
Achieving Web Service Continuity in Ubiquitous
Mobile Networks: the SRR-WS Framework

Christoph Dorn and Schahram Dustdar

VitaLab, Distributed Systems Group,
Institute of Information Systems,
Technical University of Vienna,

Vienna, Austria
dorn|dustdar@infosys.tuwien.ac.at

Abstract. In this paper, we will address two underlying problems of
Web service continuity in mobile ubiquitous networks. On the one hand,
our work presents a lightweight solution for connection interruption. On
the other hand, we introduce a technique to switch between devices dur-
ing service invocation. The Suspend-Relocate-Resume for Web Services
(SRR-WS) Framework meets these challenges by allowing a device to
disconnect in-between Web service invocation and response in order to
retrieve the reply upon reconnection. Moreover, our proposed framework
also enables on-demand transfer of service control from one device to an-
other. Our first reference implementation demonstrates how Web service
continuity can be achieved across devices as well as unreliable connec-
tions.

1 Introduction

Applying Web service technology in mobile ubiquitous environments enables in-
teraction of heterogeneous resources through loose coupling as well as platform
and context independence. Jorstad et al. present in [1] the advantage of ap-
plying the Service-Oriented Architecture in mobile and ubiquitous networks in
more detail. As mobile devices are getting more powerful and widespread, ac-
cessing Web services with wireless devices is the next logical step. However, the
dynamic nature of ubiquitous environments demands for adapted Web service
technologies. Bandwidth and connectivity are the main factors besides comput-
ing power, battery capacity, and input interfaces that restrict the deployment of
Web service technology.

In this paper, we focus on the issue of service continuity in a relaxed form.
Instead of demanding anytime, anywhere available services, we argue that using
the same service session on different devices from different places with possi-
ble intermediary breaks is often sufficient. In many cases, a user needs not be
persistently connected or does not desire it due to cost reasons. In Section 2,
we present a motivating scenario and discuss problems and related factors that
arise due to the dynamic nature of mobile networks. Section 3 discusses cur-
rent approaches and solutions to these issues. Thereafter, Section 4 discusses



our proposal in detail. Subsequently, we present our results in Section 5. Finally,
Section 6 describes future work, and Section 7 summarizes our findings.

2 Problem Statement

First, we describe which components constitute a mobile ubiquitous environment
concerning Web services. As presented in Fig.1, such an environment generally
consists of wireless-enabled devices that communicate with each other and/or
are connected to an access point. We also include a wired network in our setting
having the role of an infrastructure of any kind or offering services. We justify this
decision by making the assumption that mobile users venture between mobile
and fixed network with and without their devices. However, possible scenarios
in our environment need not rely on such an infrastructure (e.g., mobile ad-
hoc collaboration). We have also identified four interaction patterns concerning
service provider and service requestor location.

1. The wireless network hosts both requestor and provider. This usually occurs
in (mobile) ad-hoc networks. However, infrastructure might exist that aids
interaction between peers.

2. The requestor is mobile whereas the provider is situated in the wired part.
This is probably the most common setting, opening up wired services also
to nomadic users. Furthermore, current tool support for mobile devices is
restricted to Web service client development. Therefore, our work focuses
primarily on this interaction pattern.

3. The requestor is located in the wired part and invokes a service on a mobile
device. This can be used for push services or tracking purposes.

4. Conventional Web service invocation happens as both requestor and provider
are located on the infrastructure network.

So far, Web service clients access services from static machines and are bound
to these for the duration of service invocation. However, in a mobile environment
we cannot expect a device or associated user to remain within transmission range
for the full length of a possibly long lasting service interaction. Several strategies
are available to handle this problem.

– First, the user can choose to switch to another device that is able to remain
connected.

– The user selects an equivalent service that is within reach.
– After the initial service is available again, the user reconnects and starts

from the beginning of the service session.
– The user delegates the service request to an intermediary such as agent or

proxy in advance. Once reconnected, he/she collects the service response
from that intermediary.

