
16 Published by the IEEE Computer Society 1089-7801/07/$25.00 © 2007 IEEE IEEE INTERNET COMPUTING

En
gi

ne
er

in
g

th
e

W
eb

 T
ra

ck Editors : Michael Rabinovich • mis@br ics .dk
Steve Vinoski • v inosk i@ieee .org

Martin Treiber
and Schahram Dustdar
Vienna University of Technology

Active Web Service
Registries

Atom news feeds can work both as an infrastructure for distributed Web service

registries and to inform users about Web service changes. The authors consider

an approach in which every Web service provider offers a Web service registry

news channel that serves as part of a globally distributed registry. They also apply

this approach to a real-world case study. Their future plans include providing a

Web service aggregator that offers additional metadata for Web service

descriptions, which users could generate as they rate the services they use.

W eb service registry implementa-
tions such as UDDI and Electronic
Business XML (ebXML) registries

have had limited success for several rea-
sons, including their centralized architec-
tures, their entries’ limited accuracy,
complicated registration and removal
processes, a lack of suitable browsers for
users, and complex APIs for programmers.1

Although a centralized architecture
offers a place to discover Web services,
this architectural decision raises addition-
al problems, including scalability issues
and a single point of failure. Major com-
panies such as IBM and Microsoft, for
example, have recently disconnected their
public (centralized) registries (http://uddi.

microsoft.com/about/FAQshutdown.htm),
forcing Web service requesters to get Web
service-related information via email.
Clearly, this situation isn’t satisfactory
and requires a new, standards-compliant
mechanism.

Following related research (www.
ipbabble.com/2006/01/rss_demo_code.
html), we offer an approach in which an
RSS-based infrastructure overcomes these
problems with current registry tactics (see
the “Related Work in Web Service Reg-
istries” sidebar for additional research).
RSS, in which a simple XML-based doc-
ument holds either a summary of content
from an associated Web site or the full
text, has become an extremely popular

way to distribute frequently updated content to
subscribers. The tooling support for RSS has also
grown considerably, with numerous RSS news
reader implementations now available, and sever-
al email clients now supporting RSS feeds. So-
called news feed aggregators filter and assemble
content from different RSS feeds into a single,
coherent RSS feed (www.newsonfeeds.com/faq/
aggregators). Different tools provide management
facilities for creating the feeds (see www.jitbit.
com/rssfeedcreator.aspx and www.feedforall.com/
feedforall.htm).

In our approach, we use available RSS software
to construct an active distributed Web service reg-
istry. We also extend the RSS data model with Web
service-specific information, such as links to Web
Services Description Language (WSDL) files.

A Real-World Scenario
To motivate our work, we focused on the Web serv-
ice requirements of an Austrian firm — Wirtschaft-
sauskunftei Wisur (www.wisur.at) — that provides
business reports and other business-related compa-
ny information (www.wisur.at/pdf/bus_en.pdf).

To help potential customers find the company’s
Web services, Wisur registered itself in a public
UDDI Web service registry, but that registry was
shut down in January 2006. The company now has
two choices: find another public UDDI Web service
registry or set up one on its own. The problem with
the first option is that other public registries might
not exist indefinitely, so the more plausible alter-
native is the second choice. Unfortunately, setting
up a registry involves considerable overhead,
including database management, user manage-
ment, installation of registry browsers, and so forth,
which is a rather heavyweight approach compared
to the small number of Web services provided.

Another issue concerns UDDI registry usage.
From a developer’s perspective, it’s difficult to find
relevant technical information about a Web service
because the developer must navigate through sev-
eral different data structures to find it. A better
solution would offer the ability to sift through reg-
istry content with existing tools, such as Web
browsers. Examples of correct Web service invo-
cations should also be available in a Web service
registry, to help developers test their implementa-

SEPTEMBER • OCTOBER 2007 17

Active Web Service Registries

Related Work in Web Service Registries

S everal researchers in the Web servic-
es community have already proposed

various distributed Web service registry
approaches. Some even use distributed
hash tables1,2 to distribute content.3 In our
approach, however, we don’t use a hash
table function in this manner, thus we don’t
reorganize registry content on the peers
in a structured overlay network. Instead,
we build an unstructured network of
AWSR feeds, which allows for a tight cou-
pling of Web service registry content to
the Web service provider and provides
accuracy by keeping registry information
at the provider.

