
Distributed and Parallel Databases, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

DOI: 10.1007/s10619-005-2460-y

A View Based Analysis on Web Service Registries
SCHAHRAM DUSTDAR dustdar@infosys.tuwien.ac.at

MARTIN TREIBER e9426464@student.tuwien.ac.at
Distributed Systems Group, Vienna University of Technology

Recommended by: Dimitrios Georgakopoulos
Published online: 12 July 2005

Abstract. Web services registries are a cornerstone for the emerging service-oriented architecture and constitute
a critical resource for Web services. We systematically illustrate and evaluate current registries and compare
different approaches regarding their architectures and data models in the context of two views: the human and
Web service based views. We use these views to show the different requirements and to illustrate the different
abstractions when comparing Web service registries. The human view on Web service registry architectures is
illustrated with the help of a case study. The Web service view on Web services registry architectures is illustrated
from a software-service point of view. The data model of Web service registries is described in detail from a
machine based view. The corresponding human view is described from an abstract level. Web service publishing
and discovery are compared from a human and a Web service based view. Finally, we present a working example
that uses our methodology to compare different Web service registries and to explain the different views introduced
in this paper.

Keywords: Web service registries, service-oriented architecture

1. Introduction

Web services are a new paradigm for distributed computing and are designed to enable
different software systems to communicate directly with each other regardless of language
or platform over the Internet [21]. According to the W3C, Web services [31] are defined as
follows: “A Web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-processable
format (specifically WSDL). Other systems interact with the Web service in a manner pre-
scribed by its description using SOAP-messages, typically using HTTP with an XML seri-
alization in conjunction with other Web-related standards.” As the definition implies, Web
services offer standard means for interoperability between different distributed software
systems over the Internet. The Web services paradigm allows different software systems to
operate in a loosely coupled way by the help of Web service brokers, respectively Web ser-
vice registries. The current Web services architecture (Figure 1) consists of three different
entities: Web services provider, Web services requestor/client, and Web services registry.

The Web services provider provides Web services descriptions and publishes them using a
Web service broker respectively a Web service registry. The service requestor wants to fulfill
a certain task with the help of one or more Web service(s). In order to locate Web services,
the Web service requestor contacts a service broker to search for Web services. When an
adequate Web service is found the Web service requestor uses the information of the Web

DUSTDAR AND TREIBER

Figure 1. Conceptual overview of Web services.

service broker to invoke the Web services. The service broker (registry) stores information
describing Web services provided by Web service providers in a registry (repository). The
Web service registry allows users to search for Web services and to publish Web services
descriptions.

The selection of adequate Web service registries is important at the design time of
Web service composed systems. We consider Web service registries as critical components
during the design time of a Web service oriented software system. Since different Web
service registry implementations exist, the selection of an adequate Web service registry is
important. Comparing different Web service registries two main questions emerge:

– What are the typical requirements for Web service registries?
– Which criteria are reasonable for Web service registry selection?

Our work focuses on requirements of Web service registries. In particular, we address the
different perspectives on Web services and the associated context dependent requirements.
We introduce the notion of a view that serves as a means for the comparison of Web
service registries. A view structures requirements of Web service registries in arbitrary
dimensions. It serves as a method to capture the requirements that lead to certain Web
service registry architectures, respectively, Web service data models. This paper compares
different approaches of Web service registries from the human and the Web services
perspective. These perspectives (views) provide two dimensions: Architecture and Data
Model. The architecture describes the conceptual structure of a Web service registry. The
data model describes the type of data and the data structure implemented by a Web service
registry. A view, furthermore, enables the creation of differing perspectives on Web service
requirements.

The reminder of the paper is organized as follows: Section 2 presents requirements of
Web service registries and introduces the two views on Web service registries and discusses
different Web service architectures and data models accordingly. Section 3 discusses Web
services architectural models. Section 4 analyses Web service registry data models. Section
5 provides a case study from the movie business which is used to illustrate our framework.
We compare and discuss the different approaches of Web services registries regarding their
data models.

VIEW BASED ANALYSIS ON WEB SERVICE REGISTRIES

2. A framework for Web Service registry comparison

The requirements Web service registries face are similar to the requirements of the Web ser-
vices architectures [31]. The seven top level requirements described in [32] serve as starting
base for our analysis of requirements concerning Web service registries. We refine these
requirements with regard to Web service registries. We consider additional requirements,
for example, the expressiveness of the Web service description as important and include
them into our considerations. Table 1 presents a summary of these refined, respectively
extended, requirements.

Table 1. Web service registry requirements.

Requirement Description

Interoperability Defines the ability of exchanging and using
information between different heterogeneous
Web service registry environments

Reliability Defines the degree to which a Web service
registry is capable maintaining the service at
a given service quality

Integration with the World Wide Web Defines the degree to which a Web service
registry is consistent with the current and
future evolution of the World Wide Web

Security Defines the level of security necessary to access
a Web service registry

Fault tolerance Defines the ability of a Web service registry to
continue normal operation despite the
presence of hardware or software faults

Scalability Defines how well a Web service registry
responses to increasing load

Availability Defines the probability of successful Web
service registry invocations

Expressiveness of query language Defines the level of quality regarding the
expressiveness of the used query language

Expressiveness of Web service description Defines the level of quality regarding the used
Web service description language

Extensibility of data model Defines the degree of possible data model
extensions regarding Web service
descriptions

Transient Web services Defines the ability of Web service registries to
administer Web services that provide limited
access regarding online time

Management and provisioning Defines the ability of Web service registries to
provide for a manageable, accountable
environment for Web service registry
operations

DUSTDAR AND TREIBER

Selecting reasonable criteria for the rating of Web service registries depends on the actual
view on the Web service registry. Not every requirement is a reasonable selection criterion
for a given view on Web service registries. We propose a comparison framework that unifies
the aforementioned aspects of Web service registry requirements using an abstraction that
we call view. This abstraction allows the comparison of different Web service registries
regarding different requirements along several dimensions. We illustrate the use of the view
based Web service registry comparison with respect to two dimensions. We investigate (1)
the Web service registry architecture and (2) the Web service registry data model with the
two typical functions of Web service registries, i.e., the Web service discovery and the Web
service publishing.

