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Abstract—Cloud computing is a novel computing paradigm
that offers data, software, and hardware services in a manner
similar to traditional utilities such as water, electricity, and
telephony. Usually, in Cloud and Grid computing, contracts
between traders are established using Service Level Agreements
(SLAs), which include objectives of service usage. However, due
to the rapidly growing number of service offerings and the lack
of a standard for their specification, manual service selection
is a costly task, preventing the successful implementation of
ubiquitous computing on demand. In order to counteract these
issues, automatic methods for matching SLAs are necessary. In
this paper, we introduce a method for finding semantically equal
SLA elements from differing SLAs by utilizing several machine
learning algorithms. Moreover, we utilize this method to enable
automatic selection of optimal service offerings for Cloud and
Grid users. Finally, we introduce a framework for automatic
SLA management, present a simulation-based evaluation, and
demonstrate several significant benefits of our approach for
Cloud and Grid users.

Index Terms—Service Level Agreement; Cloud computing;
SLA mapping; SLA matching; provider selection; machine learn-
ing; autonomic computing; electronic markets

I. INTRODUCTION

Cloud computing is an emerging paradigm where highly
scalable computing resources (e.g., infrastructure, platform,
and software services) are offered as on-demand services in
a pay-as-you-go model [1], [2]. Due to the large variety in
services and vast number of service providers, the Cloud
market is currently fragmented and inefficient [3], [4]. To
counteract this issue, electronic marketplaces for trading Cloud
services were introduced with the goal of facilitating trading
in the heterogeneous environment.

In order to achieve the goal of ubiquitous computing as
a commodity, Cloud marketplaces need to be flexible, dy-
namic, and have low entry barriers. However, today’s Cloud
landscape is static and cannot adequately adapt to the active
user participation, i.e., dynamic user base and changes in user
requirements for services [4], [5], [6]. In particular, due to
the large variety of Cloud services and the vast number of
market participants, Cloud marketplaces often suffer from low
liquidity, i.e., the probability to sell or purchase a service,
thus disadvantaging new providers and repelling potential
consumers [4]. Moreover, although most of the existing mar-
ketplaces use Service Level Agreements (SLAs) to express
and negotiate user requirements and offers for services, there
exists no general standard for their specification. Therefore,

although syntax specification of some requirements may vary
among different SLAs, their semantic meaning may be the
same from the perspective of market participants. This issue
presents an obstacle for automatic SLA matching and partner
selection in electronic markets. Instead, users have a high cost
for searching through the large number of service offerings
and manually comparing syntactically differing SLAs.

The most common solution for these issues in research is
creation of SLA ontologies [7], [8], [9], [10], [11]. However,
although ontologies may solve the problem for a static set
of SLA elements by forcing market participants to specify
the semantics of their requirements, they do not solve the
problem of dynamic user base and ever-changing requirements
for services. In order to address these issues, knowledge about
user requirements, their characteristics and differences, as well
as their evolution over time is crucial for taking regulating
measures in the Cloud market. One approach that deals with
this problem is the SLA mapping technique. SLA mappings
are documents used to bridge the differences between two
differing SLAs [12], [13], [3], [14]. Unlike ontologies, SLA
mappings are dynamic and allow users to keep their SLAs that
may already be used in other processes [3]. However, due to
the lack of semantic description of SLA elements, mappings
must be manually defined by market participants, thus keeping
the high cost of the service selection process.

In this paper, we assess the cost of SLA matching and
provider selection with the SLA mapping technique and dis-
cuss the methods for reducing this cost in Grid and Cloud mar-
ketplaces. In particular, we present an approach for automatic
discovery of semantically equal SLA elements and creation
of SLA mappings that map the differences in their syntax
specification. Furthermore, using the automatic SLA matching
algorithms, we allow the autonomic provider selection in Grid
and Cloud computing marketplaces.

In order to achieve our goals, we propose storing and
managing history data of user requirements as well as of
mappings between corresponding requirements in a market
knowledge repository. We suggest machine learning and au-
tomatic reasoning methods to analyze this data and automatic
matching of SLA elements and generation of mappings based
on the knowledge about common requirement specifications
gained through this process. As the result, our approach
facilitates automatic recommendations of trading partners and
SLA mappings, thus reducing the cost of joining the market.



The main scientific contributions of this paper are: (1)
introduction of the algorithms for matching equal SLA ele-
ments from differing SLAs; (2) analysis of the methods for
automatic provider selection; (3) development of a framework
for automatic creation and management of SLA mappings;
and (4) a simulation-based evaluation of the approach using
an experimental testbed.

The remainder of the paper is organized as follows: Section
II describes the related work. Section III discusses the SLA
mapping technique. The approach of autonomic SLA matching
and provider selection is explained in detail in Section IV.
Section V presents the simulation-based evaluation of the
approach. Finally, Section VI concludes the paper.