Clearly, the first three approaches are unsuitable, as in each case the user has to
reinvoke the service. Besides, to repeat all previous steps of service invocation
requires time and retransmission of data. This not only increases the load on the



Fig. 1. Ubiquitous Mobile Environment: the dotted lines depict wireless connections,
while the continuous ones represent wired connections. R signifies a Web service re-
questor, while P denotes a Web service provider. Note that provider and requestor can
be on the same node. G stands for a gateway between wireless network and a wired
one. (1) to (4) indicates the outlined four interaction patterns.

wireless network but also results in the user being charged more as his/her data
transfer volume increases1. Moreover, in the second case an additional overhead
occurs as we need time and resources to find a substitute service. Furthermore,
some services might not be exchangeable at all such as personal calendar, doc-
ument management or infrastructure centric services in general. Our work falls
into the last category together with a number of related papers. Section 3 lists
existing work and points out the differences to our approach.

The following scenario presents the above-introduced issues and sets our pro-
posed framework in a real world environment.

Mike is a senior manager at ACME. As he is rather busy, he starts working
already at home after getting up in the morning. He connects to his company’s
network from his home computer. All services and resources of ACME are acces-
sible by means of Web services. He requests to get an overview of all currently
running projects. As this usually takes a while, Mike decides not to wait for the
results at home. A conventional Web service would require him to collect the
results from his home PC, but luckily ACME provides the SRR-WS proxy and
SRR-WS enabled clients. Usually, he would access the outcome from work, but
as Mike is on a business trip to London, he intends to use some spare time on
the airport to check up on the results. Just before leaving the house he requests
information on the current traffic situation in London. Then, he turns off his PC
and heads for the car. While driving his car, Mike usually refrains from using
his PDA as he considers this too dangerous. After having checked in at the air-
port, he connects his PDA to the wireless LAN in the business lounge. There he
continues the web services he had interrupted by leaving his home. This is made
possible as the SRR-WS framework allows to pickup a service session where it

1 Here, we assume that the mobile network provider charges by the amount of data
transferred neglecting the possibility of a flat rate



was suspended. The project report is still outstanding while the traffic report has
arrived. This service, while being external to ACME, can still be access through
the SRR-WS proxy. Once at his partner’s office in London, Mike connects his
Laptop and retrieves the project results.

The scenario highlights the main contributions of our framework.

– Transparency: As there is no need to adapt the service provider, it remains
completely unaware of the SRR-WS framework.

– Service independence: Any service client that adheres to the standards can
be suspended and resumed as well as relocated.

– Light-weight approach: We require no middleware or agent platform and no
proprietary standards are involved. The required infrastructure is limited to
the use of the slim SRR-WS framework.

– Continuity across time, space, and devices: Services can be invoked in one
place and continued after some time in another place. Furthermore, the uti-
lized devices need not be the same for suspending and resuming.

– Fixed and mobile applicability: The presented framework is not restricted
to mobile networks but can also be utilized in wireline networks.

– Strategies for session keep alive: Instead of simply caching a response, dif-
ferent strategies can be employed to enable session resumption at a later
stage.

Figure 2 visualizes the underlying ubiquitous environment depicting used
devices and network topology.

3 Related Work

Work in this section is focused on the aspect of service continuity and the above-
introduced sub problems of service disconnection and service control handover
between devices.

Jorstad et al. [2] analyse service continuity in mobile services. They propose
a service continuity layer consisting of a monitor, handover manager, service
composition module, interoperability evaluator, and I/O redirector. Yet, their
work remains at that level and lacks specific details concerning architecture
and implementation. Furthermore, their approach does not have the notion of
service suspension. Another major difference lies in the task of the handover
manager. This component is concerned with switching between different means
of transport rather than devices. Finally, their service continuity layer focuses
at providing services, whereas our technique requires no changes to the invoked
services.

Several agent frameworks and middleware have been designed to facilitate
the use of Web services on mobile devices. Below, we introduce approaches which
focus on agents and/or proxies invoking Web services on behalf of a mobile client.
they Thus enable the client to go offline during the service execution.

Yu and Zhang [3] introduce a mobility system based on mobile agents to
provide service continuity across networks. Yet, the need for an agent platform



ACME
Services

SRR-WS Proxy

Home PC

Laptop 
London

PDA
Airport

Traffic Service

Fig. 2. Scenario Environment: presents a simplyfied version of a real world ubiquitous
environment including the various devices employed, the SRR-WS framework and the
example Web services.

narrows widespread applicability. Furthermore, handover between devices is not
explicitly given.