We consider the requirements under two different views, the human and the Web service
based view. We refine the requirements with regard to the actual view, because every
view provides own requirements and different abstractions. Views may include differing
semantics of the same abstractions. Consider, for example, the notion of security. From a
Web service view security involves the use of certain encryption algorithms or the use of
encrypted communication channels. From a human view the same concept may apply to
securing the Web service publishing by the use of passwords.

We start our discussion with the human view on Web service architectures. The human
view on Web service registries has requirements without providing detailed information
concerning technical issues. Requirements, for example, such as extensibility of data model,
support for transient Web services, the used standards regarding Web service description
encoding or the Integration with the World Wide Web are technical issues.

In contrast, the Web service view on Web service registry architectures focuses on
technical issues regarding the requirements. Although the Web service view shares some
of the requirements of the human view, the Web service view provide different semantics
regarding the actual requirements. The Web service view relies on attributes that allow
numeric quantification. Requirements, like reliability, performance and availability provide
concrete values that define the performance. Other requirements like security or supported
standards include, for example, concrete security protocols or encoding schemata that are
supported. We summarize these requirements in Table 2.

The second dimension is provided by the view on Web service registry data models.
We start with the human view on Web service registry data models. The human view
on Web service registry data models is limited by human readable, respectively human
understandable, information. The corresponding requirement, i.e., the expressiveness of
Web service descriptions, defines the degree to which Web service descriptions provide
human interpretable information. Human interpretable information is usually unstructured
text that gives information about what a Web service generally does and information
about the Web services provider, which can include name, address, and other additional
information. Human understandable data can further be structured, for instance, into data
that provides technical description, such as references to standards, etc.

Web services description may also provide related information like introductive texts
about the Web services in a business context. With this (unstructured) information, a
human is usually capable of selecting a Web service among the query results that fits
the requirements of the human Web services requestor. To enable a better understanding

VIEW BASED ANALYSIS ON WEB SERVICE REGISTRIES

Table 2. Human and Web service view on Web service registry requirements.

Requirements Human view Web service view

Interoperability n.a Defines the ability of exchanging
and using information between
different heterogeneous Web
service registry environments

Reliability Defines the percentage of successful
service invocations regarding the
Web service registry basic
functionality

Defines the degree to which a Web
service is capable maintaining the
service at a given service quality

Integration with the World Wide
Web

n.a Defines the degree to which a Web
service registry is consistent with
the current and future evolution
of the World Wide Web

Security Defines security mechanisms for the
access of Web service registries
that prevent security attacks of
the Web service registry

Defines the level of security
necessary to access Web services

Expressiveness of Query language Limits the way how humans can
search for Web services

Defines the level of quality
regarding the used query
language

Expressiveness of Web service
description

Limits the degree to which humans
can understand Web service
descriptions

Defines the level of quality
regarding the used Web service
description language

Fault tolerance Defines the ability of Web service
registries to continue normal
operation despite the presence of
hardware or software faults

Defines the ability of a Web service
registry to continue normal
operation despite the presence of
hardware or software faults

Scalability Defines how well Web service
registries response to increasing
number of Web service registry
entries and to increasing number
of search queries

Defines how well a Web service
registry responses to increasing
load

Extensibility of data model n.a Defines the degree of possible data
model extensions regarding Web
service descriptions

Transient Web services n.a Defines the ability of Web service
registries to administer Web
services that provide limited
access regarding online time

Availability Defines the percentage of time that
Web service registries are online
and operational

Defines the probability of successful
Web service invocations

Management and provisioning Defines the ability of Web service
registries to provide for a
manageable, accountable
administration interface for Web
services registries operations

n.a

DUSTDAR AND TREIBER

Table 3. Human and Web service view on registry data model requirements.

Attribute Human view Web service view

Expressiveness of Query Language Limits the way how humans can
search for Web services

Defines the used query language(s)
to support the Web service
discovery

Expressiveness of Web service
description

Limits the degree to which humans
can understand Web service
descriptions

Defines the level of quality
regarding the used Web service
description language

Extensibility of data model n.a Defines the degree of possible data
model extensions regarding Web
service descriptions

Semantic Meta Data n.a Defines the used language(s) for the
support regarding semantic
information

about Web services, categorization information can be included. From a human view,
categorization information can be both, structured information in form of reference systems
or informal descriptions, for example, a text containing a general business description, such
as “Business activities range from the provision of stunt team equipment to expertise on
physics and law”.

Functional aspects of Web service registries consider the expressiveness of the query
language. The way how human user can formulate the queries influences the success of
Web service discovery. From a human view, it is necessary to provide query languages that
support the expression of search queries as closely as possible to human requirements.

The Web service view on Web service data models focuses on technical issues. In general,
the Web service view depends on well structured data. In contrast to the human view on
Web services registry data models, the Web service view addresses the actual used data
model (hierarchical, object oriented, relational, etc.) and how this data model represents
the Web service descriptions. The used data model defines the level of expressiveness
regarding the query languages the degree to which it is possible to extend the existing
data model. A related issue is semantic information. Consider the example of a user who
wants to find a Web service that sells airline tickets between two given cities and accepts a
particular credit card. Currently, this task is usually performed by a human who searches
for a corresponding Web service. He/she has then to determine if the found Web service
satisfies the constraints. With semantic markup of Web services, the information necessary
for Web service discovery could be specified as computer-interpretable semantic markup
and a semantic-enhanced Web service registry can be used to locate the Web service
automatically. We summarize the human and the Web service view in Table 3.