II. RELATED WORK

We classify the related work in four categories: (1) concepts
for enhancing SLAs with semantics; (2) approaches for match-
ing various types of entities; (3) approaches for automatic
discovery of mappings between various types of entities; and
(4) methods for learning from past experiences.

A general problem in the field of SLA matching is the
lack of semantic description of SLA elements. To compensate
these shortcomings, [15] introduce utilization of semantic
Web technologies based on Web Service Semantics (WSDL-
S) and Web Ontology Language (OWL) for enhancement of
WS-Agreement specifications to achieve autonomic Quality
of Service (QoS) and SLA matching. Similar to that, [16]
introduce an ontology-based SLA formalization where OWL
and Semantic Web Rule Language (SWRL) are chosen to
express the ontologies. [17] suggest producing a unified QoS
ontology applicable to the main scenarios such as QoS-based
Web Services selection, QoS monitoring, and QoS adaptation.
However, all of these approaches require market participants
to specify the semantics of their requirements based on their
knowledge about the target domain, which is a costly pro-
cedure. The approach discussed in this paper, on the other
hand, tries to minimize the overall cost for market participants
by autonomic analysis of semantic correlations between the
managed SLAs and the users’ feedback to automatic recom-
mendations of SLAs and SLA mappings.

Several works deal with autonomic QoS matching in various
distributed environments (e.g., [7], [8], [9], [10], [11]). Sim-
ilarly to our approach, these works also focus on matching
requirements of different SLAs. In contrast to our work,
however, they try to facilitate the matching process by intro-
ducing ontologies as enhancement to plain SLA documents,
thus forcing market participants to specify the semantics of
their requirements in such ontologies. In the broader field
of computer science, there are many other approaches for
automatic matching of various types of entities. Recent works
include matching records of databases (e.g., [18], [19], [20],
[21], [22]) and ontologies for semantic web (e.g., [23]). These
works, however, significantly differ from our context.

Approaches for automatic discovery of mappings between
various types of entities have also been discussed in other
fields of computer science. [24], for instance, provide an

approach for automatic search for mapping rules for XML
Schemas. [25] describe an approach for automatic derivation
of XSLT transformations between XML documents. However,
these approaches either try to match similar entities using
traditional similarity algorithms that only operate on a syn-
tactical level, build upon explicitly described semantics of the
analyzed entities, or use synonym databases to find semantic
relationships between individual words. On the contrary, the
approach proposed in this paper focuses on the whole structure
of SLAs rather than on individual entities. Moreover, our
approach utilizes machine learning methods to learn from past
experiences, thus continuously enhancing the knowledge about
relationships between semantically equal SLA elements.

To facilitate automatic reasoning about the equality of SLA
elements and creation of mappings between them, we propose
strategies for learning from already established SLAs as well
as from market participants’ feedback in response to automatic
recommendations. Learning methods for similar research prob-
lems have been evaluated in various fields of computer science.
The ones most similar to our context deal with matching
similar records in databases by utilizing classification methods
(e.g., [26], [27], [20], [21], [28]). Most of these works use
multiple classifiers allowing them to automatically adapt to
the characteristics of record instances. Other learning methods
deal with learning from past experiences. Many works use
Case-Based Reasoning (CBR) for this purpose. For example,
[29] used CBR to determine resource configurations of virtual
machines in Cloud environments. However, this and other
similar works cannot be directly applied to our research
problem since the input features used for classification as well
as the models of cases utilized by CBR may be highly different
to our approach.

III. THE SLA MAPPING APPROACH

In our vision of Cloud markets, Cloud providers and Cloud
consumers express their offers and requirements in special
forms of SLAs named SLA templates before they negotiate
and sign legally binding SLAs. SLA templates (as well as
SLAs) comprise three principal elements: (1) SLA metrics,
representing methods for calculation of Quality of Service
(QoS) values; (2) SLA parameters, representing abstractions
of SLA metrics, determined by their basic properties such as
a name and a unit for expressing the parameter value; and
(3) Service Level Objectives (SLOs), determining contractually
agreed objective values for specific SLA parameters. The SLA
model can be expressed using any SLA specification scheme,
such as WS-Agreement [31] and WSLA [30], with the latter
used in our further discussions.

We distinguish two types of SLA templates: private SLA
templates, which are used to specify requirements and offers of
market participants, and public SLA templates, which are used
to describe products offered for trade on the market. While the
former are created by market participants when joining the
market, the latter are autonomically generated and managed
by the market [14]. The market allows only the trade of the
products described by public SLA templates.