In [4], a client-proxy-multiple server model is designed where broker agents
accept requests from mobile clients. These can resort to a knowledge base on the
capabilities of service agents to perform the required task. Service agents belong
to a specific problem domain and act as a wrapper to services described through
a DAML+OIL ontology. The actual computation is done on the agent platform,
on execution platforms or if required and possible on the client itself. Agent-
deputies handle disconnections. Zahreddine and Mahmoud [5] and Maamar et
al. [6] present similar agent-based frameworks.

Okuda et al. [7] explicitly address continuous service access by means of
agents. They adopt the same definition regarding service continuity as we do,
namely suspending services, and resuming at a later point in time. Moreover,
they also support continuing from a different device. However, their work is
focused on multimedia web content that is adapted to different device capabilities
and not on invocation of Web services. Hence, their technique varies considerably
compared to our approach.

At this point, we can highlight several shortcomings that the presented work
hitherto has in common. Agent networks in general lack widespread acceptance
due to the need of a respective platform. Furthermore, Web service continuity
across devices is only supported implicitly and service interruption not at all.
These two aspects are the central focus of Satyanarayanan et al. [8]. However,



their approach goes beyond the scope of our work as the presented mechanisms
transfers the whole state of the device using a distributed file system. We claim
that this technique is too heavy weight and does not take into account unfinished
service sessions.

Work on handover is primarily concerned with switching between different
kinds of networks (eg. WLAN to GRPS or UMTS). Our approach currently
excludes such transport mechanisms but they pose a promising field for future
extensions. For example, Calvagna and Modica [9] propose user-centric policies
for vertical handover in order to reduce costs for the individual user. Bellavista et
al. [10] present a middleware architecture for context aware service deployment
and handoff management.

Pilioura et al. [11] analyse Web service scenarios for mobile commerce. In the
case of providing stable Web services to mobile devices, they propose a proxy
architecture to invoke services on behalf of a client. Although their approach is
similar to ours, we point out that the proxy needs to create a stub for every un-
known request as their service requestor is assumed to be Web service unaware.
This results in much more overhead than simply forwarding a service invoca-
tion message. Furthermore, no explicit mechanism to switch between devices is
included.

To the best of our knowledge, so far no research effort has been put into de-
signing a generic pause-resume mechanism for Web service invocation. Services
themselves can be designed to allow for breaks by implementing long timeouts
or resending messages, but this is not a transparent approach. Another possi-
bility would be to utilize SOAP over SMTP, which intrinsically includes delays.
However, this would require SMTP servers running on the mobile clients, or a
SMTP push infrastructure. Moreover, this technique is specific to the underlying
transport protocol and outside the scope of the Web service interaction layer.

This pause-resume mechanism mentioned above holds much of the asynchron
notion that is usually associated with Message-Oriented Middleware (MOM).
Such systems, however, are usually heavy-weight and restrict clients to connect
to services available only within each such MOM. Though, our generic technique
is open to any Web service client.

Following papers do not directly address service continuity issues as such, but
provide techniques that reduce the need for service suspension and relocation.
Yet, our framework is likely to incorporate these approaches at a later stage.

Sen et al. [12] propose to tackle connectivity issues by invoking the Web ser-
vice that is the most likely to remain available for the duration of the interaction
process. A reasoner accessing a knowledge base—that contains motion informa-
tion on participating service provider nodes—predicts the node’s locality at the
required place at the required time.

Similarly, Doulkeridis et al. [13] introduce the notion of a context-aware ser-
vice directory that includes temporal information. They argue, that context
related data would enable prediction of the period a certain service remains
available.



Friedman [14] who proposes to cache the actual Web services within an ad-hoc
network brings up another option. Upon partitions or combinations of network
sections, caching proxies are either spawned or combined. In this environment
only those services can be rendered ubiquitous that can be transferred or copied
as a whole between nodes.

4 The Suspend-Relocate-Resume for Web Services
(SRR-WS) Framework

Our approach focuses on service continuity at the client side by introducing the
Suspend-Relocate-Resume for Web Services (SRR-WS) framework. It enables to
suspend a service, optionally relocate the client’s session data, and to continue
where the client has paused its interaction. The first version of our framework
has the restriction that the Web service provider side needs to be left unaffected
and thus only the client side can take provisions for service interruption. The
SRR-WS design consists of a proxy—that we kept as generic as possible—and
client side session restorement facilities. Figure 3 gives a general overview.