3. Web services registry architectures

This section discusses the architectural style of Web service registries. The architectural
style of a service-oriented system using Web services defines how a Web service reg-
istry is actually implemented. The implementation of Web services influences the message

VIEW BASED ANALYSIS ON WEB SERVICE REGISTRIES

interaction schema between Web service registry, Web service provider, and Web service
requestor. Generally, Web services registries can be classified with regard to their architec-
ture: (a) Centralized, (b) Decentralized, or (c) Hybrid. Each of these different architectural
styles provides certain strengths and weaknesses regarding scalability, fault-tolerance, ad-
ministrative overhead, complexity, and performance. This section gives an overview of the
different Web service architectures and provides examples for every type of architecture.
We conclude this section with a view based architectural comparison of the different Web
service registry approaches. The view concept emphasizes the differences between the
human and Web service perspective of Web service registry architectures.

3.1. Centralized architecture

In a centralized approach a single entity contains all Web services registry entries, referred to
as Web services registry (Web services broker). Each Web service provider uses the central
Web services registry for the publishing of its service descriptions. The Web services broker
stores registry information in a central “well known” registry. Services requestors contact
the service broker in order to obtain information about Web services. This model follows
a traditional client/server approach where the Web services registry acts as server, the
Web services provider as content producing client and the Web services requestor as an
information seeking client.

The best know example for a centralized Web service is UDDI (Universal Description,
Discovery and Integration). UDDI is a standard which is part of the Web services archi-
tecture. UDDI contains a framework for both, the specification of Web services and the
specification of businesses. UDDI uses standard technologies (SOAP, XML [27], HTTP
[9], TCP/IP) and is set on top of an interoperating stack. UDDI focuses mainly on the
discovery of services using a centralized Web service registry. Web service descriptions are
not part of the UDDI specification. Service descriptions such as WSDL can be referenced
by UDDI registry entries using tModels [25].

The SELF-SERV project [2, 3] is an example for using a centralized UDDI [22–24]
based registry (Figure 2). The Services Manager component consists of three modules,
namely the Services Discovery Engine [17], the Services Editor and the Services Deployer.
The Services Discovery Engine manages the registration and the location of services. The
Services Discovery Engine is implemented in Java using UDDI, WSDL [28] and SOAP
[29] technology. Before a service is registered in the UDDI registry, it must generate a
WSDL description and deploy the description at a public location, identified by an URI.
The publishing is completed by sending a SOAP message with the Web services information
to the services Discovery Engine that stores the data into the UDDI registry and makes it
available in the services pool for later discovery by Web services requestors.

Another example for a centralized Web service registry architecture is the ebXML
(electronic business XML) standard [12]. It defines a framework that aims to allow different
businesses to find each other and to conduct business activities. ebXML specifies several
interrelated components for business activities and provides a central registry or repository
for storing information. The ebXML registry acts as a database for data regarding business
to business communication. It follows a similar concept like UDDI registries, but is broader

DUSTDAR AND TREIBER

Figure 2. SELF-SERV and UDDI.

in scope. An ebXML registry is capable of storing arbitrary data, for example, Business
Process Models [4], CPP [7] or CPA [34].

The ebXML registry offers two separate interfaces, the LifeCycleManager Interface and
the QueryManager Interface. The LifecycleManager handles the submission of objects, the
classification schemes of object and the removal of obsolete objects from the registry. The
QueryManager interface enables clients the discovery of Web services. It provides the func-
tionality required by clients to locate Web services. The QueryManager interface consists
of two parts allowing search with SQL expressions and Filter expressions respectively.

3.2. Decentralized architecture

A decentralized approach implements a pure peer to peer architecture. From a functional
point of view, each service provider has a local registry and acts as service provider and as
service registry (broker) at the same time. The different roles are carried out by the same
provider. Web services registry entries exist only as long as the Web services provider is
part of the peer to peer network. As soon as the Web service provider leaves the network,
the registry entry is not valid anymore, since the Web services registry entry is not available.
This implies a dynamic registry structure where the lifespan of a registry entry is limited
by the connection time to a peer network.

Schmidt and Parashar [16] present a peer to peer registry architecture based on distributed
hash tables. Web services registry information is distributed over a peer to peer network
using an indexing system that is based on the CHORD [18] data lookup protocol. In
this system, Web services are indexed using those keywords that describe the given Web
services. Each data element is associated with a sequence of keywords that define a mapping
into a multidimensional keyword space. The n-dimensional keyword space is mapped to
a 1-dimensional index space which is mapped onto an overlay network of peers. When a
node joins the network it must know at least one node already in the network. The joining

VIEW BASED ANALYSIS ON WEB SERVICE REGISTRIES

node sends a join message which is routed across the network and is then inserted into the
network structure.

The Web services Discovery Architecture [20, 33] provides a Web services discovery
layer on top of a grid based architecture. The discovery layer defines four interfaces along
with a tuple based universal data model which enables to store arbitrary content. The
Presenter interface enables the retrieval of service descriptions by use of HTTP(S) Get
requests. The Consumer interface provides the possibility to publish content to a consumer,
for example, a registry service. The MinQuery interface provides basic query support using
“select-all style” queries. The XQuery interface provides XQuery support. Each peer in
the Web services Discovery Architecture can implement a subset the specified interfaces,
depending on the role of the peer. A registry peer may implement all four interfaces, while
a peer that only publishes data implements just the Presenter interface. The registry model
follows one of three approaches, namely the Pull registry, the Push registry and Hybrid
registry.