Private SLA Template Public SLA Template

name = "Memory Usage Rate"
unit = "percent"

:SLA Parameter
name = "Memory Usage Rate"
unit = "percent"

:SLA Parameter

SLA Mapping #1name = "Memory Consumption Rate"
objective = <0.3

:SLA Service Level Objective
name = "Memory Usage Rate"
objective = <0.3

:SLA Service Level Objective

name = "Total Memory"
unit = "Gbit"
uri = "https://service.com/memoryGbit"

:SLA Metric

MemUsage

MemTotal

MemUsage

MemTotal

name = "Total Memory"
unit = "Gbit"
uri = "https://service.com/memoryGbit"

:SLA Metric

name = "Memory Usage"
unit = "Gbit"
uri = "https://service.com/memoryGbit"

:SLA Metric
name = "Memory Usage"
unit = "Mbit"
uri = "https://service.com/memoryMbit"

:SLA Metric

SLA Mapping #2
A B

name = "Memory Usage Rate"
unit = "percent"

:SLA Metric
name = "Memory Usage Rate"
unit = "percent"

:SLA Metric

MemUsage
MemTotalfunction = 

MemTotal
function = 

MemUsage
1000( )

:Translation Function

B = A*1000

Fig. 1: Case study

When entering the market, users do not search for offerings
of other users, but associate their private SLA template with
public SLA templates that are closest to their requirements
[5], [6]. Therefore, for the successful establishment of the
contract between service buyers and sellers, their requirements
must be matched with the ones specified in the associated
public SLA template. Since there exists no general standard
for specifying requirements in SLA templates, their definition
may vary among templates. For that reason, SLA mappings
have been introduced. They are used to bridge the differences
between syntax inequalities of specific SLA elements that
are semantically equal in two SLA templates [12], [13].
Semantically equal SLA elements have the same meaning from
the perspective of the market participants participating in a
trade. On the other hand, SLA elements are equal by syntax
if their language specification is identical. Note that in our
vision of Cloud markets, syntax equality of SLA elements
implies their semantic equality.

Market participants are asked to create SLA mappings
between their own private SLA template and the corresponding
public SLA template when entering the market. Mapping
translations can range from very simple, such as incompatible
names of SLA elements (e.g., different names used for the
same SLA parameter) to complex translations, such as meth-
ods for calculating parameter values with different metrics
(e.g., different units used to express the same parameter value).

To explain the most important concepts involved in the
SLA mapping approach, in Fig. 1 we present a case study
comprising two semantically equal SLA templates containing
an SLO to determine an objective value of the memory
usage rate of a Cloud service. Although semantically equal,
these SLOs differ in their syntax. Namely, they differ in the

SLO name (“Memory Consumption Rate” in the public SLA
template vs. “Memory Usage Rate” in the private template).
The measurements for which the SLOs define objective values
are specified by SLA parameters in each of the SLA templates.
SLA metrics referenced in the two SLA parameters define a
function for calculating memory usage rate out of two SLA
metrics: memory usage and total memory. However, the values
of the former are expressed in a different unit in the two
SLA templates (“Gbit” from the private SLA template vs.
“Mbit” from the public template). Correspondingly, the SLA
metric function combining the parameter metrics differs in the
SLA templates, which is a direct consequence of the differing
measurement units.

To bridge the difference between two SLA templates de-
picted in Fig. 1, two SLA mappings should be created. First,
a simple SLA mapping should map the difference between
two SLO names. Secondly, a more complex SLA mapping
should be defined between two differing SLA metrics to state
a translation function for mapping the differing metric values.
Note that an SLA mapping between syntactically different
SLO functions is not necessary, since a mapping between
differing metric units indirectly maps this inequality.

When specifying SLA mappings between elements of two
SLA templates, market participants need to assess the equality
of both elements from their own perspective. Contradictions
caused by different opinions on the semantic equivalence of
SLA elements play a subordinate role in autonomic market
management since the market may be regulated according to
their meaning for the majority of market participants. Only
during the negation of final contracts such contradictions may
be detected and solved by mutual agreements between two
trading parties.



IV. TOWARDS AUTONOMIC PROVIDER SELECTION

In order to enable autonomic SLA management in Cloud
markets, we must extract the knowledge from specifications
of user requirement for services, which is only possible if
SLAs and SLA mappings are managed by the Cloud market
platform. Specifications of requirements and their variations
over different SLA templates can then be analyzed and gen-
eralized knowledge can be learned and reused for generation
of SLA mappings between unknown SLA templates. To re-
alize this goal, a Cloud market should implement additional
knowledge mechanisms dealing with several important tasks
such as storing and managing data about the history of SLA
templates and mappings, learning the semantics necessary for
finding equivalent SLA elements and generation of adequate
SLA mappings, and automatic SLA element matching and
generation of SLA mappings between SLA elements.

To facilitate continuous learning, we propose autonomic
knowledge management in Cloud markets based on a control
loop similar to the traditional MAPE cycle containing the
following phases: (1) continuous Monitoring of the learning
progress by testing whether available knowledge yields correct
recommendation results; (2) Analyzing available knowledge
and deciding whether new knowledge should be added or
outdated knowledge forgotten; (3) Planning and scheduling
training and revision phases; and (4) Executing the actual
training. Implementation of such a control loop facilitates
continuous fitting of the learned knowledge to any potential
changes in formalization of requirements due to the evolution
of market participants’ requirements over time.