The Web service registry federation
approach from Michael P. Papazoglou and
colleagues4 introduced the concept of a
UDDI-based Web service registry federa-
tion. The authors rely on the concept of
a super peer — a dedicated peer in the
peer network that manages syndication
and provides a local syndication UDDI
registry (a subset of a global UDDI reg-
istry). Our approach differs slightly: we

don’t use UDDI registries (instead, we
favor a lightweight approach based on RSS
2.0). We also provide a fully distributed
Web service registry solution that sup-
ports a hierarchical structure of Web
service registries, including their taxono-
my information.

Other registry federation approaches5,6

focus on the integration of heterogeneous
Web service registries. In contrast, we use
a mashup approach, in which the existing
RSS infrastructure is reused to build an
active Web service registry. XMethods
(www.xmethods.net) is somewhat similar
— its news feed informs subscribers about
recently registered Web services — but it
provides only the last 10 published Web
services and no means to create a syndica-
tion of different Web service news feeds.

Finally, Bahman Kalali and colleagues
present a Web service registry that noti-
fies subscribers about changes, but we use
Atom news feed mechanisms to provide
notifications about changes in a fully distrib-
uted Web service registry.

References
1. I. Stoica et al., “Chord: A Scalable Peer-to-Peer

Lookup Service for Internet Applications,” Proc.

SIGCOMM, ACM Press, 2001, pp. 149–160.

2. A.I.T. Rowstron and P. Druschel, “Pastry: Scalable,

Decentralized Object Location, and Routing for

Large-Scale Peer-to-Peer Systems,” Middleware,

Springer-Verlag, 2001, pp. 329–350.

3. C. Schmidt and M. Parashar, “A Peer-to-Peer

Approach to Web Service Discovery,” World Wide

Web, vol. 7, no. 2, 2004, pp. 211–229.

4. M.P. Papazoglou, B.J. Kramer, and J. Yang, “Lever-

aging Web-Services and Peer-to-Peer Networks,”

CAiSE, Springer-Verlag, 2003, pp. 485–501.

5. T. Pilioura, G.-D. Kapos, and A. Tsalgatidou, “Seam-

less Federation of Heterogeneous Service Reg-

istries,” EC-Web, Springer-Verlag, 2004, pp. 86–95.

6. M. Treiber and S. Dustdar, “Integration of Tran-

sient Web Services into a Virtual Peer to Peer

Web Service Registry,” Distributed and Parallel Data-

bases, vol. 20, no. 2, 2006, pp. 91–115.

7. B. Kalali, P.S.C. Alencar, and D.D. Cowan, “A Ser-

vice-Oriented Monitoring Registry,” Proc. 2003

Conf. Centre for Advanced Studies on Collaborative

Research, IBM Press, 2003, pp. 107–121.

tions without having the additional communica-
tion overhead associated with a Web service
provider. Another issue involves changes to exist-
ing Web services. Wisur wants to be able to notify
business partners about changes to its Web serv-
ices — for instance, when a new version of a Web
service with additional company information
becomes available — but change notification cur-
rently involves sending email messages to all busi-
ness partners manually. A Web service registry
should support this task instead.

Wisur also cooperates with other companies,
offering its partners’ services transparently to its
customers through a joined registry. However, syn-
dication isn’t currently possible, so Wisur and its
partner companies depend on their customers
knowing where to find the corresponding servic-
es. To motivate business partners to participate in
Web service registry syndication, Wisur needs an
easy-to-use and simple-to-maintain syndication
mechanism that doesn’t involve too much admin-
istrative overhead.

The Web service registry requirements that
arise from this real-word scenario are as follows:

• Reuse of existing infrastructure. The existing
Web server should be reused for the Web serv-
ice registry.

• A lightweight approach. In contrast to existing

Web service registry solutions, the new registry
shouldn’t require complex software installations.

• A lightweight data model. The data model
should be compatible with an existing RSS data
model or provide transparent, lightweight
extensions to it, thus allowing the use of stan-
dard software such as Web browsers, news
readers, and so forth.

• Pre- and postcondition examples. Concrete
examples of valid Web service invocations
should be explicitly part of the Web service
registry, thus making it easier for developers to
test Web services.