In the Pull registry approach, a content provider publishes a content link. The registry
pulls the content using the content link into the registry. As soon as a content provider
changes, it notifies the registry. The registry can then decide if and when the new content is
pulled into the registry. In the Push registry approach, a content provider pushes both, the
content link and the content into the registry. Every modification of content leads to a push
of the current content to the registry. The hybrid approach implements a pull as well as a
push registry at the same time.

3.3. Hybrid architecture

The federated approach distributes Web services registration information among different
entities in a peer to peer fashion. Dedicated nodes of the network, i.e., super peers or peer
registries, store Web services registry data. This approach, sometimes called a hybrid peer
to peer network, unifies aspects of centralized and decentralized Web services registries.

The registry peers provides transparent registry access through several gateways, re-
spectively, registry peers. In this mode both, the Web services provider and Web services
requestor act like in a centralized Web services environment since they are not aware of
the distributed nature of the Web services registry. The process of registering and discovery
of Web services is similar to the approach taken in a centralized architecture. The only
difference lies in the communication overhead between registry peers when a search is
performed which includes several distributed registries. The registry peers can also provide
semi-transparent registry access. A Web services requestor is enabled either to make the
choice between a local search in the registry of the Web services registry peer or a global
search involving every registry peer of the network. The semi-transparent approach allows
for specialized registries. Each Web services registry peer provides a registry which is
specialized at a certain type of Web service. A Web services provider can publish a Web
service in a specialized Web services registry using meta-information of the Web services
registry peer about the type of Web services that are stored in the Web services registry of
the peer.

DUSTDAR AND TREIBER

Figure 3. METEOR communication layer overview.

The METEOR-S [26] project implements a distributed registry structure as depicted in
Figure 3. METEOR support four different types of peers: gateway, operator, auxiliary, and
client peers. Each operator peer controls a local registry and provides operator services. The
operator peer provides advanced Web services discovery mechanisms based on ontological
information. The gateway peer (GWP) manages the access to the peer to peer network for
new registry operations. The GWP is a central entity in the peer to peer network which
plays the role of an entry point for registries when joining the MWSDI. The gateway peer
also informs the other peers of the network as soon as updates of the registries ontologies
are necessary.

Because of the gateway peer, METEOR can be classified as a hybrid peer to peer
network. The gateway peer may act as single point of failure, but METEOR is also capable
of operation without the gateway peer. When the gateway peer fails, not all METEOR
features are available, for example, it is not possible for new registries to join the network.

Papazoglou et al. [15] introduce the concept of service-syndications, where related
business form groups of interest with their own UDDI peer registries that operate in a
decentralized fashion. These so called super peers store a sub directory of a UDDI business
registry where every syndication peer publishes its service description (Figure 4).

The super peer manages the communication between different peers and is responsible
for the joining and leaving of peers of service syndications. The key concept of the service
syndication is the event notification, which allows peers to operate in an independent way.
Each peer can register itself for certain occurrences of events. The registry peer informs
the registered peer when it obtains a matching subscription from another peer. This enables
peers to form their own so called peer acquaintance group (PAG). Each PAG consists of
peers having the same interests, where each peer knows every member of the PAG. The

VIEW BASED ANALYSIS ON WEB SERVICE REGISTRIES

Super-peer Registry

Service-
peer

Service-
peer

Service-
peer

Service-
peer

Syndication
UDDI

Super-peer Registry

Service-
peer

Service-
peer

Service-
peer

Service-
peer

Syndication
UDDI

UDDI

Super-peer Registry

Service-
peer

Syndication
UDDI

Service-
peer

Service-
peer

Service-
peer

Figure 4. Web services Syndication overview.

members of the PAG cooperate by propagating Web services requests to peers within their
own PAG without the help of the super or registry peer.

3.4. View based comparison of the architectural styles

The human and Web service view on Web service architectures provide the same results
regarding common requirements. Although they have different semantics, the impact on
Web service architectures is almost the same.

A central registry offers simplified administration, since there is a single entity which
has to be administrated. Furthermore, there are no coordination or replication activities
between different Web services registries, which add administrative overhead. At the same
time this benefit is also the main drawback. A centralized Web services registry acts as
a single point of failure and provides limited scalability. To solve the problem of limited
scalability and fault tolerance, a replication schema can be implemented, where several
servers offer a replicated registry. The replication of Web services registries weakens the
main benefits of a centralized Web services registry, since replication needs administrative
overhead to manage replicated registries at different locations.

The federation of registries offers a more scaleable solution, where a peer to peer network
of registry peers maintains the registry entries. The load of Web services registries can be
distributed among several peers leading to increased performance when the Web services
registry grows. Another possibility is the specialization of registry peers. Registry peers
can specialize on certain types of Web services. Therefore, it is possible for registries to
act as market places where related businesses publish their Web services. Furthermore, it
allows a registry to be smaller and more efficient regarding search times, compared to a
centralized approach.

Federated registries are more fault tolerant because the failure of a registry peer only
affects a part of the network. To ensure better fault tolerance, different registry peers
can hold replicas of other registry peer, since the amount of data is less, compared to a

DUSTDAR AND TREIBER

Table 4. Human and Web service view based comparison of Web service registry architectures. Attributes
written in italics are available either in the human or the Web service view.

Attributes Centralized Hybrid Decentralized

Scalability Low High High

Fault-tolerance None Yes Yes

Reliability Yes Yes No

Performance Low High Medium

Availability Medium High High

Security Good Good Fair

Integration with the World Wide Web∗ Good Good Fair

Management and Provisioning∗ Very Good Good Fair

Support of transient Web services∗ Poor Poor Good

Interoperability∗ Good Fair Fair

∗Web service view only.

central registry. Compared with a central approach, a federated registry has more message
overhead. Global search queries need to be forwarded from registry peer to registry peer
in order to carry out a global search operation. This leads to more messages in the network
since the search query must be sent to all registry peers and afterwards query results from
all registry peers must be sent back to the query originator from throughout the network.