The market knowledge is finally used for two main pur-
poses: automatic SLA matching, i.e., recognition of equal
elements of two SLAs and autonomic creation of SLA map-
pings between them, and automatic provider selection, i.e.,
recommendation of those public SLA templates to the market
participants that are the closest to the requirements specified
by their private SLA templates. In the following, we explain
the processes of achieving these goals.

A. Automatic Matching of SLA Elements

The process of matching semantically equal SLA elements
from differing SLA templates is important for enabling au-
tomatic provider selection in Cloud markets. This process
is executed in three steps. First, for each pair of two SLA
elements, the probability for their equivalence (i.e., their simi-
larity) is computed. Then, based on the computed probabilities,
the equivalence of the elements is determined. Finally, if
two SLA elements are semantically equal, the SLA mappings
are automatically created to bridge the possible differences.
When measuring the similarity of a pair of SLA elements, we
consider their two properties: element definition, stating basic
properties such as name and measurement unit, and element
metric, describing a method for measuring the element value.

1) Similarity of element definitions: Properties of element
definitions are represented by string values. For calculating
the similarity of these properties, possible characteristics of
their specifications have to be considered. The most common

characteristics we have identified are variations in the order
of single characters or character blocks (e.g., “Memory Con-
sumption” vs. “Consumption Memory”), additional characters
or words (e.g., “Consumption Memory” vs. “Consumption
of Memory”), and usage of abbreviations or synonyms (e.g.,
“Memory Consumption” vs. “Memory Usage”).

Calculation of the similarity between definition properties
can be realized by utilizing string similarity metrics. A large
number of these metrics has been discussed in existing re-
search [32], [20], [33]. They may be roughly separated into
two groups: character-based and vector-space based methods
[21]. While the former rely on character edit operations (e.g.
insertions, deletions, and substitutions), the latter “transform
strings into vector representations on which similarity com-
putations are conducted” [21]. In our evaluation, we used the
character-based string similarity metric Levenshtein distance
for this purpose due to its good performance with short strings
that only contain a small number of variations in their syntax.
Levenshtein distance is defined as “the minimum number of
insertions, deletions or substitutions necessary to transform
one string into another” [21]. In our model, the similarity of
two strings is computed as the difference between the length
of the longer of the two strings and the number of character
modifications needed to convert one string to another (i.e., the
Levenshtein distance) divided by the same maximum distance:

pequal(S1, S2) =
max(|S1|, |S2|)− dL(S1, S2)

max(|S1|, |S2|)
(1)

where S1 and S2 are the two strings, |S1| and |S2| their
lengths, and dL(S1, S2) their Levenshtein distance.

Although string similarity metrics promise good results for
identification of small variations in definition properties, they
are not able to recognize semantically equal properties that
differ significantly, as it is the case of synonyms or abbre-
viations. These differences may only be detected by having
concrete knowledge of possible synonyms or abbreviations.
Hence, besides string similarity, our approach utilizes Case-
Based Reasoning (CBR) methods for learning semantically
equal definition properties from established SLA mappings.
In particular, semantic equivalence of individual definition
properties is determined in four phases: (1) retrieval of the
most similar case to the new case by calculating the similarity
between SLA element definition properties used in both cases
and selecting the case with the highest similarity; (2) reuse of
the knowledge of the similar case to solve the new problem; (3)
revision of the proposed solution by analyzing users’ feedback
to the recommendation of the matching SLA elements; and (4)
retainment of the parts of user experience likely to be useful
for future problem solving (i.e., storing users’ feedback as part
of the utility of a case). If reoccurring patterns are detected
by CBR, the similarity of two element definition properties is
calculated based on the similarity between the old case and
the new case, which is again computed with the Levenshtein
similarity metric.

Fig. 2 illustrates how an existing CBR case could be reused
for solving a similar new case (the symbol ∼=S is used to de-



EXISTING CASE 

Public SLA TemplatePrivate SLA Template

NEW CASE

Public SLA TemplatePrivate SLA Template

name = "Bandwidth"
unit = "Gbit"
uri = "https://service.com/bandwidthGb"

:SLA Metric
name = "Bandwidth"
unit = "Mbit"
uri = "https://service.com/bandwidthMb"

:SLA Metric

name = "Memory Usage"
unit = "Gbit"
uri = "https://service.com/memoryGbit"

:SLA Metric
name = "Memory Usage"
unit = "Mbit"
uri = "https://service.com/memoryMbit"

:SLA Metric

=S~ =S~

SLA Mapping #3
A B

SLA Mapping #2
A B

:Translation Function

B = A*1000

:Translation Function

B = A*1000

Fig. 2: Reusing a CBR case

note semantical equivalence of two SLA elements): While two
cases describe SLA metrics for significantly different purposes
(namely for measuring memory usage and bandwidth usage
of a Cloud service), their similarity lies in the unit conversion
from “Gbit” to “Mbit” and vice versa. Therefore, an SLA
mapping with an associated translation function specified in
the existing case can be reused in the new case to capture the
unit conversion.