Fig. 3. The SRR-WS Framework consists of a generic Web service proxy with addi-
tional capabilities regarding caching and session relocation as well as facilities at the
client to enable session suspension and continuation.

The SRR-WS Proxy is composed of three components: the actual proxy (P-
module) that forwards SOAP messages over HTTP to the ultimate receiver,
the suspend and resume module (SR-module) as well as the session relocation
module (R-module). The internal architecture of the whole proxy is given in
Figure 4. The latter two modules are designed as Web services. The SR-module
allows the client to explicitly request a connection interruption for going offline
or shutting down, while enabling it to resume the session once it reports back.
We define a session as a combination of client-state information and pending in-
vocation requests. The R-Module permits a client to transfer the current session
onto another device for later continuation. This feature is central to achieving



service continuity across devices. The SR and R module operate independent of
each other. Thus, suspending and resuming can be executed on the same device,
while session relocation can also occur in case no invocation reply is pending.
Yet, the combined functionality enables virtually “anytime” relocation.

The SR functionality is most useful for stateful services that require some
identifying data to be kept throughout the session. Nevertheless, stateless ser-
vices can also profit from the framework, as asynchronous responses are stored
during a client’s offline period. This also holds true for services, which exhibit
high invocation costs or long execution time.

Fig. 4. The SRR-WS-Proxy consists of a SOAP proxy and Web service interfaces for
suspending and resuming a process as well as transferring the client’s session data onto
another device.

What remains to be defined is how to keep a session alive. As we argue that
the proxy should remain ignorant of the semantics of any requests, we propose
that the client should know how to keep a session running. In invoking the SR
interface, the client defines how this should be done. Below, we list possible
strategies that we identified as suitable. Note that different strategies can be
used at different points in the interaction process.

None the client knows that at this point, the session cannot be kept alive by
the proxy itself. Thus, the proxy won’t cache the Web service response.

Wait the client indicates that the proxy should just wait for it to report back
from being off-line or down and then forward the stored Web service re-
sponse.

Replay the proxy should replay the last SOAP request at specific intervals.
Always the latest response is kept.

Custom the client provides a custom message which the proxy should forward
at the given intervals. As in the previous case, the Proxy stores the latest
reply from the Web service.



The latter three strategies include an interval within which the client expects
to report back. Yet, the proxy can choose to reduce this value, if its “offline time
span” is less. In such a case, the proxy notifies the client about the new valid
deadline in the immediate reply message.

Session relocation is kept rather simple. The client describes relevant session
data as an XML document and transfers it to the relocation module on the
proxy. It also provides a deadline until itself or another client intends to retrieve
the data. The relocation session data are stored on the SRR-WS proxy, which
returns an identifier for later recovery. Retrieval happens exactly the opposite
way. As the client provides the session identifier, the proxy returns the XML
document.

On the client side, the framework consists of an additional layer between Web
service proxy and transport engine to enhance the header with SRR-WS identifi-
cation information. Specifically, we use the MessageId of the WS-Addressing [15]
header to enable this in a standardized way. The proxy processes this informa-
tion to establish later which SOAP request should be suspended. This additional
SOAP header block is kept even as the request is forwarded to the actual desti-
nation as WS-Addressing might be used at the ultimate receiver’s site. Figure 5
visualizes this concept on the client device. The displayed components are the
client application, WS-Addressing (for providing the necessary correlation head-
ers), the SRR Client Framework (provides functionality for handling suspend
and resume as well as relocate requests), WS Client Stub and SRR Client Stub
to transform methods into SOAP messages (these are automatically created by
an WSDL parser), and finally the HTTP Engine (responsible for wrapping the
SOAP message in a HTTP POST request and subsequent transmission to the
proxy).

Fig. 5. At the client side the SRR-WS Framework consists of an additional layer to
introduce process related session identifier and a stub for accessing the SRR-WS Web
service interfaces.