The fully decentralized registry provides the best fault tolerance. The failure of a peer
does not affect any other peer, because every peer acts as a registry node itself. Another
benefit is the location transparent registry, due to the fully decentralized registry structure.
A Web services provider needs no knowledge about a central registry or registry peers. It
suffices to know an arbitrary peer of the network to be able to publish a Web services.

The distributed Web services registry approach provides the largest flexibility, since it can
evolve into any other registry architecture. It is possible to set up a federated structure where
related businesses can publish their Web services in a clustered way. Another possibility is
to build a single Web services registry service which acts as central Web services registry
within the peer to peer network. Another benefit of distributed registries is the way they
handle dynamic registry entries. A Web service can dynamically join and leave a peer
network without any administrative overhead. There is no need to contact a central entity
when a Web services is being published or removed from the network. Due to the dynamic
nature of the distributed registry it is not possible to ensure that a registry entry exists
over a certain time. The centralized and decentralized registry solutions can guarantee
the existence of Web services registry entries as long as the registries are operational. A
drawback of a distributed solution is the amount of messages that circulate through the
network when a search query is executed. Potentially, the entire network is searched for the
requested Web services. Frequent search queries can lead to a degeneration of the response
time when searching for Web services since network bandwidth is consumed by the search
messages. Table 4 presents detailed results of the comparison.

VIEW BASED ANALYSIS ON WEB SERVICE REGISTRIES

4. Web service registry data models

Another relevant difference between Web service registries concerns the type of information
stored in a Web service registry. Data about Web services can vary from basic information
about a service, such as name, service classification, information about the provider, etc.
to complex coordination information such as message exchange patterns, collaboration
protocols or other structured information about Web service capabilities.

We discuss the differences between Web service registries concerning their data models.
Web service registries implement different data models to store registry information. Per-
sisted data ranges from simple informal Web services descriptions to formal ontological
structured information. The following section presents a short overview on UDDI, ebXML,
WSDA, and WSIL concerning their data models and compares the different approaches.

4.1. UDDI data model

The UDDI data model [22] is a hierarchically-structured data model. It provides a “top-
down” approach, where information about a Web service is divided into several categories
with each category offering more detailed information about the registered Web services.
Each entity in the data model is identified by a unique universal identifier (UUID). UDDI
offers three built in global classification schemes, based on following standards:

• The North American Industry Classification System (NAICS) taxonomy
• The Universal Standard Products and services Code System (UNSPSC) taxonomy
• The International Organization for Standardization Geographic taxonomy (ISO 3166).

The data model consists of businessEntity structures that encapsulate information about
Web services. A businessEntity holds businessService structures that describe services of-
ferings in a more detailed way. Every businessEntity offers one or more services, which are
grouped together in the businessService structure. The published information is similar to
those of the businessEntity, including information about service name, service description,
a unique service identifier and bindingTemplates related to a businessService. The bind-
ingTemplate acts as a container for technical information of services. This element contains
information that is needed for the communication with a given service, including unique
identifier, the access point of the service (for example a URL) and references to tModels.

4.2. ebXML data model

The ebXML data model provides a class hierarchy that allows the modeling of registry
entries. Since the data model also includes other aspects of electronic business, the data
ebXML model is much broader in scope than for example UDDI. Generally speaking, the
ebXML registry data entries provide metadata about registry objects. These entries are not
limited to Web service descriptions. ebXML is capable of modeling arbitrary data, like for
example UML diagrams, etc. The data model itself is organized into 17 classes that enable
for example the creation of taxonomies of registry entries or the grouping of related registry
objects.

DUSTDAR AND TREIBER

4.3. WSDA data model

The WSDA data model specifies a unified data model based on tuples. Each tuple can
be viewed as container for arbitrary data that consists of five different fields. The Link is
an HTTP(S) URL and points to the content provided by the content provider. The Type
describes the kind of content that is being published. The Context describes the reason
why content is published or how it should be used. The Timestamps TS1, TS2, TS3, and
TC provide information about modification time of a tuple and the validity of the tuple
content. The Metadata element offers additional information. The content itself can be of
arbitrary nature. The retrieval is done by use of the link specified in the Link attribute. The
registry entries are maintained by soft state data container to support dynamic changing of
registry entries. After publishing a tuple into the tuple space, a tuple is valid for a certain
time. When the publisher of the tuple refreshes the lease timely the tuple stays in the tuple
space, otherwise it is removed. A registry in the WSDA architecture is merely an indexing
service. Every registry entry points to the external description of the Web service.

4.4. WSIL

The Web services Inspection Language is complementary to the registry approaches con-
sidered so far. WSIL provides a distributed metadata model for web service information.
It assumes no restrictions of the published content. WSIL provides a method for aggre-
gating different types of Web service descriptions in a single document. WSIL serves two
purposes: First, it defines an XML format for listing references to existing service descrip-
tions. Second, it defines a set of conventions so that it is possible to locate WS-Inspection
documents.

Each Web service provides a WSIL file at a specified location. WSIL can be regarded
as business cards containing arbitrary information, for example, HTTP links to ontology
documents, WSDL documents, etc.

4.5. View based comparison of Web service data models

We start our discussion of the different Web service data models with the human view.
The hierarchical UDDI data model supports the human need for general information about
Web services. It provides basic information about the Web service provider and enables
the stepwise refinement of search criteria by following the data model. The main drawback
is the limited search capability. The UDDI registry data model allows to search in several
ways for Web services, for example, using keyword based name queries, or looking for a
Web service using external identifiers. The use of external identifier is not very comfortable
and includes the handling of UUIDs that reference the actual information. UDDI supports
only the keyword based search and the browsing of predefined categories. The publishing
of Web services is limited to technical aspects; concrete functional considerations are out
of the scope of UDDI registries.

