generally outside Little-JIL’s
scope but rather specified in hADL. The integration among Little-JIL and hADL occurs
through a step’s executing agent; here EvaluateLoadAgent and NurseOverloadHandler.
These agents may be human or software entities.

The hADL model (see Fig. 2) focuses on the coordination among Physicians, Su-
pervisor, TriageNurses, and process steps agents when to switch assessment strate-
gies, and when to volunteer for role substitution. The NurseOverloadHandler directs
NurseLoadAlerts messages to the TaskAllocator connector. The connector in turn cre-
ates a VolunteerSelection artifact, invites TriageNurses, observes who indicates their
availability, waits for Supervisor confirmation and only then returns a ResourceSubstitu-
tionConfig message to the process. Similarly, the StrategySwitcher connector observes
resource status and patient LOS, collects Physicians’ opinions on whether to switch,
considers a Supervisor’s overruling, and notifies the EvaluateLoadAgent step instances
asynchronously on the agreed StrategyChange via a message stream. The connector

Fig. 1. Describing the adaptive ED process (excerpt) with Little-JIL



372 C. Dorn, S. Dustdar, and L.J. Osterweil

Fig. 2. Modeling collaboration structures in hADL

also manages a GroupChatStream that enables Physicians and Supervisor(s) to discuss
strategy switching in an asynchronous and distributed manner. The sole purpose of the
TaskAllocator connector and StrategySwitcher connector is coordinating collaboration
among humans and integrating the collaboration with the process. Either connector
might be implemented in software or by a dedicated user, e.g., a head nurse. The re-
sulting decoupling ensures that process participants neither need to care about how to
communicate with all relevant collaborators, nor do collaborators have to be physically
collocated. Decoupling also provides the opportunity for establishing collaborations in
parallel to multiple process instances.

Previous research [14,10,9] demonstrated the independent applicability of Little-JIL
and hADL. Relying on a single language only, however, risks stretching it beyond its
comfort zone. Modeling detailed processes in hADL quickly becomes tedious while
still not completely achieving Little-JIL’s rigor. Likewise, Little-JIL could describe the
unstructured interaction occurring in a chat room but would need to do so at an ex-
tremely fine-grained level.

We believe that having to apprehend two languages neither puts an overly large nor
unacceptable cognitive burden on the process designer. In software engineering, design-
ers are equally expected to master the similarly diverse UML (or SysML) diagram types
such as sequence diagrams vs. class diagrams.

5 Conclusions and Outlook

This paper1 presented an approach for specifying human behavior in interaction-
intensive process environments through the joint use of the Little-JIL and hADL. We
outlined their differences as well as synergies and demonstrated their applicability in a

1 This research was partially supported by the EU FP7 SmartSociety project (600854), the
U.S. NSF under Award Nos. IIS-1239334 and CNS-1258588 and the NIST under grant
60NANB13D165.



Specifying Flexible Human Behavior in Interaction-Intensive Process Environments 373

use case. The combination of both languages avoids stretching one language beyond its
comfort zone. Our approach will ultimately lead to more precisely specified human in-
volvement and thereby enable better analysis of human actions as well as better support
of their interaction needs. Our future investigation will focus on deployment issues such
as instantiating collaboration patterns from a process engine and vice versa, observing
collaborations, and detecting deviations from the initial model.

References

1. van der Aalst, W.M.P., Weske, M.: Case handling: A new paradigm for business process
support. Data Knowl. Eng. 53(2), 129–162 (2005)

2. Bandinelli, S., Di Nitto, E., Fuggetta, A.: Supporting cooperation in the spade-1 environment.
IEEE Trans. Softw. Eng. 22(12), 841–865 (1996)

3. Barthelmess, P.: Collaboration and coordination in process-centered software development
environments: a review of the literature. Inf. and Soft. Tech. 45(13), 911–928 (2003)

4. Ben-Shaul, I., Skopp, P., Heineman, G., Tong, A., Popovich, S., Valetto, G.: Integrating
groupware and process technologies in the oz environment. In: Proc. Int. Software Process
Workshop, pp. 114–116 (October 1994)

5. Böhringer, M.: Emergent case management for ad-hoc processes: A solution based on mi-
croblogging and activity streams. In: zur Muehlen and Su [13], pp. 384–395

6. Brambilla, M., Fraternali, P., Vaca, C.: BPMN and design patterns for engineering social
BPM solutions. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I.
LNBIP, vol. 99, pp. 219–230. Springer, Heidelberg (2012)

7. Cass, A.G., Lerner, B.S., Sutton Jr., S.M., McCall, E.K., Wise, A.E., Osterweil, L.J.: Little-
jil/juliette: a process definition language and interpreter. In: ICSE, pp. 754–757. ACM (2000)

8. Dengler, F., Koschmider, A., Oberweis, A., Zhang, H.: Social software for coordination of
collaborative process activities. In: zur Muehlen and Su [13], pp. 396–407

9. Dorn, C., Taylor, R.N.: Architecture-driven modeling of adaptive collaboration structures
in large-scale social web applications. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.)
WISE 2012. LNCS, vol. 7651, pp. 143–156. Springer, Heidelberg (2012)

10. Dorn, C., Taylor, R.N.: Coupling software architecture and human architecture for
collaboration-aware system adaptation. In: ICSE, pp. 53–62. IEEE / ACM (2013)

11. Dustdar, S.: Caramba Process-Aware Collaboration System Supporting Ad hoc and Collab-
orative Processes in Vrtual Teams. Distributed Parallel Databases 15(1), 45–66 (2004)

12. Grundy, J., Hosking, J.: Serendipity: Integrated environment support for process modelling,
enactment and work coordination. Automated Software Engineering 5(1), 27–60 (1998)

13. Jones, N.D., Muchnick, S.S.: Business Process Management Workshops - BPM 2010 Inter-
national Workshops and Education Track, Revised Selected Papers. LNBIP, vol. 66. Springer,
Heidelberg (1978)

14. Raunak, M.S., Osterweil, L.J.: Resource management for complex, dynamic environments.
IEEE Trans. Software Eng. 39(3), 384–402 (2013)

15. Schonenberg, H., Mans, R., Russell, N., Mulyar, N., Aalst, W.: Process flexibility: A survey
of contemporary approaches. In: Dietz, J., Albani, A., Barjis, J. (eds.) Advances in Enterprise
Engineering I, LNBIP, vol. 10, pp. 16–30. Springer Berlin Heidelberg (2008)

16. Weber, B., Rinderle, S., Reichert, M.: Change patterns and change support features in
process-aware information systems. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE
2007 and WES 2007. LNCS, vol. 4495, pp. 574–588. Springer, Heidelberg (2007)


	Specifying Flexible Human Behavior in Interaction-Intensive Process Environments
	1 Introduction
	2 Related Work
	3 Specifying Human Flexible Behavior
	4 A Hospital Patient Handling Use Case
	5 Conclusions and Outlook
	References