5 Implementation and Results

We implemented our framework using SOAP over HTTP as it is most widely
applied. Besides, using SMTP we would not be able to point out the impact our
framework has on Web service interaction, as an SMTP server can, in some way,
be regarded as an implicit SRR-WS-Proxy. Furthermore, WS-Addressing was our
choice of message identification mechanism as it provides this functionality in a
reasonable comfortable way, thus no need for another standard or proprietary
SOAP header. WS-Addressing is supported by Microsofts .NET Framework 2003
Web Service Extensions 2.02 which is also available for PocketPC by means of
the OpenNETCF [16] framework. One problem that had to be tackled in using
SOAP over HTTP in conjunction with WS-Addressing results from the fact
that once we have invoked a request and are waiting for a reply, we have to
abort it to suspend. Thus, to receive the reply from the SRR framework upon
resuming, we need to invoke the same request again but this time with a new WS-
Addressing MessageId. In order for the SRR framework to know, which reinvoked
requests desires what stored reply, MessageId mapping is done. This is explained
in further detail below when discussing the Suspend-Resume module.

5.1 The Proxy Module

The HTTP SOAP proxy has not been written from scratch but the free Men-
talis.org proxy [17] has been adapted to fit our needs. More precisely: we made
the proxy SOAP aware, thus processing SOAP requests in a way to enable pos-
sible suspend and resume action. For regular HTTP requests, the proxy acts as
usual. Once the proxy receives a SOAP request, it checks whether this request
needs to be forwarded to the ultimate receiver (a new request) or was sent to re-
trieve a stored reply (a reinvoked request). In the former case, the proxy connects
to the given destination and waits for the reply. Once the complete response is
received it checks whether the corresponding client has suspended (subsequently
storing the message) or not (forwarding the reply the the client). In case of a
reinvoked request, the proxy retrieves the stored response and returns it without
connecting to the actual destination.

Errors during client-proxy communication have no effect on the proxy’s state.
Initial requests or invocation of the proxy’s suspend or relocate service are sim-
ply ignored. If an error happens during session resumption or session takeover,
related data is not lost but kept for a new retrieval attempt.

5.2 The Suspend-Resume Module and KeepAlive-Strategy

The SR-module is accessible via two Web service methods for suspending and
resuming. To suspend one or several request, the client needs to provide a
KeepAlive-Strategy for every single one. Such a strategy corresponds to the

2 Microsofts Web Service Extensions 3.0 are available as well but incompatible to the
OpenNETCF framework.



types introduced above, namely: None, Wait, Replay and Custom. Besides iden-
tifying which request is to be suspended (by means of the MessageId), it further
includes details on how long the response should be stored (at most), the max-
imum interval between resuming and actually reinvoking the request, and the
custom message (if required), as well as the resend interval where appropriate.
For resuming one or more requests, the client submits the mapping between
original request MessageId and the one that is going to be used for reinvoking.
Hence, the SR module, repectively the SOAP proxy, can distinguish between
new and resumed SOAP requests. The client also includes the proxy identifier
which is needed in case a network of distributed proxies is used.

5.3 The Relocate Module

The R-module allows session data in the form of a serialized XML document to
be stored for a certain amount of time. Upon submission of a session document, a
unique identifier is generated and returned to the client for future retrieval. The
same client or another one that possesses the identifier, can use it to take-over
the corresponding session information. The transfer of session information can
also be described as pushing and pulling a session to the SRR-WS framework.
We left this module intentionally simple for demonstration purpose and leave
it up to the client application to transfer the session identifier to another client
instance in case of relocation. The session description in XML is left to the
client and the framework provides no support, as we believe session data will
vary significantly between applications.

5.4 The Test Run

The testing Web service was implemented as a Google Web service [18] relay that
transfers requests from document to RPC SOAP style. However, for simplicity
reasons, only the spelling suggestion method is available. The service waits for
ten seconds to simulate a longer lasting interaction and returns the Google re-
sult3 marked with a timestamp. The proxy part of the WRR-WS framework runs
on Windows XP Professional on the Internet Information Server (IIS). In our
test bed we had a Pentium III Laptop as proxy host connected via LAN to an-
other Windows XP machine, hosting the Google relay Web service. Our demon-
strations client was implemented on an iPAQ 2210 running Windows Mobile
2003 and accessed the SRR-WS framework proxy by means of WLAN 802.11b
in adhoc-mode. Our tests showed that as expected, several invocation requests
could be issued, then these requests where suspended, the session pushed to the
SRR-WS proxy and the client closed before the PDA was switched off. Within
the suspend timeout, we restarted the client applications, retrieved the session
data, then resumed the session and received all stored invocation replies. For the
four keep alive strategies, we experienced behavior as expected.