From a human view, the ebXML registry offers a more flexible data structure with classi-
fications and a hierarchical classification schema. The ebXML registry data model assumes

VIEW BASED ANALYSIS ON WEB SERVICE REGISTRIES

no limitations about the content being stored. The slot element allows the extension of the
data model using key name pairs. Registry entries can also point to external resources, for
example, a link to a WSDL document can be stored in an ebXML registry using the ex-
ternalLink element. Compared with UDDI, the search capabilities of ebXML registries are
more powerful. ebXML supports complex search queries with the help of filter expressions
or basic SQL select statements.

Both data models share similarities, for example, when registering basic Web services.
The main difference between these two data models lies in the way how registered objects
are categorized. ebXML offers a built-in extensible category schema, while UDDI relies
on tModel links to an external classification schema. The ebXML registry supports col-
laboration and coordination protocols (CPP, CPA), whereas UDDI does not offer similar
capabilities.

Compared with ebXML and UDDI, WSDA takes a complementary position. WSDA does
not provide a data model for the actual registry entries; it enables Web services provider only
to publish arbitrary descriptions into the tuple space. Data tuples can be highly dynamic
and their lifespan is determined by several timestamps. Due to the arbitrary data model it is
possible to make use of XQuery expressions that match certain hierarchical criteria, when
it is applied to XML based tuple content.

The Web service view on Web service data models provides a similar result compared to
the human view. The investigation of the UDDI data model exhibits the same weaknesses
illustrated in the human view. The lack of search capabilities limits the usability of a Web
service view. However, in contrast to the human view, the expressiveness is better, because
humans need more descriptive information. UDDI provides the possibility to follow tModel
links to external descriptions that include Web service descriptions. The use of UUID for the
identification provides also–from the Web service perspective—a powerful identification
mechanism. The lack of semantic metadata makes it virtually impossible to automate the
discovery process.

The ebXML solution provides better expressiveness regarding the query language in
comparison with the UDDI approach. The filtering system provides a simple and extensible
selection mechanism that allows the efficient retrieval of Web service descriptions.

The tuple based data model of WSDA does not support classification or semantic data
directly. Due to the arbitrary data model it is possible to make use of XQuery expressions
that match certain hierarchical criteria, when it is applied to XML based tuple content.

WSIL acts as container for arbitrary web service descriptions or registry entries. This
approach is similar to the approach taken by WSDA, where registry information can
be stored in the content part of a tuple. WSIL does not support any direct query inter-
faces. It is mainly a metadata container of distributed nature and specifies no discovery
interfaces.

Table 5 summarizes the view based comparison of the human and Web service view on
Web service registry data models.

DUSTDAR AND TREIBER

Table 5. View based Comparison of Web service registry data models. Italics mark differences of the human
view compared with the Web service view.

Attributes UDDI ebXML WSDA WSIL

Expressiveness of Query Language Poor Good, Fair Good, Fair n.a

Expressiveness of Web service description Fair Good, Fair Good, Fair n.a

Extensibility of data model Poor, n.a. Good, n.a. Good, n.a. Good, n.a.

Semantic Meta Data No, n.a. Yes, n.a. Yes, n.a. Yes, n.a.

5. Case study—Managing a film team

The case study presented in this section serves as an illustration for the view based com-
parison of the Web services registries. The example illustrates the different views on Web
services registries in a concrete rather than in an abstract manner. This example was given
preference over the well-known travel-arrangement example, since managing a film team
better demonstrates various requirements presented in Table 1 and illustrates the human
and the Web service view in a richer and highly dynamic environment. Managing a film
crew is a very complex task. There are many different types of film teams, for exam-
ple, the stuntmen crew, the makeup artists, etc, which offer particular services. Some
of these teams work together in a loosely coupled way providing their expertise on de-
mand, while other teams depend on services provided by other teams and work together
throughout a longer period of time. External experts offer expertise on several topics, for
example physics, law, health etc. These experts are needed to make a movie reality. For
example, computer scientists are needed when an actor acts as a computer expert in a
movie.

A film director must be able to coordinate all these different teams and experts at different
times and locations. At the same time, the film director must keep the costs as low as possible
since film budgets are usually very tightly calculated. As the film director is responsible for
the budget he/she has an interest in all cost-causing details of the film-making to guarantee
that the film budget is not overdrawn and the movie is completed in time. To ensure the
smooth and timely film-making, inter-team management is of paramount importance. The
film director must enable the teams to communicate with each other in an efficient way to
provide their services. Thus, the coordination of interdependent film teams is very critical
for the timely completion of the movie. The different phases of the film project provide
additional constraints regarding the arrangement of the film teams. During each phase a
flexible configuration and composition of the different film teams is necessary. For example,
when shooting an action scene the actors need stunt doubles for certain tasks (car crashes,
jumps from buildings, etc.). Figure 5 shows a UML class diagram illustrating our case
study:

A film production is directed by one or more directors. Each film production consists of
several sub tasks which in turn may consist of other sub tasks. Director, external experts, and
crew members are all persons with particular capabilities which are provided as services.

VIEW BASED ANALYSIS ON WEB SERVICE REGISTRIES

F
ig

ur
e

5.
U

M
L

cl
as

s
di

ag
ra

m
fil

m
w

or
ki

ng
ex

am
pl

e.

DUSTDAR AND TREIBER

Table 6. Film director and Web service view. The columns indicate potential Web service architectures and
Web service data models.