• Content federation. The Web service registry
should provide for a distributed architecture
and support the federation of content.

• User notification. Registered users should
immediately receive changes to Web service
registry content.

• Syndication. It should be easy to syndicate con-
tent from different Web service registries.

• Content accuracy. The Web service registry’s con-
tent shouldn’t contain invalid entries and must
be tightly coupled with the service provider.

• Content control. The Web service provider
should directly host the Web service registry.

For Wisur, these requirements led to the devel-
opment of a lightweight Web service registry.

Active Web Service Registries
To address Wisur’s needs, we developed an active
Web service registry (AWSR) based on RSS feeds
that also contains Web service-related information
(such as links to interface descriptions).

Embedding Data in RSS Feeds
In our approach, we use the Atom news format as
a vehicle for Web service registry content. We
embed registry content directly in Atom’s data
model, which is organized as a hierarchy of feed
elements that hold an arbitrary number of entry
elements. We use each feed element as a contain-
er for meta information about the Web service reg-
istry. Figure 1 provides an overview of Atom’s data
model. Our approach explicitly requires the pres-
ence of some elements that are optional in this
model — in particular, we require the presence of
at least one category element in the feed that pro-
vides for domain-related information. In the Atom
newsfeed’s entry elements, we require the exis-
tence of a link element that points to an external

18 www.computer.org/internet/ IEEE INTERNET COMPUTING

Engineering the Web Track

Figure 1.Web service registry data model.We focus here only on
what the Web service registry uses.

Feed Entry

Title

Updated

Id

Link

+ One or more

Exactly oneContainment

WSDL

1

1

1

+

*

1

Category

Subtitle

Author

Title

Updated

Link

Author

Category

Subtitle

1

1

+

1

1

1

*

1

1

* Zero
or more

 1

Content
1

WSDL file. We also require the presence of at least
one category element and a content element that
contains an invocation example of the correspon-
ding Web service.

The use of channels and feeds is a very flexible
way to structure Web service registry content,
making it possible to create customer registry feeds
(such as a dedicated feed for those with access to
premium services) or Web service channels for
internal company use only.

The following code snippet shows Wisur’s pub-
lic Web service registry channel, with all its pub-
licly available services. As shown in the code
snippet, we use Atom elements to represent gen-
eral information about the channel:

<?xml version=“1.0” encoding=“utf-8”?>
<feed xmlns=“http://www.w3.org/2005/

Atom”>
<title>Wisur Business Services</title>
<subtitle>Wisur Business Services

provide informations about business
partners. These services include
information about company turnover,
balance sheet data, scoring,
etc.</subtitle>

<link href=“http://www.wisur.at/rss”/>
<updated>2007-05-30T18:30:02Z</updated>
<author>
<name>Wirtschaftsauskunftei Wisur

GmbH</name>
<email>contact@wisur.at</email>
</author>
<id>urn:uuid:60a76c80-d399-11d9-b93C-

0003939e0af6</id>
<category scheme=‘“http://www.dmoz.org’

term=‘“http://www.dmoz.org/Business/
FinancialServices/” />

<entry>
...
</entry>
</feed>

As mentioned previously, Atom’s feed element
contains an arbitrary number of entry elements,
and we use these elements to contain Web service
descriptions. Every entry element represents a sin-
gle Web service:

<entry>
<title>Wisur Credit Check

Service</title>

<link href=http://www.wisur.at:8000/
axis/services/WISIRISSearchService?
wsdl”/>

<id>urn:uuid:1225c695-cfb8-4ebb-aaaa-
80da344efa6a</id>

<updated>2007-05-23T20:34:02Z</updated>
<summary>This Web service is the search

interface to the Wisur Company
Database. For the use of the Web
service, a valid User ID is neces-
sary. This ID can be obtained with
the registration Service.</summary>

<category scheme=‘“http://www.dmoz.org’
term=‘“http://www.dmoz.org/Business/
FinancialServices/”/>

<content>
<Search>
<CustomerID>12402</CustomerID>
<Name>Bauer</Name>
<Key>32559fae-5448-47f4-bea6-fecf386b

e580</Key>
</Search>
</content>
</entry>

We embed general, human-readable informa-
tion in both the title and summary elements;
domain-related information is included in the cat-
egory element, and the link element references an
external WSDL description of the Web service. By
following the link element, users can access the
Web service’s interface description directly, with-
out having to traverse several data structures before
finding it. This is in contrast to other data models,
such as UDDI, where technical information is repre-
sented by tModels nested in other data structures.