2) Similarity of element metrics: Element metrics describe
the methods for measuring SLA element values. They can
either directly specify a measurement source by stating its URI
or indirectly reference and/or aggregate other SLA elements
for retrieving their measurements. Composite aggregation of
measurements is specified as a function of the metrics.

On the one hand, similarity of element metrics stating
measurement sources is done analogously to element definition
properties, since URIs may abstractly be seen as strings.
Similarity of properties that reference individual SLA elements
should only ensure equality of the referenced elements. On
the other hand, computing similarity of the metric proper-
ties defined by functions, i.e., combinations of several QoS
measurements, involves determination of the equality of the
functions itself. Namely, due to the possible variations and
transformations inside the functions (e.g., introduction of sub-
stitutions, change of the variable orders, utilization of different
units, etc.), this process must involve several steps: (1) check-
ing if all referenced SLA elements used in both functions are
semantically equal; (2) ensuring that the both functions use the
same variable assignment (i.e., two semantically equal SLA
elements are assigned to the same variable); and (3) proving
the logical equivalence of both formulas using an algebra
solver. If one of these steps fails, functions are considered
as non-equivalent. Otherwise, the elements are considered
equivalent. In our framework, logical equivalence of metric

functions is checked by Symia [34], a Java-based algebra
solver library that facilitates parsing algebraic expressions, au-
tomatically detecting variables in expressions, and solving not
only numeric, but also symbolic expressions (i.e., expressions
containing abstract variables), which is of great importance in
our context.

While the similarity of element definition properties and
element metrics stating measurement sources is expressed as
a continuous probability, the one of element metrics defined
by functions can only be expressed by a binary classification
since two functions can either be logically equal or not. This
is expressed as a discreet value, i.e., 0 (non-equivalence) or 1
(equivalence) of a pair of functions.

3) Final decision on element similarity: To make a final
decision on semantic equality of SLA elements, the similarities
of their individual properties have to be combined to an overall
value representing the probability of element equality. For
this purpose, we utilize machine learning methods. As input
features for classification, we use the equality probabilities of
the individual element properties that are precalculated using
the string similarity measurements, CBR-enhanced similarity
detection, and algebra solver. Classification is done separately
for each SLA element in the hierarchical order (i.e., from the
SLA metric level up to the SLO level). In our evaluation,
we utilize the Support Vector Machines (SVM) method for
implementing the classification strategies for the individual
SLA elements.

SVM is a concept in statistics and computer science for a set
of related supervised learning methods that analyze data and
recognize patterns in such way that they take a set of input data
and predict, for each given input, which of two possible classes
forms the input. In our scenario, SVM uses a training phase
in which it builds an internal model for prediction of the final
binary classifier for the semantic equality of SLA elements.



The internal SVM model uses the equality probabilities of
the individual SLA element properties as the input features
and produces a binary output with semantically equal and
semantically different as possibly classes for the given input.

4) Automatic generation of SLA mappings: Once the equal
SLA elements from two different SLA templates have been
matched, the SLA mappings must be created to bridge the
discovered differences. SLA mappings are automatically cre-
ated and recommended to the user.

Generation of SLA mappings for incompatible element
definition properties is straightforward, since they only map
already identified differences in string values. On the other
hand, generation of more complex mappings between incom-
patible element metrics involves creation of suitable translation
functions, which can later be used to translate measurements
defined by one SLA metric into the other and vice versa. In the
simplest case, two semantically equal SLA metrics represent
the same measurement defined in the same unit, but differ
in their structural specification. In this situation, it is enough
to create an SLA mapping referencing the SLA metrics and
defining a translation function for converting a measurement
from one SLA template into another. In more complex cases,
two semantically equal SLA metrics additionally differ in
their units. In this case, generation of the translation function
involves knowledge about how the units of both metrics are
mathematically related. This knowledge can be obtained from
the previously used SLA mappings by utilizing CBR methods.
If an equivalent unit translation has been used in a similar case,
knowledge about specification of the translation function can
be transferred to the new case. If a similar case does not exist,
the user must manually define the mapping.

After receiving the recommended SLA mappings, a user
submits his feedback to the recommendation component stat-
ing the correctness of the recommended data. In case of a
negative feedback, a user can state whether the SLA mapping
was incorrect or an SLA element was wrongly matched. This
data is then used for the learning process of the CBR and
SVM methods. Note that dealing with the contradictory user
feedback is out of the scope of this paper.