3 In case a google key is not available, use “test” as the key, and only the timestamp
will be returned.



– Providing the None strategy, the proxy aborted the connection to the test
service or—if already available—deleted the reply.

– Requesting the Wait strategy, the timestamp in the service reply amounted
for about ten seconds more than the time of initial service invocation.

– Demanding the Replay strategy for every 20 seconds, the timestamp in the
service reply ranged between 10 and 20 seconds less than the point in time
of service resumption.

– For the Custom strategy having the same values as the Replay strategy, we
experienced also the same timestamp values.

5.5 Evaluation

Currently, we cannot make extensive statements about the performance of our
framework as message overhead heavily depends on the applied keep-alive strat-
egy. Nevertheless, in the following list we give an indication where to expect the
most improvements and which strategies need closer attention.

– The None strategy is equivalent to experiencing a service interruption with-
out the SRR-WS framework with an additional message to notify the SRR-
WS proxy neither to store nor to wait for a reply.

– Wait involves one message to inform the proxy to store the reply and another
one to resume the invocation.

– The amount of messages for Replay and Custom cannot be determined with-
out knowledge of the exact strategy parameters. At a minimum, we have two
messages (as this case includes the previous one) and at least another one,
if the message is resent once only. Otherwise we have the client’s offline pe-
riod divided by the strategy’s replay interval. Thus the worst case scenario
happens if the client does not report back within the proxies internal “offline
time span”. This holds true for both Replay and Custom.

While analysing the expected message overhead, this amount has to be put in
contrast with the number of messages needed in case of a new session start.

In regard to scalability, the proxy certainly constitutes a bottleneck. Yet, we
argue that a network of distributed SRR-WS proxies can solve this problem. A
client can still use a different proxy for resumption than used for suspending. This
is achieved as the client submits the proxy’s identifier (as mentioned above). All
the proxy needs to do is forward the request to the initial proxy, which returns
the stored reply. This is in turn relayed to the client. The new proxy handles
all subsequent traffic. Unfortunately, we lacked time to implement and test this
feature.

The need for suspending a service explicitly might seem a like an unrealistic
assumption in an adhoc network. However, we argue that this is less of a concern
as the framework is not specially designed for an adhoc network but rather an
ubiquitous one. Furthermore, users explicitly switch on or off their devices and
do so when changing to another device. Moreover, context information can be
used to anticipate potential disconnections. Yet, this is outside the scope of our
paper.



6 Future Work

Future work will consist on the one hand of improving the demonstration im-
plementation. At the moment a tight integration between client application and
client-side framework is required. We plan to aid the developer in providing an
automatic wrapper around Web services and a less tightly coupled SRR frame-
work. Furthermore, direct transfer of session data between clients would be an
improvement we intend to implement. On the other hand, broadening the ap-
plicability of the SRR-WS framework concerning transport protocols, keep alive
strategies, and security is another issue. Combining SOAP transport protocols
such as HTTP request and SMTP reply (with mail push) might prove interesting
to follow-up. In addition, security capabilities that have been left out for the mo-
ment, need consideration and integration. Furthermore, our case studies will also
show if the current keep alive strategies are generic but also specific enough for
widespread use. The next step would consist of enabling Web services themselves
to accept suspend and resume requests. This would allow a better integration of
session interruption and would require no additional infrastructure such as the
SRR-WS framework. However, this would need to be the subject of a new Web
service standard.

7 Conclusion

In this paper, we have discussed service continuity in mobile ubiquitous envi-
ronments and presented a motivating scenario. Having listed current approaches
to the service disconnection and relocation issues, we introduced our solution.
The Suspend-Relocate-Resume for Web Services framework (SRR-WS) acts as a
generic proxy for requests and caches invocation responses while a client remains
off-line. Furthermore, it enables to start an invocation request on one machine
and continue on a client located on another one. Thus, we achieve service conti-
nuity across space, time, and devices. Besides discussing our framework, we have
presented a reference implementation demonstrating the benefits in a wireless
network. Our main contributions are a lightweight framework that acts trans-
parently to service providers while remaining unaware of the actual service invo-
cation content. Moreover, the SRR-WS framework can be used in wireless and
wireline environments and introduces strategies to keep service sessions during
client’s offline period alive. We concluded that our framework remains promising,
but needs to be employed in a real world environment for further improvement.