Attribute Film director view Web service view

Expressiveness of Web service description ebXML, UDDI ebXML, UDDI

Expressiveness of Query language ebXML ebXML, UDDI, WSDA

Fault tolerance Hybrid Hybrid, Decentralized

Security Hybrid Hybrid, Centralized

Interoperability Hybrid Hybrid

Scalability Hybrid Hybrid, Decentralized

Availability Hybrid Hybrid, Decentralized

For example, a stunt man is capable of car stunts, while another stunt man is a specialist
for martial arts. Film crews are hired by the director for a certain time. External experts
are also hired by the director for their expertise on a particular topic. A film crew consists
of one or more film crew members. Every film crew member adds its own services to the
film crew. A film crew can provide film crew services which are more than the sum of the
capabilities of every single crew member. For example, a car chase can be provided by a
film crew rather than by a single person. Each film crew provides the equipment needed
for the making of the movie. In general, a film needs one or more film crews. Each film
crew is assigned to a film production task by the location where the film crew is needed.
For example a camera crew provides specialized camera equipment for the shooting of film
scenes under water.

We now apply our view methodology from Section 2. We discuss the view of a film
director and the corresponding Web service view to illustrate the differences between both
views. We assume that different film crews use different Web service registries respectively
are members of different Web service communities. Every film crew is responsible for
a certain area of the film-making, for example, a film crew manages the special effects.
We consider the film director’s view as rather abstract, because the coordination of the
different film teams does not involve technical issues. Planning and coordination of the
film crews needs a Web service registry architecture that provides simultaneous access
to different registries respectively communities. Other concerns regard the expressive-
ness of Web service descriptions, security, and fault tolerance of the Web service registry
architecture.

Table 6 provides the film director’s (human view) and the Web service view and shows
potential candidates for the Web service data model and candidates for the implementation
of the Web service architecture.

6. Conclusion

The two different views on Web service registries share common requirements but exhibit
also differences regarding the actual abstractions. For example, both views need expressive

VIEW BASED ANALYSIS ON WEB SERVICE REGISTRIES

Web service descriptions but depend on different characteristics. Generally speaking, the
human view needs informal descriptions and the Web service view depends on well struc-
tured metadata. From a human view the main problem of current Web services registry
technologies is the lack of human interpretable information. Despite of providing human
readable information in form of tag based documents, the presented information remains
rather formal and abstract. The enrichment with informal inline descriptions and catego-
rizations eases the understanding but is not sufficient. A possible solution is an active data
model, which shows potential usage of the described Web services based on examples or
working scenarios.

From a Web service view, semantic markup languages such as DAML+OIL enrich
registries and provide meaningful information. Ontologies for arbitrary content like DAML-
S [5] provide UDDI registry entries with semantic information. Technically DAML-S
profiles are mapped into UDDI registries with the help of tModels. A DAML-S matching
engine uses ontology based information for search requests to obtain UDDI keys which are
in turn used to retrieve the service descriptions from UDDI registries.

Another example is EDUTELLA [10] that is built on top of the JXTA P2P frame-
work and provides a peer to peer system with service descriptions in RDF. EDUTELLA
allows complex query operations based on RDL-QEL, provided on several levels of
complexity.

The METEOR-S system implements specialized ontologies, called registry ontologies.
Registry ontologies capture properties of registries. The ontology data is useful for the
discovery of registered services. It is possible to update registry ontologies with other reg-
istries ontologies to obtain a combined ontology thus implementing relationships between
services of different registries.

Another approach is taken in [6]. Directory information is enriched by context aware
data which is represented by a Multidimensional OEM graph [18]. This data structure
allows to model different facets under different contexts thus providing a hierarchical
structure.

7. Future work

An interesting extension to current Web service descriptions could be a common
Web service description that unifies the human and Web service view regarding
the proposed requirements. This would require a common data model for the de-
scription of Web services. This data model should provide the possibility to ex-
tract the needed information, respectively provide adequate transformation mecha-
nisms that transform the information according the different–human or Web service–
views.

Another issue which is not well dealt with in current Web service registry architectures
is the support for transient Web services, i.e., Web services that exhibit unpredictable
availability. With the exception of WSDA that provides a tuple space based data model,
none of the presented architectures provide efficient support for Web services that exhibit
unpredictable availability. The tuple space model seems a promising approach for dynamic
Web service registries, since the tuple space concept provides the needed flexibility for

DUSTDAR AND TREIBER

dynamic Web service registry entries without much administrative overhead (registering
and un-registering). In our future work we plan to provide unified views and mappings
between human views and Web service views.

Appendix A

In the following sections we provide examples that illustrate the different Web service
registry data models using our case study presented in Section 5.

A.1. UDDI

The example below illustrates a businessEnity structure for our case study with name,
contact, identifier and category information on the film director:

The example below shows a businessService element including a bindingTemplate el-
ement and tMoldelInstanceDetail element using our case study. The example provides an
additional description and an URL which specifies a SOAP binding for the hiring of film
crews by a film director:

VIEW BASED ANALYSIS ON WEB SERVICE REGISTRIES

The example shows a tModel element pointing to a URL that contains a WDSL speci-
fication of the hire film crew method of our case study. Additional information about the
type of the specification is encapsulated in the <categoryBag> Tag.

DUSTDAR AND TREIBER

A.2. ebXML

The following example shows our case study applied to the ebXML data model. It imple-
ments a service description and points to a WSDL description of the hire method of the
director.

VIEW BASED ANALYSIS ON WEB SERVICE REGISTRIES

A.3. WSDA

Using the content portion of the tuple a WSDL document is embedded. The director
provides a WSDL document with the description of the hire method.

A.4. WSIL

The example below illustrates a WSIL document containing links to the hire API of our
case study and UDDI identifier for detailed information about the hire services.