B. Automatic Provider Selection

Automatic provider selection assumes assessing semantic
equality of two SLA templates and requires matching of
equivalent SLA elements from those templates. Given a user’s
private SLA template and a set of public SLA templates, the
matching process starts by iterating through all public SLA
templates and checking the similarity of all SLA elements
contained by the user’s private SLA template and the currently
examined public SLA template. For each pair of SLA tem-
plates, the overall equivalence probability is computed as the
relative number of matched SLA elements in the total number
of elements of both SLA templates. Finally, the public SLA
template with the highest equivalence probability is chosen as
the optimal offering, but only if its equivalence probability
exceeds a predefined threshold, which is in our simulation

Private 
SLA Template

SIMULATION ENGINE

Simulation Management Service

Training and Test Data 
Generation Engine Evaluation Engine Visualization and 

Documentation Engine

Public 
SLA Template SLA Mappings

CLOUD MARKET PLATFORM

Market Platform Frontend Services

Market Platform Management Services

Market Knowledge 
Component

Learning
Component

Recommendation 
Component

SLA Template and Mapping 
Repository

SLA Template Semantics
Learning Engines

SLA Template
Matching Engines

SLA Mapping 
Generation Engines

SLA Mapping Semantics
Learning Engines

SLA Template and Mapping 
Management

Fig. 3: Simulation environment

set to 70%. Otherwise, a user is notified that the appropriate
service offering currently does not exist in the market.

V. EVALUATION

A. Simulation Environment

For the simulation purposes, we designed a prototype inte-
grating our framework for autonomic generation and manage-
ment of SLA mappings into a simulated market environment.
Fig. 3 depicts our framework comprising two core compo-
nents: a cloud market platform and a simulation engine.

The Cloud market platform represents the basic infras-
tructure for autonomic management of the Cloud market and
integrates the actual implementation of our framework for
autonomic creation and management of SLA mappings. In
particular, it comprises: (1) frontend services, which form
the basic interface for submission of users’ requirements
and offers for services to the market; (2) market platform
management services responsible for management of supply
and demand in the market (including pricing and allocation
mechanisms); (3) a market knowledge component responsible
for storing and managing public and private SLA templates as
well as SLA mappings; (4) a learning component responsible
for capturing characteristics of the data and learning to au-
tomatically recognize complex patterns and make intelligent
decisions based on the data concerning the semantics of
SLA elements and SLA templates; and (5) a recommendation
component responsible for making final decisions on SLA
matching and provider selection and recommendation of equal
SLA elements, SLA mappings, and SLA templates.

The simulation engine is responsible for automating the
simulation process. In particular, it comprises: (1) a training
and test data generation engine, implementing a configurable
interface for semi-automatically generation of training and test
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Fig. 4: Simulation testbed

data sets in compliance with predefined generation policies;
(2) an evaluation engine, providing methods for assessing the
results of the simulation by using an adequate cost model;
and (3) a visualization and documentation engine, facilitating
graphical visualization of the evaluation results as well as
documentation for later analysis.

B. Simulation Process

The simulation is conducted in three main steps (Fig. 4):
generation of demand and supply in the market, recommen-
dation of the optimal offerings on the market to the service
buyers (including the recommendation of SLA mappings be-
tween the differing SLA templates), and the evaluation of the
recommendation results based on the simulated user feedback.

The simulation process is conducted as follows. In the first
step, the training and the test data is randomly created in
a semi-automatically fashion so that it meets requirements
specified in data generation policies. These policies are for-
warded to the data generation engine to ensure automatic
generation of training and test datasets that meet specific
properties of real datasets such as a clear separation between
semantically different and semantically equal SLA templates
or data distributions within the datasets. Moreover, the data
generation engine contains a set of rules for creating instances
of SLA elements based on characteristics of real-world ex-
amples as well as rules for modeling syntactic differences
between semantically equal SLA elements that can be found in
real-world scenarios. The result of this process is the collection
of triples containing a public SLA template from the set of all
public SLA templates, a private SLA template from the set
of all private SLA templates that is semantically equal to the
associated public SLA template, and the pre-calculated SLA
mappings between the two templates.

The second step of the simulation process involves sub-
mission of the previously created SLA templates and SLA
mappings to the market. Namely, for each triple, the simula-
tion engine submits the private SLA template to the market
platform prototype. The prototype’s recommendation compo-
nent then automatically analyzes the submitted private SLA

template and tries to match it with an existing public SLA
template stored in the market repository contained by the
market knowledge component. As already described in Section
IV, this process finds the best matching public SLA template
and returns it back to the simulation engine. Together with the
public SLA template, the recommendation returns the SLA
mappings between the discovered equivalent elements of the
two SLA templates, as described in Section IV.