In addition, we use the content element to pro-
vide for additional information about the cor-
responding Web service. In our current
implementation, we included best practices that
show by an example how the corresponding Web
service is called. In other words, we provide a con-
crete SOAP message that developers can use to
invoke the Web service. In this way, it’s possible to
test a Web service without having to contact the
Web service provider and ask for test data.

Publication and Discovery of Web Services
To offer Web services to potential business part-
ners, a Web service provider must publish those
services in a common Web service registry, but
rather than require each provider to use a central-

SEPTEMBER • OCTOBER 2007 19

Active Web Service Registries

ized place, we follow a decentralized approach. In
our concept, every Web service provider offers an
AWSR registry feed simultaneously, tightly cou-
pling registry content to providers and maximiz-
ing that content’s accuracy. This approach also
leverages the provider/requestor/registry triangle
toward a peer-to-peer concept, with provider and
consumer independent from a third authority.

The publication process itself is straightfor-
ward: it just consists of writing a new feed item
into the AWSR feed. The discovery process consists
of subscribing to an active Web service registry
with existing tools. Depending on the tool’s capa-
bilities, users can choose different filter options to
personalize active Web service registry content;
RSS feed notification mechanisms propagate any
changes. All subscribed users get the new Web
service descriptions as soon as they poll their
AWSR feeds.

Syndication of
Web Service Registries in RSS Feeds
We can use RSS syndication mechanisms to fuse
distributed AWSR feeds. In our approach, we use
the hierarchical categorization scheme from the
Open Directory Project (www.dmoz.org). Two key
concepts in our syndication model are the notions
of client- and server-based Web service registry
syndication (see Figure 2). The former syndicates
Web service content from different sources — that

is, the client registers to several AWSR feeds and
generates a local virtual Web service registry. The
latter syndicates AWSR feeds from different
sources and provides a single, coherent feed. In
contrast to client-side syndication, subscribers are
unaware that the AWSR feed consists of several
single AWSR feeds.

Discovery of Active Web Service Registries
Our approach provides two different ways for dis-
covering distributed Web service registries. The
first uses the RSS feeds’ autodiscovery feature,
which consists of adding a link tag to a Web page’s
header and letting the user decide whether to sub-
scribe to the registry. The second way relies on
index sites, which are similar to RSS news aggre-
gator sites. Interested parties publish their AWSR
feeds at a well-known location, thereby providing
a single point for AWSR feed discovery. A proto-
type implementation is available at www.vitalab.
tuwien.ac.at/projects/visco/awsr/; it supports the
registration of active Web service registries and
provides basic search capabilities for registered
AWSR feeds.

Application Scenarios
Let’s review some application scenarios for active
Web service registries.

Pushing Services to Customers
In this scenario, Wisur actively contacts other
companies to conduct business. The whole busi-
ness process consists of several steps:

1. A Wisur salesperson contacts companies
potentially interested in Wisur’s services.

2. If a company is interested in these services,
then the salesperson negotiates a contract
(defining payment modalities, discounts, and
so forth).

3. After the contract is completed, either Wisur’s
developers contact the business partner’s
developers or vice versa, usually over email or
by telephone.

4. Wisur’s developers provide information about
using test services, including details about the
protocols used and the endpoints for Web
service invocation. To support the develop-
ment, Wisur’s developers also present test
cases to the partner’s developers.

5. After the test phase, the partner’s developers
obtain production information (valid user IDs,

20 www.computer.org/internet/ IEEE INTERNET COMPUTING

Engineering the Web Track

Figure 2. Client- and server-side AWSR aggregation.The aggregator
unifies three AWSR feeds and then provides a single feed back to a
single client; the other clients connect directly to AWSR registries.

Access

AWSR
AWSR

AWSR

Browser

Mail client

News reader

Mail client

Aggregator

Address: > go

@@

Internet Zone

Back Forward Stop Refresh Print MailHome

Address: > go

@@

Internet Zone

Back Forward Stop Refresh Print MailHome

Mail client

Address: > go

@@

Internet Zone

Back Forward Stop Refresh Print MailHome

Mail client

Address: > go

@@

Internet Zone

Back Forward Stop Refresh Print MailHome

Address: > go

@@

Internet Zone

Back Forward Stop Refresh Print MailHome

News reader

Address: > go

@@

Internet Zone

Back Forward Stop Refresh Print MailHome

Address: > go

@@

Internet Zone

Back Forward Stop Refresh Print MailHome

user keys, and so on) from Wisur and “switch”
to production services.