DUSTDAR AND TREIBER

References

1. K. Ballinger, P. Brittenham, A. Malhotra, W.A. Nagy, and S. Pharies, Web services Inspection Language
(WS-Inspection) 1.0. IBM, Microsoft, 2001.

2. B. Benatallah, M. Dumas, Q.Z. Sheng, and A.H.H. Ngu, “Declarative composition and peer-to-peer Provi-
sioning of dynamic web services”, in Proceedings of the 18th International Conference on Data Engineering
(ICDE’02), IEEE Computer Society, 2002.

3. B. Benatallah, M. Dumas, and Q.Z. Sheng, “Faciliating the rapid development and scalable orchestration of
composite Web services”, Distributed and Parallel Databases, vol 17, pp 5–37, 2005.

4. Business Process Specification Schema. http://www.ebxml.org/specs/ebBPSS.pdf, 2001
5. DAML-S Coalition, “DAML-S: Web services description for the semantic Web”, in Proceedings of the

International Semantic Web Conference (ISWC), 2002.
6. C. Doulkeridis, E. Valavanis, and M. Vazirgiannis, “Towards a context-aware services directory”, in Proceed-

ings of the 4th VLDB Workshop on Technologies for E-Services (TES ’03), 2003.
7. ebXML Collaboration-Protocol Profile and Agreement Specification. http://www.oasis-

open.org/committees/ebxml-cppa/documents/ebcpp-2.0.pdf, 2002
8. ebXML registering a Web services within a ebXML registry. http:// www.oasis-open.org/

committees/download.php/1636/OASIS-registry%20TC%20-%20Registering%20Web%20services%20in%
20an%20ebXML%20registry.doc. 2003.

9. Hypertext Transfer Protocol — HTTP/1.1. IETF RFC 2616. UC Irvine, Digital Equipment Corporation, MIT,
1999.

10. W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmer, and T. Risch, “EDUTELLA:
A P2P networking infrastructure based on RDF”, Proceedings of the Eleventh International Conference on
World Wide Web, 2002.

VIEW BASED ANALYSIS ON WEB SERVICE REGISTRIES

11. OASIS/ebXML registry Information Model v2.0. http://www.oasis-open.org/committees/regrep/documents/
2.0/specs/ebRIM.pdf, 2001.

12. OASIS/ebXML Technical Architecture Specification. http://www.ebxml.org/specs/ebTA.pdf, 2001.
13. OASIS/ebXML registry services Specification v2.5. http://www.oasis-open.org/committees/regrep/

documents/2.5/specs/ebrs-2.5.pdf, 2003.
14. M. Paolucci, T. Kawamura, T.R. Payne, and K. Sycara, In Web Services, E-Business and Semantic Web

Workshop, 2002, To Appear
15. M.P. Papazoglou, B.J. Krämer, and J. Yang, “Leveraging Web-services and Peer-to-Peer Networks”, in

Proceedings of the 15th Conference on Advanced Information Systems Engineering (CAiSE ’03), 2003.
16. C. Schmidt, and M. Parashar, “A peer-to-peer approach to Web services discovery”, in Proceedings of the

2003 International Conference on Web Service (ICWS ’03), 2003.
17. Q.Z. Sheng, B. Benatallah, Y.Q. Zhu, R. Stephan, and E.O-Y. Mak, “Discovering E-services Using UDDI in

SELF-SERV”, in Proceedings of International Conference on e-Business (ICEB2002), 2002.
18. Y. Stavrakas and M. Gergatsoulis, “Multidimensional semistructured data: Representing context-dependent

information on the Web”, In Proc. of the 14th Int. Conf. on Advanced Information Systems Engineering
(CAISE’02), Toronto, Canada, 2002.

19. I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan, “Chord:A scalable peer-to-peer lookup
services for internet applications”, in Proceedings of ACM SIGCOMM’01, 2001.

20. The Web Service Discovery Architecture. Wolfgang Hoschek, in Proc. of the Int’l. IEEE/ACM Supercom-
puting Conference (SC 2002), IEEE Computer Society Press, November 2002.

21. A. Tsalgatidou and T. Pilioura, “An overview of standards and related technology in Web services”, Distributed
and Parallel Databases, vol 12, pp 135–162, 2002. Kluwer Academic Publishers. 2002

22. UDDI Version 2.03 Data Structure Reference. http://uddi.org/pubs/DataStructure v2.htm, 2002.
23. UDDI Version 3.0.1 http://uddi.org/pubs/uddi v3.htm, 2003.
24. Universal Description, Discovery and Integration: UDDI Technical White paper.

http://www.uddi.org/pubs/Iru UDDI Technical White Paper.pdf, 2000.
25. Using WSDL in a UDDI registry, Version 2.0 http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-

spec-tc-tn-wsdl-v200-20030627.htm, 2003.
26. K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and J. Miller, “METEOR-S WSDI: A

scalable P2P infrastructure of registries for semantic publication and discovery of Web services”, Journal of
Information Technology and Management, 2004.

27. W3C. XML Extensible Markup Language. http://www.w3c.org/XML, 2000.
28. W3C, WSDL, Web services Description Language. http://www.w3.org/TR/2002/WD-wsdl12-20020709/,

2002.
29. W3C, SOAP Version 1.2 Part 0: Primer. http://www.w3.org/TR/2003/REC-soap12-part0-20030624/, 2003.
30. W3C. XQuery 1.0: An XML Query Language. http://www.w3.org/TR/2003/WD-xquery-20031112/, 2003.
31. W3C, Web Services Architecture. W3C Working Group Note 11 February 2004.

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/, 2004.
32. W3C, Web Services Architecture Requirements. W3C Working Group Note 11 February 2004.

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/, 2004
33. Wolfgang Hoschek. Peer-to-Peer Grid Databases for Web service Discovery. CERN IT Division, 2002.