For the evaluation of the recommendation algorithm, the
simulation engine analyzes correctness of the recommendation
by comparing it to the precalculated public SLA template and
SLA mappings. If the recommended public SLA template is
equal to the precalculated public template, the recommen-
dation has been correct; otherwise an incorrect recommen-
dation has been detected. Analogically, the correctness of
the recommended SLA mappings is checked. In case of an
incorrect recommendation, the framework reports the mistake
to the market platform’s recommendation component, thus
simulating the negative user feedback. This feedback is then
automatically forwarded to the learning component.

C. Simulation Setup

For the evaluation of our approach, we define two simulation
setups: for evaluating the process of provider selection (i.e.,
public SLA template recommendation) and for evaluating the
methods for SLA mapping recommendation. Table I summa-
rizes the simulation settings.

Parameter Value
Number of public SLA templates
- Public SLA template recommendation
- SLA mapping recommendation

100
3

Number of private SLA templates per public SLA template
- Public SLA template recommendation
- SLA mapping recommendation

3
100

Number of SLOs per SLA template 5-7
Number of SLA parameters per SLA template 5-7
Number of SLA metrics per SLA template 7-10
Maximal hierarchy level for nested SLA metrics 5

TABLE I: Simulation settings



(a) SLA template recommendation (total cost development) (b) SLA mappings recommendation (total cost development)

Fig. 5: Evaluation results

To evaluate the provider recommendation process, we gen-
erate a set of 100 public SLA templates and 3 semantically
equal private SLA templates per one public SLA template.
SLA templates contain between 5 and 7 SLOs as well between
5 and 7 SLA parameters. The number of SLA metrics per SLA
template is in range of 7 to 10. Note that the number of SLA
metrics is larger than the number of SLOs in oder to allow
nesting of SLA metrics.

For evaluation of the SLA mapping recommendation pro-
cess, the focus is on the syntactic differences between elements
of private SLA templates and semantically equal elements
of corresponding public SLA templates. Therefore, only a
small number of public SLA templates is necessary, but with
a large variety of corresponding private SLA templates. For
this purpose, we generate 3 public SLA templates with 100
semantically equal private SLA templates for each of the
public templates. The settings for the structure of individual
SLA templates is equivalent to the setup for public SLA
template recommendation.

D. Formalization of the Cost Model

When initially joining a Cloud market, users need to execute
several manual steps to find an adequate Cloud service and
establish a contract for its usage. Manual execution of these
steps involves a high effort for market participants. In this
section, we build a simple cost model to quantitatively assess
this effort. This model will then be used in our further
discussions on the benefits of the approach presented in this
paper.

When joining the market, market participants need to search
and select an adequate provider service offering that best
matches their own requirements. Since in our vision Cloud
services traded on the market are described by public SLA
templates, market participants must associate their private SLA
template with the best-matching public SLA template. In our
cost model, we mark the cost of manually searching for the

best-matching public SLA template with the variable a. This
cost is common for the traditional Cloud markets in which
SLA templates are not automatically recommended to the
participants, but also when a template has been recommended
that is not the best-matching for the user. On the other hand, a
market participant has no cost if he must not manually search
for an appropriate public SLA template, which is in case
when a public SLA template is automatically and correctly
recommended to the user.

After selecting an adequate provider, market participants
need to specify SLA mappings between their private SLA
template and the chosen public SLA template to bridge any
possible syntactical differences. In our cost model, we mark
the cost of manually creating a new SLA mapping with the
variable c. On the other hand, a user has no cost if he must not
create an SLA mapping, which is in the case when a mapping
is not necessary or the correct SLA mapping was automatically
provided to the user. Since the recommended SLA mappings
may also be incorrect, a user may have an additional cost d to
delete the recommendation, i.e., to send a negative feedback.
Note that in some cases a user may have to both delete the
recommendation and create a new SLA mapping, which results
in the total cost of c+ d.

The presented cost model is in our simulations used to
compare the benefits of automatically creating SLA templates
and SLA mappings in Cloud markets. The values of the
variables a, c and d used in our simulations are depicted
in Table II. Note that, considering the presented model, the
absolute values of the costs are less important than their
relative difference.

Cost Cost description Value
a Manual association of a public SLA template 10
c Manual creation of a new SLA mapping 10
d Identification of an incorrectly recommended mapping 10

TABLE II: The cost model



E. Evaluation Results

In this section, we evaluate our approach by measuring the
cost for market participants of adapting incorrect recommenda-
tions of public SLA templates and SLA mappings and compare
it to the situation in which they have to search for optimal
services and create SLA mappings manually. Furthermore, we
mutually compare two recommendation strategies based on
different learning methods: classification with input features
based only on string similarity metrics and classification with
input features based on string similarity metrics as well as
those based on CBR knowledge.