6. When the contract terminates, Wisur removes
the user IDs and keys, and the corresponding
Web services can no longer be invoked.

The application of AWSR in this scenario occurs at
the developer level, during steps 3 and 4: the busi-
ness partner’s developers register with Wisur’s
AWSR news feed and then browse all the neces-
sary Web service information to integrate Wisur’s
Web services into their system. In this scenario,
AWSR’s main benefit is that the developers don’t
need specialized software to get registry content.
Moreover, the data model is considerably simpler
and provides direct access to relevant information.

Change of Business Services
In this scenario, established services change due to
requirement changes (for example, a business part-
ner needs an extension to an existing service). In
this case, the process consists of the following steps:

1. Wisur’s developers contact the business part-
ner’s developers, usually over email or by
telephone.

2. The partner’s developers provide information
about the desired Web service changes. Wisur
implements the new version of the Web serv-
ice and provides test cases to ensure that it
addresses all the new requirements. The final
steps (test and production phases) are the
same as in the previous section.

The application of AWSR in this scenario starts
with step 1: as soon as a Web service changes,
Wisur’s AWSR feed informs developers about any
state changes. As soon as a new version of a Web
service is available and is published in the AWSR
registry, all registered customers know about the
new service offerings.

Web Service Registry Syndication
In this scenario, Wisur cooperates with a partner
company whose set of Web services should be
offered Wisur’s customers too. Because of market-
ing issues, the partner company is interested in
Web service offerings under Wisur’s “umbrella.”

The application of AWSR in this scenario
involves the syndication of several different Web
service registries. Wisur registers the partner’s AWSR
feed and provides a single AWSR feed for all its cus-

tomers. To provide a coherent feed, any business
partners must create an AWSR-compliant Atom
news feed, usually by creating an XML file that’s
available on the partner company’s Web site. The
registration process consists of accessing Wisur’s
Web site and providing the link to the XML file. The
content is automatically integrated into Wisur’s reg-
istry and becomes accessible for all customers.

W e intend to address managed Web service
aggregation in the next version of our Web

service registry. We plan to provide a Web service
aggregator that offers additional metadata for Web
service descriptions, which users could generate as
they rate the services they use. In this context, E.
Michael Maximilien and Munindar P. Singh’s work
is of interest for further investigations.2

We’ve implemented an active Web service reg-
istry feed on Wisur’s homepage, www.wisur.at/
rss/WISIRISServices.rss. Our current prototype sup-
ports the basic Web service registry operations
(publish and unpublish), but we don’t use Atom’s
Publishing Protocol. We intend to use it in a future
version of our prototype.

Acknowledgments
This work is funded by the FFG (www.ffg.at) as part of the ITEA

project OSIRIS (www.itea-osiris.org).

References

1. M. Treiber and S. Dustdar, “View-Based Integration of Het-

erogeneous Web Service Registries: The Case of VISR,”

WWW J., vol. 9, no. 4, 2006, pp. 457–483.

2. E.M. Maximilien and M.P. Singh, “Conceptual Model of

Web Service Reputation,” SIGMOD Record, vol. 31, no. 4,

2002, pp. 36–41.

Martin Treiber is a PhD candidate in the Distributed Systems

Group at the Vienna University of Technology. His research

interests include service-oriented computing, autonomic

computing, and Web-based mashup technologies. Treiber

has an MSc in computer science from Vienna Technical

University. Contact him at m.treiber@infosys.tuwien.ac.at.

Schahram Dustdar is a full professor in the Distributed Systems

Group at the Vienna University of Technology. His research

interests include service-oriented architectures and com-

puting, mobile and ubiquitous computing, complex and

adaptive systems, and context-aware computing. Dustdar

has a PhD in business informatics from the University of

Linz. Contact him at dustdar@infosys.tuwien.ac.at.

SEPTEMBER • OCTOBER 2007 21

Active Web Service Registries

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