Acknowledgment

Part of this work was supported by the Austrian Science Fund (FWF) project
OMNIS.



References

1. Jorstad, I., Dustdar, S., van Do, T.: Service-oriented architectures and mobile
services. In: 3rd International Workshop on Ubiquitous Mobile Information and
collaboration Systems (UMICS), co-located with CAiSE 2005. (2005)

2. Jorstad, I., van Do, T., Dustdar, S.: A service continuity layer for mobile services.
In: IEEE Wireless Communications and Networking Conference. (2005) 2300–2305
Volume 4

3. Yu, Y., Zhang, P.: Service mobility in mobile network. In: International Conference
on Communication Technology, ICCT 2003. (2003) 1698–1701

4. Chakraborty, D., Perich, F., Joshi, A., Finin, T., Yesha, Y.: Middleware for mobile
information access. In: 5th International Workshop on Mobility in Databases and
Distributed Systems (MDDS 2002). (2002)

5. Zahreddine, W., Mahmoud, Q.: An agent-based approach to composite mobile web
services. In: 19th International Conference on Advanced Information Networking
and Applications, 2005. AINA. (2005) 189–192

6. Maamar, Z., Sheng, Q.Z., Benatallah, B.: On composite web services provisioning
in an environment of fixed and mobile computing resources. Information Technol-
ogy and Management 5 (2004) 251–270

7. Okuda, T., Takano, M., Tajima, K., Shimojo, S., Yamaguchi, S., Miyahara, H.:
Realizing continuous and transparent service using agents. In: IEEE Pacific Rim
Conference on Communications, Computers and signal Processing, 2001. PACRIM.
2001. (2001) 736–739

8. Satyanarayanan, M., Kozuch, M., Helfrich, C., O’Hallaron, D.: Towards seamless
mobility on pervasive hardware. Pervasive and Mobile Computing 1 (2005) 157–
189

9. Calvagna, A., Modica, G.D.: A user-centric analysis of vertical handovers. In:
WMASH ’04: Proceedings of the 2nd ACM international workshop on Wireless
mobile applications and services on WLAN hotspots, New York, NY, USA, ACM
Press (2004) 137–146

10. Bellavista, P., Cinque, M., Cotroneo, D., Foschini, L.: Integrated support for hand-
off management and context awareness in heterogeneous wireless networks. In:
MPAC ’05: Proceedings of the 3rd international workshop on Middleware for per-
vasive and ad-hoc computing, New York, NY, USA, ACM Press (2005) 1–8

11. Pilioura, T., Tsalgatidou, A., Hadjiefthymiades, S.: Scenarios of using web services
in m-commerce. SIGecom Exch. 3(4) (2003) 28–36

12. Sen, R., Handorean, R., Roman, G.C., Hackmann, G.: Knowledge-driven inter-
actions with services across ad hoc networks. In: ICSOC ’04: Proceedings of the
2nd international conference on Service oriented computing, New York, NY, USA,
ACM Press (2004) 222–231

13. C.Doulkeridis, Valavanis, E., Vazirgiannis, M.: Towards a context-aware service
directory. In: 29th International Conference on Very Large Data Bases (VLDB
2003). (2003)

14. Friedman, R.: Caching web services in mobile ad-hoc networks: opportunities and
challenges. In: POMC ’02: Proceedings of the second ACM international workshop
on Principles of mobile computing, New York, NY, USA, ACM Press (2002) 90–96

15. Box, D., Christensen, E., Cubera, F., Ferguson, D., Frey, J., Kaler, C., Langworthy,
D., Leymann, F., Lovering, B., Lucco, S., Millet, S., Mukhi, N., Nottingham, M.,
Orchard, D., andE. Sindambiwe, J.S., Storey, T., Weerawarana, S., Winkler, S.:
Web Service Addressing (WS-Addressing). http://www.w3.org/Submission/ws-
addressing/ (2004)



16. OpenNETCF.org: OpenNETCF Website (2005)
17. Mentalis.org: Mentalis.org Proxy Website (2005)
18. Google: Google web service api (2005)