Fig. 5a illustrates the evaluation results for automatic
provider selection, i.e., recommendation of public SLA tem-
plates. It depicts the total cost in logarithmic scale of man-
ual selection of public SLA templates achieved by different
numbers of trained examples. As it can be seen, the usage of
learning methods for matching SLA elements and for automat-
ically associating and recommending public SLA templates
significantly reduces the cost of manual association of public
SLA templates by market participants, even when using less
advanced learning methods, such as the classification method
with input features based only on string similarity metrics.
However, when comparing this “simple” classification method
to the one with additional input features based on CBR
knowledge, we can notice only a slight improvement in the
cost reduction when compared to the latter case. This is due
to the very small number of equivalent SLA elements that
could not be matched by less advanced learning methods in
comparison to the number of elements that could be matched
by such methods, resulting in only a minor influence on the
actual value of the overall equivalence probability between two
SLA templates. Hence, even less advanced learning methods
are able to show good results for automatic provider selection
since not every single semantically equal pair of SLA elements
between a public and a private SLA templates must be
identified correctly, but even an approximation of the average
similarity probability over all SLA elements of both templates
is able to give enough information for making correct decisions
about their semantical equivalence in most cases.

Fig. 5b illustrates the evaluation results for SLA mapping
recommendation. It depicts the total cost of manual creation
of SLA mappings achieved by different numbers of trained
examples. The simulation starts with a high number of incor-
rect recommendations during the first 5 to 10 recommendation
iterations. This is due to the initialization of SVM with random
weights at the beginning of the simulation process and adjust-
ing its weight function automatically over the following train-
ing iterations. After the SVM reaches a good approximation
for the weight function, its predictions are relatively stable.
The evaluation result shows that the usage of learning methods
for matching SLA elements and for automatic generation and
recommendation of SLA mappings significantly reduces the
cost of manual creation of SLA mappings by market partic-
ipants. When comparing the classification method with the
input features based only on string similarity metrics to the one

with additional input features based on CBR knowledge, we
see that the latter can even reach a significantly lower cost than
the former. This is due to the fact that CBR is able to detect
complex difference patterns such as synonyms or abbreviations
and therefore is able to create correct SLA mappings in such
cases, while string similarity metrics are only able to detect
small differences in a small number of characters and consider
all other cases as semantically different. In our simulation
we could show that the reductions in cost reached through
the use of CBR are up to 30 percent after 20 iterations in
comparison to the overall cost incurred when applying only
string similarity metrics. However the concrete difference in
cost between both methods ultimately depends on the degree
of reoccurring patterns found in real-world scenarios, which
may vary in different application domains.

Summarizing, as shown in the evaluation results, our ap-
proach for autonomic management of SLA mappings is able
to significantly reduce market participants’ cost of manual
provider selection and manual creation of SLA mappings. The
scope of reductions in these costs between the initial situation
without recommendation and the approach proposed in this
paper depends on the used SLA model, the assumptions made
on the characteristics of SLA element specifications, and on
the learning and reasoning strategies used. The evaluation has
shown that even less advanced learning strategies are able to
facilitate good results in automatic provider selection, while
automatic creation of SLA mappings requires more sophis-
ticated learning techniques since any inaccurate reasoning
directly leads to a wrong recommendation and thus incurs
unwanted cost for market participants. For manual provider
selection, our approach was able to reduce market participants’
cost by nearly 100 percent for all examples in comparison
to its original amount without automatic recommendation. In
other words, the automatically recommended provider is in
almost all cases the correct one, i.e., the same provider that
market participants would have chosen by manual selection.
For automatic creation of SLA mappings, after a certain
training period, our approach was able to reduce the market
participants’ cost by nearly 100 percent for examples that
reused already trained knowledge in comparison to its original
amount without automatic recommendation. As it could be
seen in the evaluation results, the learning strategy based on
CBR needs extensive training to be able to turn its advantages
to account, but outperforms the less advanced learning strategy
that we have tested in our evaluation since it is able to
identify complex patterns and changes in SLA element and
SLA mapping specifications.

VI. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated an approach for automatic
SLA matching and provider selection in Grid and Cloud
computing markets with the goal of reducing the cost for
manual creation of SLA mappings and search for optimal
services for market participants. Using our simulation-based
evaluation, we showed the significant benefits of our approach.



In our future work, we will consider applying different
similarity metrics and use machine learning methods to auto-
matically determine the influence of each individual metric to
the overall matching result and to automatically adapt the set
of metrics to specific characteristics of individual properties of
SLA elements. In addition, information about characteristics of
semantically equal SLA elements will be clustered according
to the application context, in order to consider differences in
specifications of requirements in distinct application domains.
Finally, the obtained knowledge will be autonomically revised
and outdated information may be withdrawn, in order to
ensure better compliance with the actual evolution of market
participants requirements. In addition to the proposed learning
strategies, we will analyze the usage of already existing exter-
nal data sources for detection of semantically equal properties,
such as synonym, spelling, and unit conversion dictionaries.
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